| 1 |
// reflection_conditions.cc |
| 2 |
# include <assert.h> |
| 3 |
# include "reflection_conditions.hh" |
| 4 |
# include "../bravais_type/BravaisType.hh" |
| 5 |
# include "../utility_func/zstring.hh" |
| 6 |
|
| 7 |
|
| 8 |
bool is_not_extinct_none(const Int4& h, const Int4& k, const Int4& l) |
| 9 |
{ |
| 10 |
return true; |
| 11 |
} |
| 12 |
|
| 13 |
bool is_not_extinct_4h00(const Int4& h, const Int4& k, const Int4& l) |
| 14 |
{ |
| 15 |
//h00: h=4n, 0k0: k=4n, 00l: l=4n |
| 16 |
if ( h % 4 != 0 && k == 0 && l == 0 ) return false; |
| 17 |
if ( h == 0 && k % 4 != 0 && l == 0 ) return false; |
| 18 |
if ( h == 0 && k == 0 && l % 4 != 0 ) return false; |
| 19 |
return true; |
| 20 |
} |
| 21 |
|
| 22 |
bool is_not_extinct_2h00(const Int4& h, const Int4& k, const Int4& l) |
| 23 |
{ |
| 24 |
//h00 : h = 2n, 0k0 : k = 2n, 00l : l = 2n |
| 25 |
if ( h % 2 != 0 && k == 0 && l == 0 ) return false; |
| 26 |
if ( h == 0 && k % 2 != 0 && l == 0 ) return false; |
| 27 |
if ( h == 0 && k == 0 && l % 2 != 0 ) return false; |
| 28 |
return true; |
| 29 |
} |
| 30 |
|
| 31 |
|
| 32 |
bool is_not_extinct_4h00_40kl(const Int4& h, const Int4& k, const Int4& l) |
| 33 |
{ |
| 34 |
//0kl:k+l=4n,h0l:h+l=4n,hk0:h+k=4n,h00:h=4n,0k0:k=4n,00l:l=4n |
| 35 |
if ( !is_not_extinct_4h00(h, k, l) ) return false; |
| 36 |
if ( h == 0 && (k + l) % 4 != 0 ) return false; |
| 37 |
if ( k == 0 && (h + l) % 4 != 0 ) return false; |
| 38 |
if ( l == 0 && (h + k) % 4 != 0 ) return false; |
| 39 |
return true; |
| 40 |
} |
| 41 |
|
| 42 |
bool is_not_extinct_2h00_20kl(const Int4& h, const Int4& k, const Int4& l) |
| 43 |
{ |
| 44 |
//0kl : k+l = 2n, h0l : h+l = 2n, hk0 : h+k = 2n, h00 : h = 2n, 0k0 : k = 2n, 00l : l = 2n |
| 45 |
if ( !is_not_extinct_2h00(h, k, l) ) return false; |
| 46 |
if ( h == 0 && (k + l) % 2 != 0 ) return false; |
| 47 |
if ( k == 0 && (h + l) % 2 != 0 ) return false; |
| 48 |
if ( l == 0 && (h + k) % 2 != 0 ) return false; |
| 49 |
return true; |
| 50 |
} |
| 51 |
|
| 52 |
bool is_not_extinct_2hhl(const Int4& h, const Int4& k, const Int4& l) |
| 53 |
{ |
| 54 |
//hhl:h,l=2n, hkh:h,k=2n, hkk:h,k=2n |
| 55 |
if ( k == h && !(h % 2 == 0 && l % 2 == 0 )) return false; |
| 56 |
if ( l == h && !(h % 2 == 0 && k % 2 == 0 ) ) return false; |
| 57 |
if ( l == k && !(h % 2 == 0 && k % 2 == 0 ) ) return false; |
| 58 |
return true; |
| 59 |
} |
| 60 |
|
| 61 |
bool is_not_extinct_20kl(const Int4& h, const Int4& k, const Int4& l) |
| 62 |
{ |
| 63 |
//0kl:k,l=2n, h0l:h,l=2n, hk0:h,k=2n |
| 64 |
if ( h == 0 && !(k % 2 == 0 && l % 2 == 0 )) return false; |
| 65 |
if ( k == 0 && !(h % 2 == 0 && l % 2 == 0 )) return false; |
| 66 |
if ( l == 0 && !(h % 2 == 0 && k % 2 == 0 )) return false; |
