| 1 |
/* |
| 2 |
* The MIT License |
| 3 |
|
| 4 |
BLDConograph (Bravais lattice determination module in Conograph) |
| 5 |
|
| 6 |
Copyright (c) <2012> <Ryoko Oishi-Tomiyasu, KEK> |
| 7 |
|
| 8 |
Permission is hereby granted, free of charge, to any person obtaining a copy |
| 9 |
of this software and associated documentation files (the "Software"), to deal |
| 10 |
in the Software without restriction, including without limitation the rights |
| 11 |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 12 |
copies of the Software, and to permit persons to whom the Software is |
| 13 |
furnished to do so, subject to the following conditions: |
| 14 |
|
| 15 |
The above copyright notice and this permission notice shall be included in |
| 16 |
all copies or substantial portions of the Software. |
| 17 |
|
| 18 |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 19 |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 20 |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 21 |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 22 |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 23 |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 24 |
THE SOFTWARE. |
| 25 |
* |
| 26 |
*/ |
| 27 |
#include <limits> |
| 28 |
#include "../utility_lattice_reduction/put_Buerger_reduced_lattice.hh" |
| 29 |
#include "check_equiv.hh" |
| 30 |
#include "LatticeFigureOfMeritToCheckSymmetry.hh" |
| 31 |
|
| 32 |
LatticeFigureOfMeritToCheckSymmetry::LatticeFigureOfMeritToCheckSymmetry() |
| 33 |
: m_S_red( SymMat43_Double( SymMat<Double>(3), NRMat<Int4>(4,3) ) ) |
| 34 |
{ |
| 35 |
} |
| 36 |
|
| 37 |
|
| 38 |
LatticeFigureOfMeritToCheckSymmetry::LatticeFigureOfMeritToCheckSymmetry(const Double& rhs) |
| 39 |
: m_latfom(rhs), |
| 40 |
m_S_red( SymMat43_Double( SymMat<Double>(3), NRMat<Int4>(4,3) ) ) |
| 41 |
{ |
| 42 |
} |
| 43 |
|
| 44 |
|
| 45 |
LatticeFigureOfMeritToCheckSymmetry::LatticeFigureOfMeritToCheckSymmetry(const BravaisType& brat, |
| 46 |
const SymMat43_Double& S) |
| 47 |
: m_S_red( SymMat43_Double( SymMat<Double>(3), NRMat<Int4>(4,3) ) ) |
| 48 |
{ |
| 49 |
setLatticeConstants43(brat, S); |
| 50 |
} |
| 51 |
|
| 52 |
|
| 53 |
|
| 54 |
|
| 55 |
#ifdef DEBUG |
| 56 |
static bool checkInitialLatticeParameters( |
| 57 |
const BravaisType& brat, |
| 58 |
const SymMat43_Double& S_red) |
| 59 |
{ |
| 60 |
const SymMat<Double> dbl_S_red( S_red.first ); |
| 61 |
|
| 62 |
if( brat.enumLaueGroup() == Ci && brat.enumCentringType() == Prim ) |
| 63 |
{ |
| 64 |
assert( dbl_S_red(2,2)*0.9999 < dbl_S_red(1,1) && dbl_S_red(1,1)*0.9999 < dbl_S_red(0,0) |
| 65 |
&& fabs( dbl_S_red(0,1) ) * 1.9999 < dbl_S_red(1,1) |
