| 1 |
/* |
| 2 |
* The MIT License |
| 3 |
|
| 4 |
Conograph (powder auto-indexing program) |
| 5 |
|
| 6 |
Copyright (c) <2012> <Ryoko Oishi-Tomiyasu, KEK> |
| 7 |
|
| 8 |
Permission is hereby granted, free of charge, to any person obtaining a copy |
| 9 |
of this software and associated documentation files (the "Software"), to deal |
| 10 |
in the Software without restriction, including without limitation the rights |
| 11 |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 12 |
copies of the Software, and to permit persons to whom the Software is |
| 13 |
furnished to do so, subject to the following conditions: |
| 14 |
|
| 15 |
The above copyright notice and this permission notice shall be included in |
| 16 |
all copies or substantial portions of the Software. |
| 17 |
|
| 18 |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 19 |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 20 |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 21 |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 22 |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 23 |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 24 |
THE SOFTWARE. |
| 25 |
* |
| 26 |
*/ |
| 27 |
#ifdef _OPENMP |
| 28 |
# include <omp.h> |
| 29 |
#endif |
| 30 |
#include "../utility_func/chToDouble.hh" |
| 31 |
#include "../utility_lattice_reduction/super_basis3.hh" |
| 32 |
#include "../utility_lattice_reduction/put_Minkowski_reduced_lattice.hh" |
| 33 |
#include "../laue_group/LaueGroup.hh" |
| 34 |
#include "../point_group/PGNormalSeriesTray.hh" |
| 35 |
#include "../model_function/LatticeDistanceModel.hh" |
| 36 |
#include "../zlog/zlog.hh" |
| 37 |
#include "gather_additional_Q.hh" |
| 38 |
#include "LatticeFigureOfMerit.hh" |
| 39 |
|
| 40 |
const Double LatticeFigureOfMerit::m_cv2 = 9.0; |
| 41 |
|
| 42 |
const NRMat<Int4> LatticeFigureOfMerit::m_tmat_prim_to_face = put_transform_matrix_row3to4( transpose( BravaisType::putTransformMatrixFromPrimitiveToFace() ) ); |
| 43 |
const NRMat<Int4> LatticeFigureOfMerit::m_tmat_prim_to_body = put_transform_matrix_row3to4( BravaisType::putTransformMatrixFromBodyToPrimitive() ); |
| 44 |
const NRMat<Int4> LatticeFigureOfMerit::m_tmat_prim_to_rhomhex = put_transform_matrix_row3to4( transpose( BravaisType::putTransformMatrixFromPrimitiveToRhomHex() ) ); |
| 45 |
const NRMat<Int4> LatticeFigureOfMerit::m_tmat_prim_to_base[3] = |
| 46 |
{ |
| 47 |
put_transform_matrix_row3to4( transpose( BravaisType::putTransformMatrixFromPrimitiveToBase(BaseA_Axis) ) ), |
| 48 |
put_transform_matrix_row3to4( transpose( BravaisType::putTransformMatrixFromPrimitiveToBase(BaseB_Axis) ) ), |
| 49 |
put_transform_matrix_row3to4( transpose( BravaisType::putTransformMatrixFromPrimitiveToBase(BaseC_Axis) ) ) |
| 50 |
}; |
| 51 |
const NRMat<Int4> LatticeFigureOfMerit::m_tmat_prim_to_prim = put_transform_matrix_row3to4(); |
| 52 |
|
| 53 |
LatticeFigureOfMerit::LatticeFigureOfMerit() |
| 54 |
: m_S_optimized( SymMat43_Double( SymMat<Double>(3), NRMat<Int4>(4,3) ) ), m_S_red(3), |
| 55 |
m_determ_S_red(0.0) |
| 56 |
{ |
| 57 |
} |
| 58 |
|
| 59 |
|
| 60 |
LatticeFigureOfMerit::LatticeFigureOfMerit(const Double& rhs) |
| 61 |
: m_S_optimized( SymMat43_Double( SymMat<Double>(3), NRMat<Int4>(4,3) ) ), m_S_red(3), |
| 62 |
m_determ_S_red(rhs) |
| 63 |
{ |
| 64 |
} |
| 65 |
|
| 66 |
|
| 67 |
LatticeFigureOfMerit::LatticeFigureOfMerit(const BravaisType& brat, |
| 68 |
const SymMat43_Double& S) |
| 69 |
: m_S_optimized( SymMat43_Double( SymMat<Double>(3), NRMat<Int4>(4,3) ) ), m_S_red(3) |
| 70 |
{ |
| 71 |
this->setLatticeConstants43(brat, S); |
| 72 |
} |
| 73 |
|
| 74 |
#ifdef DEBUG |
| 75 |
static bool checkInitialLatticeParameters( |
| 76 |
const BravaisType& brat, |
| 77 |
const SymMat<Double>& S_red) |
| 78 |
{ |
| 79 |
const SymMat<Double> inv_S_red( Inverse3(S_red) ); |
| 80 |
|
| 81 |
if( brat.enumPointGroup() == C2h_Y && brat.enumBravaisLattice() == Prim ) |
| 82 |
{ |
| 83 |
assert( inv_S_red(0,2) <= 0.0 && |
| 84 |
inv_S_red(0,0) * 0.9999 < inv_S_red(2,2) |
| 85 |
&& fabs( inv_S_red(0,2) ) * 1.9999 < inv_S_red(2,2) |
| 86 |
&& fabs( inv_S_red(0,2) ) * 1.9999 < inv_S_red(0,0) ); |
| 87 |
} |
| 88 |