| 67 |
return true; |
| 68 |
} |
| 69 |
bool is_not_extinct_40kl_2hhl_4h00(const Int4& h, const Int4& k, const Int4& l) |
| 70 |
{ |
| 71 |
//0kl:k+l=4n, h0l:h+l=4n, hk0:h+k=4n, hhl:h,l=2n, hkh:h,k=2n, hkk:h,k=2n, h00:h=4n, 0k0:k=4n, 00l:l=4n |
| 72 |
if ( !is_not_extinct_4h00_40kl(h, k, l) ) return false; |
| 73 |
if ( !is_not_extinct_2hhl(h, k, l) ) return false; |
| 74 |
return true; |
| 75 |
} |
| 76 |
bool is_not_extinct_4hhl_4h00(const Int4& h, const Int4& k, const Int4& l) |
| 77 |
{ |
| 78 |
//hhl : 2h+l = 4n, hkh : 2h+k = 4n, hkk : h+2k = 4n, h00 : h = 4n, 0k0 : k = 4n, 00l : l = 4n |
| 79 |
if ( !is_not_extinct_4h00(h, k, l) ) return false; |
| 80 |
if ( k == h && (2*h+l) % 4 !=0 ) return false; |
| 81 |
if ( l == h && (2*h+k) % 4 !=0 ) return false; |
| 82 |
if ( l == k && (2*k+h) % 4 !=0 ) return false; |
| 83 |
return true; |
| 84 |
} |
| 85 |
|
| 86 |
bool is_not_extinct_2hhl_2h00(const Int4& h, const Int4& k, const Int4& l) |
| 87 |
{ |
| 88 |
//hhl : l = 2n, hkh : k = 2n, hkk : h = 2n, h00 : h = 2n, 0k0 : k = 2n, 00l : l = 2n |
| 89 |
if ( !is_not_extinct_2h00(h, k, l) ) return false; |
| 90 |
if ( k == h && (l) % 2 !=0 ) return false; |
| 91 |
if ( l == h && (k) % 2 !=0 ) return false; |
| 92 |
if ( l == k && (h) % 2 !=0 ) return false; |
| 93 |
return true; |
| 94 |
} |
| 95 |
bool is_not_extinct_2hhl_2h00_20kl(const Int4& h, const Int4& k, const Int4& l) |
| 96 |
{ |
| 97 |
//0kl:k+l=2n, h0l:h+l=2n, hk0:h+k=2n, hhl:l=2n, hkh:k=2n, hkk:h=2n, h00:h=2n, 0k0:k=2n, 00l:l=2n |
| 98 |
if ( !is_not_extinct_2h00_20kl(h, k, l) ) return false; |
| 99 |
if ( k == h && (l) % 2 !=0 ) return false; |
| 100 |
if ( l == h && (k) % 2 !=0 ) return false; |
| 101 |
if ( l == k && (h) % 2 !=0 ) return false; |
| 102 |
return true; |
| 103 |
} |
| 104 |
bool is_not_extinct_2hk0_2h00(const Int4& h, const Int4& k, const Int4& l) |
| 105 |
{ |
| 106 |
//hk0 : h = 2n 0kl : k = 2n h0l : l = 2n h00 : h = 2n 0k0 : k = 2n 00l : l = 2n |
| 107 |
if ( !is_not_extinct_2h00(h, k, l) ) return false; |
| 108 |
if ( l == 0 && (h) % 2 !=0 ) return false; |
| 109 |
if ( h == 0 && (k) % 2 !=0 ) return false; |
| 110 |
if ( k == 0 && (l) % 2 !=0 ) return false; |
| 111 |
return true; |
| 112 |
} |
| 113 |
bool is_not_extinct_2hk0mirror_2h00(const Int4& h, const Int4& k, const Int4& l) |
| 114 |
{ |
| 115 |
//h00 : h = 2n 0k0 : k = 2n 00l : l = 2n |
| 116 |
if ( !is_not_extinct_2h00(h, k, l) ) return false; |
| 117 |
//hk0 : k = 2n 0kl : l = 2n h0l : h = 2n |
| 118 |
if ( l == 0 && (k) % 2 !=0 ) return false; |
| 119 |
if ( h == 0 && (l) % 2 !=0 ) return false; |
| 120 |
if ( k == 0 && (h) % 2 !=0 ) return false; |
| 121 |
return true; |
| 122 |