| 66 |
&& fabs( dbl_S_red(0,2) ) * 1.9999 < dbl_S_red(2,2) |
| 67 |
&& fabs( dbl_S_red(1,2) ) * 1.9999 < dbl_S_red(2,2) ); |
| 68 |
} |
| 69 |
else if( brat.enumLaueGroup() == C2h_Y && brat.enumCentringType() == Prim ) |
| 70 |
{ |
| 71 |
assert( 0.0 <= dbl_S_red(0,2) && dbl_S_red(2,2)*0.9999 < dbl_S_red(0,0) |
| 72 |
&& fabs( dbl_S_red(0,2) ) * 1.9999 < dbl_S_red(2,2) && fabs( dbl_S_red(0,2) ) * 1.9999 < dbl_S_red(0,0) ); |
| 73 |
} |
| 74 |
else if( brat.enumLaueGroup() == C2h_Z && brat.enumCentringType() == Prim ) |
| 75 |
{ |
| 76 |
assert( 0.0 <= dbl_S_red(0,1) && dbl_S_red(1,1)*0.9999 < dbl_S_red(0,0) |
| 77 |
&& fabs( dbl_S_red(0,1) ) * 1.9999 < dbl_S_red(0,0) && fabs( dbl_S_red(0,1) ) * 1.9999 < dbl_S_red(1,1) ); |
| 78 |
} |
| 79 |
else if( brat.enumLaueGroup() == C2h_X && brat.enumCentringType() == Prim ) |
| 80 |
{ |
| 81 |
assert( 0.0 <= dbl_S_red(1,2) && dbl_S_red(2,2)*0.9999 < dbl_S_red(1,1) |
| 82 |
&& fabs( dbl_S_red(1,2) ) * 1.9999 < dbl_S_red(1,1) && fabs( dbl_S_red(1,2) ) * 1.9999 < dbl_S_red(2,2) ); |
| 83 |
} |
| 84 |
else if( brat.enumLaueGroup() == C2h_Y && brat.enumCentringType() == BaseZ ) |
| 85 |
{ |
| 86 |
assert( 0.0 <= dbl_S_red(0,2) && fabs( dbl_S_red(0,2) ) * 1.9999 < dbl_S_red(2,2) && fabs( dbl_S_red(0,2) ) * 0.9999 < dbl_S_red(0,0) ); |
| 87 |
} |
| 88 |
else if( brat.enumLaueGroup() == C2h_Z && brat.enumCentringType() == BaseX ) |
| 89 |
{ |
| 90 |
assert( 0.0 <= dbl_S_red(0,1) && fabs( dbl_S_red(0,1) ) * 1.9999 < dbl_S_red(0,0) && fabs( dbl_S_red(0,1) ) * 0.9999 < dbl_S_red(1,1) ); |
| 91 |
} |
| 92 |
else if( brat.enumLaueGroup() == C2h_X && brat.enumCentringType() == BaseY ) |
| 93 |
{ |
| 94 |
assert( 0.0 <= dbl_S_red(1,2) && fabs( dbl_S_red(1,2) ) * 1.9999 < dbl_S_red(1,1) && fabs( dbl_S_red(1,2) ) * 0.9999 < dbl_S_red(2,2) ); |
| 95 |
} |
| 96 |
else if( brat.enumLaueGroup() == D2h |
| 97 |
&& brat.enumCentringType() != BaseX |
| 98 |
&& brat.enumCentringType() != BaseY |
| 99 |
&& brat.enumCentringType() != BaseZ ) |
| 100 |
{ |
| 101 |
assert( dbl_S_red(2,2)*0.9999 < dbl_S_red(1,1) && dbl_S_red(1,1)*0.9999 < dbl_S_red(0,0) ); |
| 102 |
} |
| 103 |
|
| 104 |
const SymMat<Double> S_super = transform_sym_matrix(S_red.second, S_red.first); |
| 105 |
assert( S_super(0,1) <= 0.0 |
| 106 |
&& S_super(0,2) <= 0.0 |
| 107 |
&& S_super(0,3) <= 0.0 |
| 108 |
&& S_super(1,2) <= 0.0 |
| 109 |
&& S_super(1,3) <= 0.0 |
| 110 |
&& S_super(2,3) <= 0.0 ); |
| 111 |
|
| 112 |
return true; |
| 113 |
} |
| 114 |
#endif |
| 115 |
|
| 116 |
|
| 117 |
void LatticeFigureOfMeritToCheckSymmetry::setLatticeConstants43(const BravaisType& brat, const SymMat43_Double& S) |