else if( brat.enumPointGroup() == C2h_Z && brat.enumBravaisLattice() == Prim ) |
| 89 |
{ |
| 90 |
assert( inv_S_red(0,1) <= 0.0 |
| 91 |
&& inv_S_red(0,0) * 0.9999 < inv_S_red(1,1) |
| 92 |
&& fabs( inv_S_red(0,1) ) * 1.9999 < inv_S_red(0,0) |
| 93 |
&& fabs( inv_S_red(0,1) ) * 1.9999 < inv_S_red(1,1) ); |
| 94 |
} |
| 95 |
else if( brat.enumPointGroup() == C2h_X && brat.enumBravaisLattice() == Prim ) |
| 96 |
{ |
| 97 |
assert( inv_S_red(1,2) <= 0.0 |
| 98 |
&& inv_S_red(1,1) * 0.9999 < inv_S_red(2,2) |
| 99 |
&& fabs( inv_S_red(1,2) ) * 1.9999 < inv_S_red(1,1) |
| 100 |
&& fabs( inv_S_red(1,2) ) * 1.9999 < inv_S_red(2,2) ); |
| 101 |
} |
| 102 |
else if( brat.enumPointGroup() == C2h_Y && brat.enumBravaisLattice() == BaseZ ) |
| 103 |
{ |
| 104 |
assert( inv_S_red(0,2) <= 0.0 |
| 105 |
&& fabs( inv_S_red(0,2) ) * 0.9999 < inv_S_red(2,2) |
| 106 |
&& fabs( inv_S_red(0,2) ) * 1.9999 < inv_S_red(0,0) ); |
| 107 |
} |
| 108 |
else if( brat.enumPointGroup() == C2h_Z && brat.enumBravaisLattice() == BaseX ) |
| 109 |
{ |
| 110 |
assert( inv_S_red(0,1) <= 0.0 |
| 111 |
&& fabs( inv_S_red(0,1) ) * 0.9999 < inv_S_red(0,0) |
| 112 |
&& fabs( inv_S_red(0,1) ) * 1.9999 < inv_S_red(1,1) ); |
| 113 |
} |
| 114 |
else if( brat.enumPointGroup() == C2h_X && brat.enumBravaisLattice() == BaseY ) |
| 115 |
{ |
| 116 |
assert( inv_S_red(1,2) <= 0.0 |
| 117 |
&& fabs( inv_S_red(1,2) ) * 0.9999 < inv_S_red(1,1) |
| 118 |
&& fabs( inv_S_red(1,2) ) * 1.9999 < inv_S_red(2,2) ); |
| 119 |
} |
| 120 |
else if( brat.enumCrystalSystem() == Orthorhombic_C ) |
| 121 |
{ |
| 122 |
assert( brat.enumBravaisLattice() == BaseZ ); |
| 123 |
assert( inv_S_red(0,0) * 0.9999 < inv_S_red(1,1) ); |
| 124 |
} |
| 125 |
else if( brat.enumPointGroup() == D2h && brat.enumBravaisLattice() == Prim ) |
| 126 |
{ |
| 127 |
assert( inv_S_red(0,0) * 0.9999 < inv_S_red(1,1) |
| 128 |
&& inv_S_red(1,1) * 0.9999 < inv_S_red(2,2) ); |
| 129 |
} |
| 130 |
return true; |
| 131 |
} |
| 132 |
#endif |
| 133 |
|
| 134 |
//static Double put_minimum_lattice_point_distance(const SymMat<Double>& S_super) |
| 135 |
//{ |
| 136 |
// Double ans = S_super(0,0); |
| 137 |
// if( S_super(1,1) < ans ) ans = S_super(1,1); |
| 138 |
// if( S_super(2,2) < ans ) ans = S_super(2,2); |
| 139 |
// if( S_super(3,3) < ans ) ans = S_super(3,3); |
| 140 |
// const Double S_super01 = S_super(0,0)+S_super(1,1)+S_super(0,1)*2.0; |
| 141 |
// if( S_super01 < ans ) ans = S_super01; |
| 142 |
// const Double S_super02 = S_super(0,0)+S_super(2,2)+S_super(0,2)*2.0; |
| 143 |
// if( S_super02 < ans ) ans = S_super02; |
| 144 |
// const Double S_super12 = S_super(1,1)+S_super(2,2)+S_super(1,2)*2.0; |
| 145 |
// if( S_super12 < ans ) ans = S_super12; |
| 146 |
// return ans; |
| 147 |
//} |
| 148 |
|
| 149 |
|
| 150 |
void putTransformMatrixToMinkowskiReduced(const SymMat<Double>& S, NRMat<Int4>& trans_mat) |
| 151 |
{ |
| 152 |
assert( S.size() == 3 ); |
| 153 |
|
| 154 |
SymMat<Double> S_super_obtuse(4); |
| 155 |
put_super_Gram_matrix_obtuse_angle<Double, SymMat<Double> >(S, S_super_obtuse, trans_mat); |
| 156 |
moveSmallerDiagonalLeftUpper<Double, SymMat<Double> >(S_super_obtuse, trans_mat); |
| 157 |
|
| 158 |
// S_red = trans_mat * S_super_obtuse * transpose(trans_mat). |
| 159 |
SymMat<Double> S_red(3); |
| 160 |
NRMat<Int4> trans_mat2; |
| 161 |
putMinkowskiReduced(S_super_obtuse, S_red, trans_mat2); |
| 162 |
trans_mat = mprod( trans_mat2, put_transform_matrix_row4to3(trans_mat) ); |
| 163 |
} |
| 164 |
|
| 165 |
|
| 166 |
void LatticeFigureOfMerit::setInverseOfMinkowskiReducedForm(NRMat<Int4>& trans_mat) |
| 167 |
{ |
| 168 |
if( m_brat.enumCrystalSystem() == Triclinic ) |
| 169 |
{ |
| 170 |
// trans_mat * Inverse(m_S_optimized.first) * transpose(trans_mat) is Minkowski reduced |
| 171 |
// <=> Inverse of transpose(Inverse(trans_mat)) * m_S_optimized.first * Inverse(trans_mat) is Minkowski reduced. |
| 172 |
putTransformMatrixToMinkowskiReduced(Inverse3(m_S_optimized.first), trans_mat); |
| 173 |
transpose_square_matrix(trans_mat); |
| 174 |
m_S_red = transform_sym_matrix(Inverse3(trans_mat), m_S_optimized.first); |
| 175 |
} |
| 176 |
else |
| 177 |
{ |
| 178 |
m_S_red = m_S_optimized.first; |
| 179 |
trans_mat = identity_matrix<Int4>(3); |
| 180 |