} |
| 123 |
//Trigonal: tr |
| 124 |
bool is_not_extinct_tr_3000l(const Int4& h, const Int4& k, const Int4& l) |
| 125 |
{ |
| 126 |
//000l : l = 3n |
| 127 |
if ( h == 0 && k == 0 && (l) % 3 !=0 ) return false; |
| 128 |
return true; |
| 129 |
} |
| 130 |
bool is_not_extinct_tr_2hmh0l(const Int4& h, const Int4& k, const Int4& l) |
| 131 |
{ |
| 132 |
//h-h0l : l = 2n h0-hl : l = 2n 0h-hl : l = 2n |
| 133 |
if ( k == -h && (l) % 2 !=0 ) return false; |
| 134 |
if ( k == 0 && (l) % 2 !=0 ) return false; |
| 135 |
if ( h == 0 && (l) % 2 !=0 ) return false; |
| 136 |
return true; |
| 137 |
} |
| 138 |
//Hexagonal : hex |
| 139 |
bool is_not_extinct_hex_6000l(const Int4& h, const Int4& k, const Int4& l) |
| 140 |
{ |
| 141 |
//000l : l = 6n |
| 142 |
if ( h == 0 && k == 0 && (l) % 6 !=0 ) return false; |
| 143 |
return true; |
| 144 |
} |
| 145 |
bool is_not_extinct_hex_3000l(const Int4& h, const Int4& k, const Int4& l) |
| 146 |
{ |
| 147 |
//000l : l = 3n |
| 148 |
if ( h == 0 && k == 0 && (l) % 3 !=0 ) return false; |
| 149 |
return true; |
| 150 |
} |
| 151 |
bool is_not_extinct_hex_2000l(const Int4& h, const Int4& k, const Int4& l) |
| 152 |
{ |
| 153 |
//000l : l = 2n |
| 154 |
if ( h == 0 && k == 0 && (l) % 2 !=0 ) return false; |
| 155 |
return true; |
| 156 |
} |
| 157 |
bool is_not_extinct_hex_2hhm2hl_2hmh0l_2000l(const Int4& h, const Int4& k, const Int4& l) |
| 158 |
{ |
| 159 |
//hh-2hl : l = 2n, h-2hhl : l = 2n, -2hhhl : l = 2n, h-h0l : l = 2n, h0-hl : l = 2n, 0h-hl : l = 2n |
| 160 |
if ( k == h && (l) % 2 !=0 ) return false; |
| 161 |
if ( k == (-2 * h) && (l) % 2 !=0 ) return false; |
| 162 |
if ( h == (-2 * k) && (l) % 2 !=0 ) return false; |
| 163 |
if ( k == (-h) && (l) % 2 !=0 ) return false; |
| 164 |
if ( k == 0 && (l) % 2 !=0 ) return false; |
| 165 |
if ( h == 0 && (l) % 2 !=0 ) return false; |
| 166 |
return true; |
| 167 |
} |
| 168 |
bool is_not_extinct_hex_2hmh0l(const Int4& h, const Int4& k, const Int4& l) |
| 169 |
{ |
| 170 |
//h-h0l : l = 2n, h0-hl : l = 2n, 0h-hl : l = 2n |
| 171 |
if ( k == (-h) && (l) % 2 !=0 ) return false; |
| 172 |
if ( k == 0 && (l) % 2 !=0 ) return false; |
| 173 |
if ( h == 0 && (l) % 2 !=0 ) return false; |
| 174 |
return true; |
| 175 |
} |
| 176 |
bool is_not_extinct_2hhm2hl(const Int4& h, const Int4& k, const Int4& l) |
| 177 |
{ |
| 178 |
//hh-2hl : l = 2n, h-2hhl : l = 2n, -2hhhl : l = 2n |
| 179 |
if ( k == h && (l) % 2 !=0 ) return false; |
| 180 |
if ( k == (-2 * h) && (l) % 2 !=0 ) return false; |
| 181 |
if ( h == (-2 * k) && (l) % 2 !=0 ) return false; |
| 182 |
return true; |
| 183 |
} |
| 184 |
//Tetragonal |
| 185 |
bool is_not_extinct_400l(const Int4& h, const Int4& k, const Int4& l) |