| 118 |
{ |
| 119 |
m_S_red = S; |
| 120 |
assert( checkInitialLatticeParameters(brat, m_S_red) ); |
| 121 |
|
| 122 |
m_latfom.setLatticeConstants43(brat, S); |
| 123 |
} |
| 124 |
|
| 125 |
|
| 126 |
|
| 127 |
static bool operator<(const SymMat<Double>& lhs, const SymMat<Double>& rhs) |
| 128 |
{ |
| 129 |
static const Double EPS_1 = 1.0+sqrt( numeric_limits<double>::epsilon() ); |
| 130 |
assert( lhs.size() == 3 ); |
| 131 |
assert( rhs.size() == 3 ); |
| 132 |
|
| 133 |
static const Int4 ISIZE = 3; |
| 134 |
for(Int4 i=0; i<ISIZE; i++) |
| 135 |
{ |
| 136 |
if( lhs(i,i)*EPS_1 < rhs(i,i) ) return true; |
| 137 |
if( rhs(i,i)*EPS_1 < lhs(i,i) ) return false; |
| 138 |
|
| 139 |
for(Int4 j=0; j<i; j++) |
| 140 |
{ |
| 141 |
const Double lhs_ij = lhs(i,i)+lhs(j,j)+lhs(i,j)*2.0; |
| 142 |
const Double rhs_ij = rhs(i,i)+rhs(j,j)+rhs(i,j)*2.0; |
| 143 |
|
| 144 |
if( lhs_ij*EPS_1 < rhs_ij ) return true; |
| 145 |
if( rhs_ij*EPS_1 < lhs_ij ) return false; |
| 146 |
} |
| 147 |
} |
| 148 |
|
| 149 |
return false; |
| 150 |
} |
| 151 |
|
| 152 |
|
| 153 |
|
| 154 |
bool LatticeFigureOfMeritToCheckSymmetry::checkIfLatticeIsMonoclinic(const ePointGroup& epg_new, |
| 155 |
const Double& resol, |
| 156 |
map< SymMat<Double>, NRMat<Int4> >& ans) const |
| 157 |
{ |
| 158 |
ans.clear(); |
| 159 |
|
| 160 |
SymMat<Double> ans0 = m_S_red.first; |
| 161 |
cal_average_crystal_system(C2h_X, ans0); |
| 162 |
|
| 163 |
SymMat<Double> S_red(3); |
| 164 |
NRMat<Int4> trans_mat2; |
| 165 |
if( check_equiv_m(ans0, m_S_red.first, resol ) ) |
| 166 |
{ |
| 167 |
if( epg_new == C2h_X ) |
| 168 |
{ |
| 169 |
S_red = ans0; |
| 170 |
trans_mat2 = m_S_red.second; |
| 171 |
putBuergerReducedMonoclinicP(1, 2, S_red, trans_mat2); |
| 172 |
} |
| 173 |
else if( epg_new == C2h_Y ) |
| 174 |
{ |
| 175 |
S_red = transform_sym_matrix(put_matrix_YXZ(), ans0); |
| 176 |
trans_mat2 = mprod(m_S_red.second, put_matrix_YXZ()); |
| 177 |
putBuergerReducedMonoclinicP(0, 2, S_red, trans_mat2); |
| 178 |
} |
| 179 |
else // if( epg_new == C2h_Z ) |
| 180 |
{ |
| 181 |
S_red = transform_sym_matrix(put_matrix_YZX(), ans0); |
| 182 |
trans_mat2 = mprod(m_S_red.second, put_matrix_ZXY()); |
| 183 |
putBuergerReducedMonoclinicP(0, 1, S_red, trans_mat2); |
| 184 |
} |
| 185 |
ans.insert( SymMat43_Double( S_red, trans_mat2) ); |
| 186 |
} |
| 187 |
|
| 188 |
ans0 = m_S_red.first; |
| 189 |
cal_average_crystal_system(C2h_Y, ans0); |
| 190 |
if( check_equiv_m(ans0, m_S_red.first, resol ) ) |
| 191 |
{ |
| 192 |
if( epg_new == C2h_X ) |
| 193 |
{ |
| 194 |
S_red = transform_sym_matrix(put_matrix_YXZ(), ans0); |
| 195 |