if( m_brat.enumCrystalSystem() == Monoclinic_P ) |
| 181 |
{ |
| 182 |
if( m_brat.enumPointGroup() == C2h_X ) |
| 183 |
{ |
| 184 |
putMinkowskiReducedMonoclinicP(1, 2, m_S_red, trans_mat); |
| 185 |
} |
| 186 |
else if( m_brat.enumPointGroup() == C2h_Y ) |
| 187 |
{ |
| 188 |
putMinkowskiReducedMonoclinicP(0, 2, m_S_red, trans_mat); |
| 189 |
} |
| 190 |
else //if( m_brat.enumPointGroup() == C2h_Z ) |
| 191 |
{ |
| 192 |
putMinkowskiReducedMonoclinicP(0, 1, m_S_red, trans_mat); |
| 193 |
} |
| 194 |
} |
| 195 |
else if( m_brat.enumCrystalSystem() == Monoclinic_B ) |
| 196 |
{ |
| 197 |
m_S_red = m_S_optimized.first; |
| 198 |
putMinkowskiReducedMonoclinicB(m_brat, m_S_red, trans_mat); |
| 199 |
} |
| 200 |
else if( m_brat.enumPointGroup() == D2h ) |
| 201 |
{ |
| 202 |
m_S_red = m_S_optimized.first; |
| 203 |
putMinkowskiReducedOrthorhombic(m_brat.enumBravaisLattice(), m_S_red, trans_mat); |
| 204 |
} |
| 205 |
} |
| 206 |
|
| 207 |
assert( checkInitialLatticeParameters(m_brat, m_S_red) ); |
| 208 |
} |
| 209 |
|
| 210 |
|
| 211 |
// This method assumes that S.second * S.first * Transpose(S.second) is obtuse. |
| 212 |
void LatticeFigureOfMerit::setLatticeConstants43(const BravaisType& brat, const SymMat43_Double& S) |
| 213 |
{ |
| 214 |
m_brat = brat; |
| 215 |
m_S_optimized = S; |
| 216 |
|
| 217 |
NRMat<Int4> trans_mat; |
| 218 |
setInverseOfMinkowskiReducedForm(trans_mat); // Set m_S_red from m_S_optimized. |
| 219 |
|
| 220 |
m_determ_S_red = Determinant3( m_S_optimized.first ); |
| 221 |
m_figures_of_merit.reset(); |
| 222 |
} |
| 223 |
|
| 224 |
|
| 225 |
ZErrorMessage LatticeFigureOfMerit::setLatticeConstants(const BravaisType& brat, const SymMat<Double>& Sval) |
| 226 |
{ |
| 227 |
assert( Sval.size()==3 ); |
| 228 |
|
| 229 |
SymMat43_Double S_red_optimized = SymMat43_Double(Sval, NRMat<Int4>(4,3)); |
| 230 |
cal_average_crystal_system(brat.enumPointGroup(), S_red_optimized.first); |
| 231 |
if( brat.enumBravaisLattice() == Face ) |
| 232 |
{ |
| 233 |
S_red_optimized.second = m_tmat_prim_to_face; |
| 234 |
} |
| 235 |
else if( brat.enumBravaisLattice() == Inner ) |
| 236 |
{ |
| 237 |
S_red_optimized.second = m_tmat_prim_to_body; |
| 238 |
} |
| 239 |
else if( brat.enumBravaisLattice() == BaseX |
| 240 |
|| brat.enumBravaisLattice() == BaseY |
| 241 |
|| brat.enumBravaisLattice() == BaseZ ) |
| 242 |
{ |
| 243 |
S_red_optimized.second = m_tmat_prim_to_base[ (ArrayIndex)brat.enumBASEaxis() ]; |
| 244 |
} |
| 245 |
else if( brat.enumBravaisLattice() == Rhom_hex ) |
| 246 |
{ |
| 247 |
S_red_optimized.second = m_tmat_prim_to_rhomhex; |
| 248 |
} |
| 249 |
else // if( brat.enumBravaisLattice() == Prim ) |
| 250 |
{ |
| 251 |
S_red_optimized.second = m_tmat_prim_to_prim; |
| 252 |
} |
| 253 |
|
| 254 |
// S_super_obtuse = trans_mat * S_red.first * Transpose(trans_mat). |
| 255 |
SymMat<Double> S_super_obtuse = transform_sym_matrix(S_red_optimized.second, S_red_optimized.first); |
| 256 |
Int4 itnum; |
| 257 |
if( !put_super_Gram_matrix_obtuse_angle< Double, SymMat<Double> >(S_red_optimized.second, S_super_obtuse, itnum) ) |
| 258 |
{ |
| 259 |
return ZErrorMessage(ZErrorArgument, "The argument matrix is not positive definite" __FILE__, __LINE__, __FUNCTION__); |
| 260 |
} |
| 261 |
moveSmallerDiagonalLeftUpper< Double, SymMat<Double> >(S_super_obtuse, S_red_optimized.second); |
| 262 |
|
| 263 |
setLatticeConstants43(brat, S_red_optimized); |
| 264 |
|
| 265 |
return ZErrorMessage(); |
| 266 |
} |
| 267 |
|
| 268 |
|
| 269 |
inline bool checkIfFirstEntryIsPositive(const VecDat3<Int4>& rhs) |
| 270 |
{ |
| 271 |
for(Int4 i=0; i<3; i++) |
| 272 |
{ |
| 273 |
if( rhs[i] == 0 ) continue; |
| 274 |
if( rhs[i] > 0 ) return true; |
| 275 |
else return false; |
| 276 |
} |
| 277 |
return false; |
| 278 |
} |
| 279 |
|
| 280 |
|
| 281 |
void LatticeFigureOfMerit::putMillerIndicesInRange(const Double& qbegin, const Double& qend, |
| 282 |
vector<HKL_Q>& cal_hkl_tray) const |
| 283 |
{ |
| 284 |
cal_hkl_tray.clear(); |
| 285 |
|
| 286 |
vector<HKL_Q> cal_hkl_tray2; |
| 287 |
gatherQcal(this->putSellingReducedForm(), |
| 288 |
qbegin, qend, |
| 289 |
40, cal_hkl_tray2); |
| 290 |
|
| 291 |
set< VecDat3<Int4> > found_hkl_tray; |
| 292 |