| 186 |
{ |
| 187 |
//00l:l=4n |
| 188 |
if ( h == 0 && k == 0 && (l) % 4 !=0 ) return false; |
| 189 |
return true; |
| 190 |
} |
| 191 |
|
| 192 |
bool is_not_extinct_200l(const Int4& h, const Int4& k, const Int4& l) |
| 193 |
{ |
| 194 |
//00l:l=2n |
| 195 |
if ( h == 0 && k == 0 && (l) % 2 !=0 ) return false; |
| 196 |
return true; |
| 197 |
} |
| 198 |
|
| 199 |
bool is_not_extinct_2hk0_200l(const Int4& h, const Int4& k, const Int4& l) |
| 200 |
{ |
| 201 |
//hk0 : h+k = 2n, 00l : l = 2n |
| 202 |
if ( !is_not_extinct_200l(h, k, l) ) return false; |
| 203 |
if ( l == 0 && (h + k) % 2 != 0) return false; |
| 204 |
return true; |
| 205 |
} |
| 206 |
|
| 207 |
bool is_not_extinct_2h00_20k0(const Int4& h, const Int4& k, const Int4& l) |
| 208 |
{ |
| 209 |
//h00 : h = 2n, 0k0 : k = 2n |
| 210 |
if ( h % 2 != 0 && k == 0 && l == 0 ) return false; |
| 211 |
if ( h == 0 && k % 2 != 0 && l == 0 ) return false; |
| 212 |
return true; |
| 213 |
} |
| 214 |
|
| 215 |
bool is_not_extinct_400l_2h00_0k0(const Int4& h, const Int4& k, const Int4& l) |
| 216 |
{ |
| 217 |
//00l : l = 4n, h00 : h = 2n, 0k0 : k = 2n |
| 218 |
if ( !is_not_extinct_2h00_20k0(h, k, l) ) return false; |
| 219 |
if ( h == 0 && k == 0 && (l) % 4 !=0 ) return false; |
| 220 |
return true; |
| 221 |
} |
| 222 |
bool is_not_extinct_t_2h0l(const Int4& h, const Int4& k, const Int4& l) |
| 223 |
{ |
| 224 |
//h0l : l = 2n, 0kl : l = 2n |
| 225 |
if ( k == 0 && (l) % 2 !=0 ) return false; |
| 226 |
if ( h == 0 && (l) % 2 !=0 ) return false; |
| 227 |
return true; |
| 228 |
} |
| 229 |
bool is_not_extinct_t_2h0l_2h00(const Int4& h, const Int4& k, const Int4& l) |
| 230 |
{ |
| 231 |
//h0l : l = 2n, 0kl : l = 2n, h00 : h = 2n, 0k0 : k = 2n |
| 232 |
if ( !is_not_extinct_t_2h0l(h, k, l) ) return false; |
| 233 |
if ( k == 0 && l == 0 && (h) % 2 !=0 ) return false; |
| 234 |
if ( h == 0 && l == 0 && (k) % 2 !=0 ) return false; |
| 235 |
return true; |
| 236 |
} |
| 237 |
bool is_not_extinct_t_2ph0l_2h00(const Int4& h, const Int4& k, const Int4& l) |
| 238 |
{ |
| 239 |
//h0l : h+l = 2n, 0kl : k+l = 2n ,h00 : h = 2n, 0k0 : k = 2n |
| 240 |
if ( k == 0 && (h + l) % 2 !=0 ) return false; |
| 241 |
if ( h == 0 && (k + l) % 2 !=0 ) return false; |
| 242 |
if ( k == 0 && l == 0 && (h) % 2 !=0 ) return false; |
| 243 |
if ( h == 0 && l == 0 && (k) % 2 !=0 ) return false; |
| 244 |
return true; |
| 245 |
} |
| 246 |
|
| 247 |
bool is_not_extinct_t_2h0l_2hhl(const Int4& h, const Int4& k, const Int4& l) |
| 248 |
{ |
| 249 |
//h0l : l = 2n, 0kl : l = 2n, hhl : l = 2 |
| 250 |
if ( !is_not_extinct_t_2h0l(h, k, l) ) return false; |
| 251 |
if ( k == h && (l) % 2 !=0 ) return false; |
| 252 |