trans_mat2 = mprod(m_S_red.second, put_matrix_YXZ()); |
| 196 |
putBuergerReducedMonoclinicP(1, 2, S_red, trans_mat2); |
| 197 |
} |
| 198 |
else if( epg_new == C2h_Y ) |
| 199 |
{ |
| 200 |
S_red = ans0; |
| 201 |
trans_mat2 = m_S_red.second; |
| 202 |
putBuergerReducedMonoclinicP(0, 2, S_red, trans_mat2); |
| 203 |
} |
| 204 |
else // if( epg_new == C2h_Z ) |
| 205 |
{ |
| 206 |
S_red = transform_sym_matrix(put_matrix_XZY(), ans0); |
| 207 |
trans_mat2 = mprod(m_S_red.second, put_matrix_XZY()); |
| 208 |
putBuergerReducedMonoclinicP(0, 1, S_red, trans_mat2); |
| 209 |
} |
| 210 |
ans.insert( SymMat43_Double( S_red, trans_mat2) ); |
| 211 |
} |
| 212 |
|
| 213 |
ans0 = m_S_red.first; |
| 214 |
cal_average_crystal_system(C2h_Z, ans0); |
| 215 |
if( check_equiv_m(ans0, m_S_red.first, resol ) ) |
| 216 |
{ |
| 217 |
if( epg_new == C2h_X ) |
| 218 |
{ |
| 219 |
S_red = transform_sym_matrix(put_matrix_ZXY(), ans0); |
| 220 |
trans_mat2 = mprod(m_S_red.second, put_matrix_YZX()); |
| 221 |
putBuergerReducedMonoclinicP(1, 2, S_red, trans_mat2); |
| 222 |
} |
| 223 |
else if( epg_new == C2h_Y ) |
| 224 |
{ |
| 225 |
S_red = transform_sym_matrix(put_matrix_XZY(), ans0); |
| 226 |
trans_mat2 = mprod(m_S_red.second, put_matrix_XZY()); |
| 227 |
putBuergerReducedMonoclinicP(0, 2, S_red, trans_mat2); |
| 228 |
} |
| 229 |
else // if( epg_new == C2h_Z ) |
| 230 |
{ |
| 231 |
S_red = ans0; |
| 232 |
trans_mat2 = m_S_red.second; |
| 233 |
putBuergerReducedMonoclinicP(0, 1, S_red, trans_mat2); |
| 234 |
} |
| 235 |
ans.insert( SymMat43_Double( S_red, trans_mat2) ); |
| 236 |
} |
| 237 |
|
| 238 |
return !( ans.empty() ); |
| 239 |
} |
| 240 |
|
| 241 |
|
| 242 |
bool LatticeFigureOfMeritToCheckSymmetry::checkIfLatticeIsOrthorhombic(const Double& resol, |
| 243 |
map< SymMat<Double>, NRMat<Int4> >& ans) const |
| 244 |
{ |
| 245 |
ans.clear(); |
| 246 |
|
| 247 |
const BravaisType& brat = m_latfom.putBravaisType(); |
| 248 |
|
| 249 |
SymMat<Double> ans0 = m_S_red.first; |
| 250 |
cal_average_crystal_system(D2h, ans0); |
| 251 |
if( check_equiv_m(ans0, m_S_red.first, resol ) ) |
| 252 |
{ |
| 253 |
if( brat.enumCentringType() == BaseX ) |
| 254 |
{ |
| 255 |
if( ans0(1,1) < ans0(2,2) ) |
| 256 |
{ |
| 257 |
ans.insert( SymMat43_Double( transform_sym_matrix(put_matrix_ZYX(), ans0), mprod( m_S_red.second, put_matrix_ZYX() ) ) ); |
| 258 |
} |
| 259 |
else |
| 260 |
{ |
| 261 |
ans.insert( SymMat43_Double( transform_sym_matrix(put_matrix_YZX(), ans0), mprod( m_S_red.second, put_matrix_ZXY() ) ) ); |
| 262 |
} |
| 263 |
} |
| 264 |
else if( brat.enumCentringType() == BaseY ) |
| 265 |
{ |
| 266 |