vector<MillerIndex3> equiv_hkl_tray; |
| 293 |
VecDat3<Int4> hkl; |
| 294 |
|
| 295 |
PGNormalSeriesTray normal_tray(m_brat.enumPointGroup()); |
| 296 |
LaueGroup lg(m_brat.enumPointGroup()); |
| 297 |
|
| 298 |
for(vector<HKL_Q>::const_iterator it=upper_bound(cal_hkl_tray2.begin(), cal_hkl_tray2.end(), HKL_Q(0, 0.0)); |
| 299 |
it<cal_hkl_tray2.end(); it++) |
| 300 |
{ |
| 301 |
hkl = product_hkl(it->HKL(), m_S_optimized.second); |
| 302 |
if( found_hkl_tray.find(hkl) != found_hkl_tray.end() ) |
| 303 |
{ |
| 304 |
continue; |
| 305 |
} |
| 306 |
if( !checkIfFirstEntryIsPositive(hkl) ) hkl *= -1; |
| 307 |
|
| 308 |
normal_tray.putHKLEquiv(MillerIndex3(hkl[0], hkl[1], hkl[2]), equiv_hkl_tray); |
| 309 |
#ifdef DEBUG |
| 310 |
if( (Int4)equiv_hkl_tray.size() != lg->LaueMultiplicity(hkl) ) |
| 311 |
{ |
| 312 |
ZLOG_INFO( num2str(hkl[0]) + " " |
| 313 |
+ num2str(hkl[1]) + " " |
| 314 |
+ num2str(hkl[2]) + "\n" |
| 315 |
+ num2str( equiv_hkl_tray.size() ) + "\n" |
| 316 |
+ num2str( lg->LaueMultiplicity(hkl) ) + "\n" ); |
| 317 |
} |
| 318 |
#endif |
| 319 |
|
| 320 |
for(vector<MillerIndex3>::const_iterator ithkl=equiv_hkl_tray.begin(); ithkl<equiv_hkl_tray.end(); ithkl++) |
| 321 |
{ |
| 322 |
found_hkl_tray.insert( VecDat3<Int4>( (*ithkl)[0], (*ithkl)[1], (*ithkl)[2] ) ); |
| 323 |
} |
| 324 |
|
| 325 |
cal_hkl_tray.push_back( HKL_Q(hkl, it->Q()) ); |
| 326 |
} |
| 327 |
sort( cal_hkl_tray.begin(), cal_hkl_tray.end() ); |
| 328 |
} |
| 329 |
|
| 330 |
|
| 331 |
void LatticeFigureOfMerit::setFigureOfMerit(const Int4& num_ref_figure_of_merit, |
| 332 |
const vector<QData>& qdata, |
| 333 |
vector< VecDat3<Int4> >& closest_hkl_tray, |
| 334 |
Vec_BOOL& Q_observed_flag) |
| 335 |
{ |
| 336 |
assert( num_ref_figure_of_merit <= (Int4)qdata.size() ); |
| 337 |
|
| 338 |
// Qdata is sorted into ascended order. |
| 339 |
m_figures_of_merit.reset(); |
| 340 |
m_figures_of_merit.putNumberOfReflectionsForFigureOfMerit() = num_ref_figure_of_merit; |
| 341 |
|
| 342 |
const Int4& num_Q = m_figures_of_merit.putNumberOfReflectionsForFigureOfMerit(); |
| 343 |
closest_hkl_tray.clear(); |
| 344 |
Q_observed_flag.clear(); |
| 345 |
closest_hkl_tray.resize(num_Q, 0); |
| 346 |
Q_observed_flag.resize(num_Q, false); |
| 347 |
|
| 348 |
if( num_Q <= 0 ) return; |
| 349 |
|
| 350 |
const Double MinQ = qdata[0].q - sqrt( m_cv2 * qdata[0].q_var ); |
| 351 |
const Double MaxQ = qdata[num_Q-1].q + sqrt( m_cv2 * qdata[num_Q-1].q_var ); |
| 352 |
const SymMat<Double> S_sup( this->putSellingReducedForm() ); |
| 353 |
|
| 354 |
vector<HKL_Q> cal_hkl_tray; |
| 355 |
gatherQcal(S_sup, MinQ, MaxQ, num_Q+1, cal_hkl_tray); |
| 356 |
if( cal_hkl_tray.empty() ) return; |
| 357 |
|
| 358 |
vector< vector<HKL_Q>::const_iterator > closest_hkl_q_tray; |
| 359 |
associateQcalWithQobs(cal_hkl_tray, qdata.begin(), qdata.begin()+num_Q, closest_hkl_q_tray); |
| 360 |
const vector<HKL_Q>::const_iterator it_begin = closest_hkl_q_tray[0]; |
| 361 |
const vector<HKL_Q>::const_iterator it_end = closest_hkl_q_tray[num_Q-1] + 1; |
| 362 |
assert( it_end <= cal_hkl_tray.end() ); |
| 363 |
if( it_begin + 1 >= it_end ) return; |
| 364 |
|
| 365 |
Double diff; |
| 366 |
Double actually_disc = 0.0; |
| 367 |
// Double norm_actually_disc = 0.0; |
| 368 |
Int4 num_q_observed = 0; |
| 369 |
for(Int4 k=0; k<num_Q; k++) |
| 370 |
{ |
| 371 |
closest_hkl_tray[k] = product_hkl( closest_hkl_q_tray[k]->HKL(), m_S_optimized.second); |
| 372 |
diff = qdata[k].q - closest_hkl_q_tray[k]->Q(); |
| 373 |
actually_disc += fabs( diff ); |
| 374 |
// norm_actually_disc += fabs( sqrt3_2(qdata[k].q) - sqrt3_2((*closest_hkl_q_tray[k].rbegin())->Q()) ); |
| 375 |
if( diff * diff <= m_cv2 * qdata[k].q_var ) |
| 376 |
{ |
| 377 |
Q_observed_flag[k] = true; |
| 378 |
num_q_observed++; |
| 379 |
} |
| 380 |
else Q_observed_flag[k] = false; |
| 381 |
} |
| 382 |
actually_disc /= num_Q; |
| 383 |
// norm_actually_disc /= num_Q; |
| 384 |
m_figures_of_merit.putNumQobsAssociatedWithCloseHKL() = num_q_observed; |
| 385 |
|
| 386 |
vector< vector<QData>::const_iterator > closest_q_tray; |
| 387 |
associateQobsWithQcal(qdata, it_begin, it_end, closest_q_tray); |
| 388 |
|
| 389 |
const LaueGroup lg(m_brat.enumPointGroup()); |
| 390 |
|
| 391 |
Double inv_mult = 2.0 / lg->LaueMultiplicity( product_hkl(it_begin->HKL(), m_S_optimized.second) ); |
| 392 |
Double num_total_hkl = inv_mult; |
| 393 |
Double rev_actually_disc = fabs( it_begin->Q() - closest_q_tray[0]->q ) * inv_mult; |
| 394 |
|
| 395 |
Double sum_diff = 0.0; |
| 396 |
Int4 index = 1; |
| 397 |
for(vector<HKL_Q>::const_iterator it=it_begin+1; it<it_end; it++, index++) |
| 398 |
{ |
| 399 |
inv_mult = 2.0 / lg->LaueMultiplicity( product_hkl(it->HKL(), m_S_optimized.second) ); |
| 400 |
num_total_hkl += inv_mult; |
| 401 |
rev_actually_disc += fabs( it->Q() - closest_q_tray[index]->q ) * inv_mult; |
| 402 |
|
| 403 |
diff = it->Q() - (it-1)->Q(); |
| 404 |
sum_diff += diff * diff; |
| 405 |
} |
| 406 |
m_figures_of_merit.putContinuousNumberOfHKLInRange() = num_total_hkl; |
| 407 |
rev_actually_disc /= num_total_hkl; |
| 408 |
|
| 409 |
// Double sum_diff = 0.0; |
| 410 |
// Int4 disc_num_total_hkl = 1; |
| 411 |
// for(vector<HKL_Q>::const_iterator it=it_begin+1; it<it_end; it++) |
| 412 |
// { |
| 413 |
// diff = it->Q() - (it-1)->Q(); |
| 414 |
// sum_diff += diff * diff; |
| 415 |
// |
| 416 |
// if( it->Q() <= (it-1)->Q() ) continue; |
| 417 |
// disc_num_total_hkl += 1; |
| 418 |
// } |
| 419 |
// m_figures_of_merit.putDiscreteNumberOfHKLInRange() = disc_num_total_hkl; |
| 420 |
// |
| 421 |
// Double rev_sum_diff = 0.0; |
| 422 |
// for(Int4 k=1; k<num_Q; k++) |
| 423 |
// { |
| 424 |
// diff = qdata[k].q - qdata[k-1].q; |
| 425 |
// rev_sum_diff += diff * diff; |
| 426 |
// } |
| 427 |
|
| 428 |
// Calculate the symmetric figures of merit by Wolff. |
| 429 |
m_figures_of_merit.putFigureOfMeritWolff() = ( (it_end - 1)->Q() - it_begin->Q() ) / ( 2.0*actually_disc*num_total_hkl ); |
| 430 |
// m_figures_of_merit.putNormalizedFigureOfMeritWolff() = ( sqrt3_2((it_end - 1)->Q()) - sqrt3_2(it_begin->Q()) ) / ( 2.0*norm_actually_disc*num_total_hkl ); |
| 431 |
m_figures_of_merit.putFigureOfMeritWu() = sum_diff / ( 4.0 * actually_disc * ( (it_end - 1)->Q() - it_begin->Q() ) ); |
| 432 |
m_figures_of_merit.putReversedFigureOfMerit() = ( qdata[num_Q-1].q - qdata[0].q ) / ( 2.0*rev_actually_disc*num_Q ); |
| 433 |
|
| 434 |
// sum_diff = 0.0; |
| 435 |
// disc_num_total_hkl = 0; |
| 436 |
// for(vector<HKL_Q>::const_iterator it=cal_hkl_tray.begin()+1; it<it_end; it++) |
| 437 |
// { |
| 438 |
// diff = it->Q() - (it-1)->Q(); |
| 439 |
// sum_diff += diff * diff; |
| 440 |
// |
| 441 |
// if( (it-1)->Q() < it->Q() ) disc_num_total_hkl++; |
| 442 |
// } |
| 443 |
// |
| 444 |
// m_figures_of_merit.putFigureOfMeritWolff_Original() = qdata[num_Q-1].q / ( 2.0*actually_disc*disc_num_total_hkl ); |
| 445 |
// m_figures_of_merit.putFigureOfMeritWu_Original() = sum_diff / ( 4.0 * actually_disc * (it_end - 1)->Q() ); |
| 446 |
} |
| 447 |
|
| 448 |
|
| 449 |
|
| 450 |
|
| 451 |
void LatticeFigureOfMerit::setWuFigureOfMerit(const Int4& num_ref_figure_of_merit, |
| 452 |
const vector<QData>& qdata, |
| 453 |
const Double& min_thred_num_hkl, |
| 454 |
const Double& max_thred_num_hkl) |
| 455 |
{ |
| 456 |
m_figures_of_merit.reset(); |
| 457 |
m_figures_of_merit.putNumberOfReflectionsForFigureOfMerit() = min( num_ref_figure_of_merit, (Int4)qdata.size() ); |
| 458 |
const Int4& num_Q = m_figures_of_merit.putNumberOfReflectionsForFigureOfMerit(); |
| 459 |
if( num_Q <= 0 ) return; |
| 460 |
|
| 461 |
const Double MinQ = qdata[0].q - sqrt( m_cv2 * qdata[0].q_var ); |
| 462 |
const Double MaxQ = qdata[num_Q-1].q + sqrt( m_cv2 * qdata[num_Q-1].q_var ); |
| 463 |
|
| 464 |
const SymMat<Double> S_sup( this->putSellingReducedForm() ); |
| 465 |
|
| 466 |
vector<HKL_Q> cal_hkl_tray; |
| 467 |
gatherQcal(S_sup, MinQ, MaxQ, num_Q+1, cal_hkl_tray); |
| 468 |
if( (Double)cal_hkl_tray.size() < num_Q * min_thred_num_hkl ) return; |
| 469 |
if( (Double)cal_hkl_tray.size() > num_Q * max_thred_num_hkl ) return; |
| 470 |
|
| 471 |
vector< vector<HKL_Q>::const_iterator > closest_hkl_q_tray; |
| 472 |
associateQcalWithQobs(cal_hkl_tray, qdata.begin(), qdata.begin()+num_Q, closest_hkl_q_tray); |
| 473 |
const vector<HKL_Q>::const_iterator it_begin = closest_hkl_q_tray[0]; |
| 474 |
const vector<HKL_Q>::const_iterator it_end = closest_hkl_q_tray[num_Q-1] + 1; |