if( ans0(0,0) < ans0(2,2) ) |
| 267 |
{ |
| 268 |
ans.insert( SymMat43_Double( transform_sym_matrix(put_matrix_ZXY(), ans0), mprod( m_S_red.second, put_matrix_YZX() ) ) ); |
| 269 |
} |
| 270 |
else |
| 271 |
{ |
| 272 |
ans.insert( SymMat43_Double( transform_sym_matrix(put_matrix_XZY(), ans0), mprod( m_S_red.second, put_matrix_XZY() ) ) ); |
| 273 |
} |
| 274 |
} |
| 275 |
else if( brat.enumCentringType() == BaseZ ) |
| 276 |
{ |
| 277 |
if( ans0(0,0) < ans0(1,1) ) |
| 278 |
{ |
| 279 |
ans.insert( SymMat43_Double( transform_sym_matrix(put_matrix_YXZ(), ans0), mprod( m_S_red.second, put_matrix_YXZ() ) ) ); |
| 280 |
} |
| 281 |
else |
| 282 |
{ |
| 283 |
ans.insert( SymMat43_Double( transform_sym_matrix(put_matrix_XYZ(), ans0), m_S_red.second ) ); |
| 284 |
} |
| 285 |
} |
| 286 |
else |
| 287 |
{ |
| 288 |
NRMat<Int4> trans_mat = m_S_red.second; |
| 289 |
putBuergerReducedOrthorhombic(brat.enumCentringType(), ans0, trans_mat); |
| 290 |
ans.insert( SymMat43_Double(ans0, trans_mat ) ); |
| 291 |
} |
| 292 |
return true; |
| 293 |
} |
| 294 |
return false; |
| 295 |
} |
| 296 |
|
| 297 |
|
| 298 |
bool LatticeFigureOfMeritToCheckSymmetry::checkIfLatticeIsTetragonal(const Double& resol, |
| 299 |
map< SymMat<Double>, NRMat<Int4> >& ans) const |
| 300 |
{ |
| 301 |
ans.clear(); |
| 302 |
|
| 303 |
SymMat<Double> ans0 = m_S_red.first; |
| 304 |
cal_average_crystal_system(D4h_X, ans0); |
| 305 |
if( check_equiv_m(ans0, m_S_red.first, resol ) ) |
| 306 |
{ |
| 307 |
ans.insert( SymMat43_Double( |
| 308 |
transform_sym_matrix(put_matrix_YZX(), ans0), mprod( m_S_red.second, put_matrix_ZXY() ) ) ); |
| 309 |
} |
| 310 |
|
| 311 |
ans0 = m_S_red.first; |
| 312 |
cal_average_crystal_system(D4h_Y, ans0); |
| 313 |
if( check_equiv_m(ans0, m_S_red.first, resol ) ) |
| 314 |
{ |
| 315 |
ans.insert( SymMat43_Double( |
| 316 |
transform_sym_matrix(put_matrix_XZY(), ans0), mprod( m_S_red.second, put_matrix_XZY() ) ) ); |
| 317 |
} |
| 318 |
|
| 319 |
ans0 = m_S_red.first; |
| 320 |
cal_average_crystal_system(D4h_Z, ans0); |
| 321 |
if( check_equiv_m(ans0, m_S_red.first, resol ) ) |
| 322 |
{ |
| 323 |
ans.insert( SymMat43_Double(ans0, m_S_red.second ) ); |
| 324 |
} |
| 325 |
|
| 326 |
return !( ans.empty() ); |
| 327 |
} |
| 328 |
|
| 329 |
|
| 330 |
|
| 331 |
|
| 332 |
bool LatticeFigureOfMeritToCheckSymmetry::checkIfLatticeIsHexagonal(const ePointGroup& epg_new, const Double& resol, |
| 333 |
map< SymMat<Double>, NRMat<Int4> >& ans) const |
| 334 |
{ |
| 335 |
ans.clear(); |
| 336 |
const BravaisType& brat = m_latfom.putBravaisType(); |
| 337 |
|
| 338 |
SymMat43_Double ans2(SymMat<Double>(3), NRMat<Int4>(3,3)); |