| 475 |
assert( it_end <= cal_hkl_tray.end() ); |
| 476 |
if( it_begin + 1 >= it_end ) return; |
| 477 |
|
| 478 |
Double actually_disc = 0.0; |
| 479 |
for(Int4 k=0; k<num_Q; k++) |
| 480 |
{ |
| 481 |
actually_disc += fabs( qdata[k].q - closest_hkl_q_tray[k]->Q() ); |
| 482 |
} |
| 483 |
actually_disc /= num_Q; |
| 484 |
|
| 485 |
Double sum_diff = 0.0, diff; |
| 486 |
for(vector<HKL_Q>::const_iterator it=it_begin+1; it<it_end; it++) |
| 487 |
{ |
| 488 |
diff = it->Q() - (it-1)->Q(); |
| 489 |
sum_diff += diff * diff; |
| 490 |
} |
| 491 |
|
| 492 |
// Calculate the figure of merit by Wu. |
| 493 |
m_figures_of_merit.putFigureOfMeritWu() = sum_diff / ( 4.0 * actually_disc * ( (it_end - 1)->Q() - it_begin->Q() ) ); |
| 494 |
} |
| 495 |
|
| 496 |
|
| 497 |
pair<bool, ZErrorMessage> LatticeFigureOfMerit::fitLatticeParameterLinear( |
| 498 |
const vector<QData>& qdata, |
| 499 |
const vector< VecDat3<Int4> >& hkl_to_fit, |
| 500 |
const vector<bool>& fix_or_fit_flag, const bool& output_view_flag) |
| 501 |
{ |
| 502 |
const ArrayIndex isize = hkl_to_fit.size(); |
| 503 |
|
| 504 |
assert( hkl_to_fit.size() == fix_or_fit_flag.size() ); |
| 505 |
assert( hkl_to_fit.size() <= qdata.size() ); |
| 506 |
|
| 507 |
Vec_DP ydata(isize), ydata_err(isize); |
| 508 |
Vec_BOOL nxfit(isize); |
| 509 |
Int4 data_num=0; |
| 510 |
|
| 511 |
for(ArrayIndex i=0; i<isize; i++) |
| 512 |
{ |
| 513 |
ydata[i] = qdata[i].q; |
| 514 |
ydata_err[i] = sqrt_d( qdata[i].q_var ); |
| 515 |
if( ydata_err[i] <= 0.0 ) |
| 516 |
{ |
| 517 |
nxfit[i] = false; |
| 518 |
} |
| 519 |
else |
| 520 |
{ |
| 521 |
nxfit[i] = fix_or_fit_flag[i]; |
| 522 |
if( nxfit[i] ) data_num++; |
| 523 |
} |
| 524 |
} |
| 525 |
|
| 526 |
LaueGroup lg(m_brat.enumPointGroup()); |
| 527 |
Mat_DP_constr cmat; |
| 528 |
lg->putLatticeConstantFlag(cmat); |
| 529 |
if( data_num <= countNumberOfIndependentParam(cmat.begin(),cmat.end()) ) |
| 530 |
{ |
| 531 |
return pair<bool, ZErrorMessage>(false, ZErrorMessage("NUMBER OF DATA IS TOO SMALL", __FILE__, __LINE__, __FUNCTION__)); |
| 532 |
} |
| 533 |
setIndex(cmat); |
| 534 |
|
| 535 |
vector<Double> init_param(6); |
| 536 |
const SymMat<Double>& S_val = this->putOptimizedForm().first; |
| 537 |
init_param[0] = S_val(0,0); |
| 538 |
init_param[1] = S_val(1,1); |
| 539 |
init_param[2] = S_val(2,2); |
| 540 |
init_param[3] = S_val(1,2); |
| 541 |
init_param[4] = S_val(0,2); |
| 542 |
init_param[5] = S_val(0,1); |
| 543 |
|
| 544 |
LatticeDistanceModel latModel; |
| 545 |
latModel.setConstraint(&cmat[0]); |
| 546 |
Double chisq_all; |
| 547 |
pair<bool, ZErrorMessage> ans = latModel.setFittedParam(hkl_to_fit, ydata, ydata_err, nxfit, |
| 548 |
output_view_flag, 0.0, 1, init_param, chisq_all); |
| 549 |
if( !(ans.first)) return ans; |
| 550 |
|
| 551 |
LatticeFigureOfMerit new_lat(*this); |
| 552 |
SymMat<Double> S_red_optimized(3); |
| 553 |
latModel.putResult(S_red_optimized); |
| 554 |
new_lat.setLatticeConstants(m_brat, S_red_optimized); |
| 555 |
new_lat.setFigureOfMerit( m_figures_of_merit.putNumberOfReflectionsForFigureOfMerit(), qdata ); |
| 556 |
|
| 557 |
if( cmpFOMdeWolff(new_lat, *this) ) |
| 558 |
{ |
| 559 |
*this = new_lat; |
| 560 |
return pair<bool, ZErrorMessage>(true, ZErrorMessage()); |
| 561 |
} |
| 562 |
else return pair<bool, ZErrorMessage>(false, ZErrorMessage()); |
| 563 |
} |
| 564 |
|
| 565 |
|
| 566 |
void LatticeFigureOfMerit::printLatticeInformation( |
| 567 |
const eABCaxis& abc_axis, |
| 568 |
const eRHaxis& rh_axis, |
| 569 |
const Int4& label_start0, |
| 570 |
ostream* os) const |
| 571 |
{ |
| 572 |
Int4 label_start = label_start0; |
| 573 |
os->width(label_start); |
| 574 |
*os << "" << "<CrystalSystem>"; |
| 575 |
os->width(17); |
| 576 |
*os << put_cs_name(this->enumCrystalSystem(), abc_axis); |
| 577 |
*os << " </CrystalSystem>\n\n"; |
| 578 |
|
| 579 |
os->width(label_start); *os << ""; |
| 580 |
*os << "<!-- a, b, c(angstrom), alpha, beta, gamma(deg.)-->\n"; |
| 581 |
|
| 582 |
VecDat3<Double> length_axis, angle_axis; |
| 583 |
if( this->enumCrystalSystem() == Rhombohedral ) |
| 584 |
{ |
| 585 |
this->putReducedLatticeConstantsDegree(abc_axis, Rho_Axis, length_axis, angle_axis); |
| 586 |
|
| 587 |
os->width(label_start); *os << ""; |
| 588 |
*os << "<ReducedLatticeParameters axis=\"Rhombohedral\">"; |
| 589 |
os->width(14); |
| 590 |
*os << length_axis[0]; |
| 591 |
os->width(14); |
| 592 |
*os << length_axis[1]; |
| 593 |
os->width(14); |
| 594 |
*os << length_axis[2]; |
| 595 |
os->width(14); |
| 596 |
*os << angle_axis[0]; |
| 597 |
os->width(14); |
| 598 |
*os << angle_axis[1]; |
| 599 |
os->width(14); |
| 600 |
*os << angle_axis [2]; |
| 601 |
*os << " </ReducedLatticeParameters>\n"; |
| 602 |
|
| 603 |
this->putReducedLatticeConstantsDegree(abc_axis, Hex_Axis, length_axis, angle_axis); |
| 604 |
|
| 605 |
os->width(label_start); *os << ""; |
| 606 |
*os << "<ReducedLatticeParameters axis=\"Hexagonal\">"; |
| 607 |
os->width(14); |
| 608 |
*os << length_axis[0]; |
| 609 |
os->width(14); |
| 610 |
*os << length_axis[1]; |
| 611 |
os->width(14); |
| 612 |
*os << length_axis[2]; |
| 613 |
os->width(14); |
| 614 |
*os << angle_axis[0]; |
| 615 |
os->width(14); |
| 616 |
*os << angle_axis[1]; |
| 617 |
os->width(14); |
| 618 |
*os << angle_axis[2]; |
| 619 |
*os << " </ReducedLatticeParameters>\n\n"; |
| 620 |
} |
| 621 |
else |
| 622 |
{ |
| 623 |
this->putReducedLatticeConstantsDegree(abc_axis, Rho_Axis, length_axis, angle_axis); |
| 624 |
|
| 625 |
os->width(label_start); *os << ""; |
| 626 |
*os << "<ReducedLatticeParameters>"; |
| 627 |
os->width(14); |
| 628 |
*os << length_axis[0]; |
| 629 |
os->width(14); |
| 630 |
*os << length_axis[1]; |
| 631 |
os->width(14); |
| 632 |
*os << length_axis[2]; |
| 633 |
os->width(14); |
| 634 |
*os << angle_axis[0]; |
| 635 |
os->width(14); |
| 636 |
*os << angle_axis[1]; |
| 637 |
os->width(14); |
| 638 |
*os << angle_axis[2]; |
| 639 |
*os << " </ReducedLatticeParameters>\n"; |
| 640 |
} |
| 641 |
|
| 642 |
this->putOptimizedLatticeConstantsDegree(abc_axis, rh_axis, length_axis, angle_axis); |
| 643 |
|
| 644 |
os->width(label_start); *os << ""; |
| 645 |
*os << "<OptimizedLatticeParameters>"; |
| 646 |
os->width(14); |
| 647 |
*os << length_axis[0]; |
| 648 |
os->width(14); |
| 649 |
*os << length_axis[1]; |
| 650 |
os->width(14); |
| 651 |
*os << length_axis[2]; |
| 652 |
os->width(14); |
| 653 |
*os << angle_axis[0]; |
| 654 |
os->width(14); |
| 655 |
*os << angle_axis[1]; |
| 656 |
os->width(14); |
| 657 |
*os << angle_axis[2]; |
| 658 |
*os << " </OptimizedLatticeParameters>\n\n"; |
| 659 |
|
| 660 |
os->width(label_start); *os << ""; |
| 661 |
if( this->enumCrystalSystem() == Rhombohedral ) |
| 662 |
{ |
| 663 |
if( rh_axis == Hex_Axis ) |
| 664 |
{ |
| 665 |
*os << "<VolumeOfUnitCell axis=\"Hexagonal\">"; |
| 666 |
os->width(14); |
| 667 |
*os << this->putLatticeVolume(); |
| 668 |
} |
| 669 |
else // if( rh_axis == Rho_Axis ) |
| 670 |
{ |
| 671 |
*os << "<VolumeOfUnitCell axis=\"Rhombohedral\">"; |
| 672 |
os->width(14); |
| 673 |
*os << this->putLatticeVolume() / 3.0; |
| 674 |
} |
| 675 |
} |
| 676 |
else{ |
| 677 |
*os << "<VolumeOfUnitCell>"; |
| 678 |
os->width(14); |
| 679 |
*os << this->putLatticeVolume(); |
| 680 |
} |
| 681 |
*os << " </VolumeOfUnitCell>\n"; |
| 682 |
|
| 683 |
const SetOfFigureOfMerit& critical_value = this->putFiguresOfMerit(); |
| 684 |
|
| 685 |
os->width(label_start); *os << ""; |
| 686 |
*os << "<FigureOfMeritWolff name=\"" << critical_value.putLabel_FigureOfMeritWolff() << "\">"; |
| 687 |
os->width(14); |
| 688 |
*os << critical_value.putFigureOfMeritWolff(); |
| 689 |
// *os << " (" << critical_value.putFigureOfMeritWolff_Original() << ")"; |
| 690 |
*os << " </FigureOfMeritWolff>\n"; |
| 691 |
|
| 692 |
os->width(label_start); |
| 693 |
*os << "" << "<FigureOfMeritWu name=\"" << critical_value.putLabel_FigureOfMeritWu() << "\">"; |
| 694 |
os->width(14); |
| 695 |
*os << critical_value.putFigureOfMeritWu(); |
| 696 |
// *os << " (" << critical_value.putFigureOfMeritWu_Original() << ")"; |
| 697 |
*os << " </FigureOfMeritWu>\n"; |
| 698 |
|
| 699 |
// os->width(label_start); *os << ""; |
| 700 |
// *os << "<NormalizedFigureOfMeritWolff name=\"" << critical_value.putLabel_NormalizedFigureOfMeritWolff() << "\">"; |
| 701 |
// os->width(14); |
| 702 |
// *os << critical_value.putNormalizedFigureOfMeritWolff(); |