| 339 |
|
| 340 |
if( brat.enumLaueGroup() == C2h_X ) |
| 341 |
{ |
| 342 |
ans2.first = transform_sym_matrix(put_matrix_YZX(), m_S_red.first); |
| 343 |
ans2.second = mprod( m_S_red.second, put_matrix_ZXY() ); |
| 344 |
} |
| 345 |
else if( brat.enumLaueGroup() == C2h_Y ) |
| 346 |
{ |
| 347 |
ans2.first = transform_sym_matrix(put_matrix_ZXY(), m_S_red.first); |
| 348 |
ans2.second = mprod( m_S_red.second, put_matrix_YZX() ); |
| 349 |
} |
| 350 |
else // if( brat.enumLaueGroup() == C2h_Z ) |
| 351 |
{ |
| 352 |
ans2.first = transform_sym_matrix(put_matrix_XYZ(), m_S_red.first); |
| 353 |
ans2.second = m_S_red.second; |
| 354 |
} |
| 355 |
|
| 356 |
if( ans2.first(0,1) < 0.0 ) |
| 357 |
{ |
| 358 |
ans2.first(0,1) *= -1; |
| 359 |
ans2.second[0][0] *= -1; |
| 360 |
ans2.second[1][0] *= -1; |
| 361 |
ans2.second[2][0] *= -1; |
| 362 |
} |
| 363 |
|
| 364 |
SymMat<Double> ans0 = ans2.first; |
| 365 |
cal_average_crystal_system(epg_new, ans2.first); |
| 366 |
if( check_equiv_m(ans2.first, ans0, resol ) ) |
| 367 |
{ |
| 368 |
ans.insert( ans2 ); |
| 369 |
return true; |
| 370 |
} |
| 371 |
else return false; |
| 372 |
} |
| 373 |
|
| 374 |
|
| 375 |
bool LatticeFigureOfMeritToCheckSymmetry::checkLatticeSymmetry(const ePointGroup& epg_new, const Double& resol, |
| 376 |
map< SymMat<Double>, NRMat<Int4> >& ans) const |
| 377 |
{ |
| 378 |
ans.clear(); |
| 379 |
const BravaisType& brat = m_latfom.putBravaisType(); |
| 380 |
if( epg_new == Ci || epg_new == brat.enumLaueGroup() ) |
| 381 |
{ |
| 382 |
ans.insert( m_S_red ); |
| 383 |
return true; |
| 384 |
} |
| 385 |
|
| 386 |
if( epg_new == C2h_X || epg_new == C2h_Y || epg_new == C2h_Z ) |
| 387 |
{ |
| 388 |
assert( brat.enumLaueGroup() == Ci ); |
| 389 |
assert( brat.enumCentringType() == Prim ); |
| 390 |
|
| 391 |
return checkIfLatticeIsMonoclinic(epg_new, resol, ans); |
| 392 |
} |
| 393 |
else if( epg_new == D4h_Z ) |
| 394 |
{ |
| 395 |
assert( brat.enumLaueGroup() == D2h ); |
| 396 |
assert( brat.enumCentringType() == Prim |
| 397 |
|| brat.enumCentringType() == Inner ); |
| 398 |
|
| 399 |
return checkIfLatticeIsTetragonal(resol, ans); |
| 400 |
} |
| 401 |
else if( epg_new == D2h ) |
| 402 |
{ |
| 403 |
assert( brat.enumLaueGroup() != Ci || brat.enumCentringType() == Prim ); |
| 404 |
assert( brat.enumLaueGroup() != C2h_Z || brat.enumCentringType() == BaseX ); |
| 405 |
assert( brat.enumLaueGroup() != C2h_X || brat.enumCentringType() == BaseY ); |
| 406 |
assert( brat.enumLaueGroup() != C2h_Y || brat.enumCentringType() == BaseZ ); |
| 407 |
assert( brat.enumCentringType() != Rhom_hex ); |
| 408 |
|
| 409 |