| 703 |
// *os << " </NormalizedFigureOfMeritWolff>\n"; |
| 704 |
|
| 705 |
os->width(label_start); |
| 706 |
*os << "" << "<ReversedFigureOfMeritWolff name=\"" << critical_value.putLabel_ReversedFigureOfMeritWolff() << "\">"; |
| 707 |
os->width(14); |
| 708 |
*os << critical_value.putReversedFigureOfMerit(); |
| 709 |
*os << " </ReversedFigureOfMeritWolff>\n"; |
| 710 |
|
| 711 |
os->width(label_start); |
| 712 |
*os << "" << "<SymmetricFigureOfMeritWolff name=\"" << critical_value.putLabel_SymmetricFigureOfMeritWolff() << "\">"; |
| 713 |
os->width(14); |
| 714 |
*os << critical_value.putSymmetricFigureOfMerit(); |
| 715 |
*os << " </SymmetricFigureOfMeritWolff>\n"; |
| 716 |
|
| 717 |
os->width(label_start); |
| 718 |
*os << "" << "<!-- Number of reflections up to the "; |
| 719 |
*os << critical_value.putNumberOfReflectionsForFigureOfMerit() << "th reflection. (The multiplicity of peaks is considered.)-->\n"; |
| 720 |
os->width(label_start); |
| 721 |
*os << "" << "<NumberOfMillerIndicesInRange>"; |
| 722 |
os->width(14); |
| 723 |
*os << critical_value.putContinuousNumberOfHKLInRange(); |
| 724 |
*os << " </NumberOfMillerIndicesInRange>\n"; |
| 725 |
|
| 726 |
os->width(label_start); |
| 727 |
*os << "" << "<NumberOfIndexedPeaks>"; |
| 728 |
os->width(14); |
| 729 |
*os << critical_value.putNumQobsAssociatedWithCloseHKL(); |
| 730 |
*os << " </NumberOfIndexedPeaks>\n"; |
| 731 |
|
| 732 |
os->width(label_start); |
| 733 |
*os << "" << "<NumberOfPeaksNecessaryToResolveDominantZone>"; |
| 734 |
os->width(14); |
| 735 |
*os << this->checkDominantZone(); |
| 736 |
*os << " </NumberOfPeaksNecessaryToResolveDominantZone>\n\n"; |
| 737 |
} |
| 738 |
|
| 739 |
|
| 740 |
void LatticeFigureOfMerit::putLatticeConstantsDegree(const BravaisType& brat, const SymMat<Double>& S0, |
| 741 |
const eABCaxis& axis1, |
| 742 |
const eRHaxis& axis2, VecDat3<Double>& length_axis, VecDat3<Double>& angle_axis) |
| 743 |
{ |
| 744 |
SymMat<Double> S = S0; |
| 745 |
if( brat.enumCrystalSystem() == Rhombohedral && axis2 != brat.enumRHaxis() ) |
| 746 |
{ |
| 747 |
if( axis2 == Hex_Axis ) // Rho -> Hex. |
| 748 |
{ |
| 749 |
static const FracMat matrix_rho2hex = FInverse3( transpose(BravaisType::putTransformMatrixFromPrimitiveToRhomHex() ) ); |
| 750 |
S = transform_sym_matrix(matrix_rho2hex.mat, S)/(matrix_rho2hex.denom*matrix_rho2hex.denom); |
| 751 |
} |
| 752 |
else // if( axis2 == RhoAxis ) // Hex -> Rho. |
| 753 |
{ |
| 754 |
static const NRMat<Int4> matrix_hex2rho = transpose( BravaisType::putTransformMatrixFromPrimitiveToRhomHex() ); |
| 755 |
S = transform_sym_matrix(matrix_hex2rho, S); |
| 756 |
} |
| 757 |
} |
| 758 |
else if( brat.enumCrystalSystem() == Monoclinic_B ) |
| 759 |
{ |
| 760 |
const NRMat<Int4> this2output = put_transform_matrix_monoclinic_b(brat.enumABCaxis(), axis1); |
| 761 |
S = transform_sym_matrix(this2output, S); |
| 762 |
} |
| 763 |
|
| 764 |
calLatticeConstant( S, length_axis, angle_axis ); |
| 765 |
} |
| 766 |
|
| 767 |
|
| 768 |
|
| 769 |
Int4 LatticeFigureOfMerit::checkDominantZone() const |
| 770 |
{ |
| 771 |
const vector<QData> qdata = VCData::putPeakQData(); |
| 772 |
if( qdata.empty() ) |
| 773 |
{ |
| 774 |
if( this->enumPointGroup() == Ci ) return 6; |
| 775 |
else if( this->enumPointGroup() == C2h_X || this->enumPointGroup() == C2h_Y || this->enumPointGroup() == C2h_Z ) return 4; |
| 776 |
else if( this->enumPointGroup() == D2h ) return 3; |
| 777 |
else if( this->enumPointGroup() == D4h_Z || this->enumPointGroup() == D31d_rho || this->enumPointGroup() == D6h ) return 2; |
| 778 |
else if( this->enumPointGroup() == Oh ) return 1; |
| 779 |
assert(false); |
| 780 |
} |
| 781 |
|
| 782 |
const SymMat<Double> S_super = this->putSellingReducedForm(); |
| 783 |
const Double max_q = max( |
| 784 |
max( max( S_super(0,0), S_super(1,1) ), max( S_super(2,2), S_super(3,3) ) ), |
| 785 |
max( max( S_super(0,0) + S_super(1,1) + S_super(0,1)*2.0, |
| 786 |
S_super(0,0) + S_super(2,2) + S_super(0,2)*2.0 ), |
| 787 |
S_super(1,1) + S_super(2,2) + S_super(1,2)*2.0 ) ); |
| 788 |
|
| 789 |
return distance( qdata.begin(), lower_bound( qdata.begin(), qdata.end(), QData( qdata.begin()->q + max_q, 0.0 ) ) ) + 1; |
| 790 |
} |