return checkIfLatticeIsOrthorhombic(resol, ans); |
| 410 |
} |
| 411 |
else if( epg_new == D6h ) |
| 412 |
{ |
| 413 |
assert( brat.enumCentringType() == Prim ); |
| 414 |
assert( brat.enumLaueGroup() == C2h_X |
| 415 |
|| brat.enumLaueGroup() == C2h_Y |
| 416 |
|| brat.enumLaueGroup() == C2h_Z ); |
| 417 |
return checkIfLatticeIsHexagonal(epg_new, resol, ans); |
| 418 |
} |
| 419 |
else |
| 420 |
{ |
| 421 |
assert( epg_new == Oh ); |
| 422 |
assert( brat.enumCentringType() == Prim |
| 423 |
|| brat.enumCentringType() == Inner |
| 424 |
|| brat.enumCentringType() == Face ); |
| 425 |
|
| 426 |
SymMat43_Double ans2 = m_S_red; |
| 427 |
cal_average_crystal_system(epg_new, ans2.first); |
| 428 |
if( check_equiv_m(ans2.first, m_S_red.first, resol ) ) |
| 429 |
{ |
| 430 |
ans.insert( ans2 ); |
| 431 |
return true; |
| 432 |
} |
| 433 |
} |
| 434 |
return !(ans.empty()); |
| 435 |
} |
| 436 |
|
| 437 |
|
| 438 |
void LatticeFigureOfMeritToCheckSymmetry::putLatticesOfHigherSymmetry( |
| 439 |
const ePointGroup& epg, const Double& resol, |
| 440 |
vector<LatticeFigureOfMeritToCheckSymmetry>& lattice_result) const |
| 441 |
{ |
| 442 |
lattice_result.clear(); |
| 443 |
map< SymMat<Double>, NRMat<Int4> > S_red_tray; |
| 444 |
if( !this->checkLatticeSymmetry(epg, resol, S_red_tray) ) return; |
| 445 |
|
| 446 |
const BravaisType& ebrat_original = this->putLatticeFigureOfMerit().putBravaisType(); |
| 447 |
const eCentringType eblat = (ebrat_original.enumBravaisType()==Monoclinic_B? |
| 448 |
(epg==D31d_rho?Prim:(epg==D3d_1_hex?Rhom_hex:BaseZ)):ebrat_original.enumCentringType()); |
| 449 |
|
| 450 |
const NRMat<Int4> matrix_min_to_sell = this->putInitialForm().second; |
| 451 |
|
| 452 |
SymMat<Double> S_super(4); |
| 453 |
NRMat<Int4> trans_mat(4,3); |
| 454 |
|
| 455 |
for(map< SymMat<Double>, NRMat<Int4> >::const_iterator it=S_red_tray.begin(); it!=S_red_tray.end(); it++) |
| 456 |
{ |
| 457 |
// S_super = it->second * it->first * Transpose(it->second) is close to |
| 458 |
// Delone-reduced form of the original lattice. |
| 459 |
S_super = transform_sym_matrix(it->second, it->first ); |
| 460 |
|
| 461 |
trans_mat = identity_matrix<Int4>(4); |
| 462 |
|
| 463 |
// S_super = trans_mat * it->second * it->first * Transpose(trans_mat * it->second). |
| 464 |
put_Selling_reduced_dim_less_than_4(S_super, trans_mat); |
| 465 |
moveSmallerDiagonalLeftUpper(S_super, trans_mat); |
| 466 |
|
| 467 |
lattice_result.push_back( LatticeFigureOfMeritToCheckSymmetry( BravaisType( pair<eCentringType, ePointGroup>(eblat, epg) ), |
| 468 |
SymMat43_Double(it->first, mprod(trans_mat, it->second) ) ) ); |
| 469 |
} |
| 470 |
} |