return true; |
| 253 |
} |
| 254 |
bool is_not_extinct_t_2hhl(const Int4& h, const Int4& k, const Int4& l) |
| 255 |
{ |
| 256 |
//hhl : l = 2n |
| 257 |
if ( k == h && (l) % 2 !=0 ) return false; |
| 258 |
return true; |
| 259 |
} |
| 260 |
|
| 261 |
bool is_not_extinct_t_2h00_2h0l_2hhl(const Int4& h, const Int4& k, const Int4& l) |
| 262 |
{ |
| 263 |
//h0l : h = 2n, 0kl : k = 2n, hhl : l = 2n, h00 : h = 2n, 0k0 : k = 2n |
| 264 |
if ( k == 0 && l == 0 && (h) % 2 !=0 ) return false; |
| 265 |
if ( h == 0 && l == 0 && (k) % 2 !=0 ) return false; |
| 266 |
if ( k == 0 && (h) % 2 !=0 ) return false; |
| 267 |
if ( h == 0 && (k) % 2 !=0 ) return false; |
| 268 |
if ( k == h && (l) % 2 !=0 ) return false; |
| 269 |
return true; |
| 270 |
} |
| 271 |
|
| 272 |
bool is_not_extinct_t_2h00_2hhl(const Int4& h, const Int4& k, const Int4& l) |
| 273 |
{ |
| 274 |
//hhl : l = 2n, h00 : h = 2n, 0k0 : k = 2n |
| 275 |
if ( k == 0 && l == 0 && (h) % 2 !=0 ) return false; |
| 276 |
if ( h == 0 && l == 0 && (k) % 2 !=0 ) return false; |
| 277 |
if ( k == h && (l) % 2 !=0 ) return false; |
| 278 |
return true; |
| 279 |
} |
| 280 |
bool is_not_extinct_t_2phk0_2hhl(const Int4& h, const Int4& k, const Int4& l) |
| 281 |
{ |
| 282 |
//hk0 : h+k = 2n, h0l : h+l = 2n, 0kl : k+l = 2n, hhl : l = 2n |
| 283 |
if ( l == 0 && (h + k) % 2 !=0 ) return false; |
| 284 |
if ( k == 0 && (h + l) % 2 !=0 ) return false; |
| 285 |
if ( h == 0 && (l + k) % 2 !=0 ) return false; |
| 286 |
if ( k == h && (l) % 2 !=0 ) return false; |
| 287 |
return true; |
| 288 |
} |
| 289 |
bool is_not_extinct_t_2phk0_2h0l(const Int4& h, const Int4& k, const Int4& l) |
| 290 |
{ |
| 291 |
//hk0 : h+k = 2n, h0l : h = 2n, 0kl : k = 2n |
| 292 |
if ( l == 0 && (h + k) % 2 !=0 ) return false; |
| 293 |
if ( k == 0 && (h) % 2 !=0 ) return false; |
| 294 |
if ( h == 0 && (k) % 2 !=0 ) return false; |
| 295 |
return true; |
| 296 |
} |
| 297 |
bool is_not_extinct_t_2ph0l_2hhl_2h00(const Int4& h, const Int4& k, const Int4& l) |
| 298 |
{ |
| 299 |
//h0l : h+l = 2n, 0kl : k+l = 2n, hhl : l = 2n, h00 : h = 2n, 0k0 : k = 2n |
| 300 |
if ( k == 0 && (h + l) % 2 !=0 ) return false; |
| 301 |
if ( h == 0 && (l + k) % 2 !=0 ) return false; |
| 302 |
if ( k == h && (l) % 2 !=0 ) return false; |
| 303 |
if ( k == 0 && l == 0 && (h) % 2 !=0 ) return false; |
| 304 |
if ( h == 0 && l == 0 && (k) % 2 !=0 ) return false; |
| 305 |
return true; |
| 306 |
} |
| 307 |
bool is_not_extinct_t_2phk0(const Int4& h, const Int4& k, const Int4& l) |
| 308 |
{ |
| 309 |
//hk0 : h+k = 2n |
| 310 |
if ( l == 0 && (h + k) % 2 !=0 ) return false; |
| 311 |
return true; |
| 312 |
} |
| 313 |
bool is_not_extinct_t_2phk0_2h0l_2hll(const Int4& h, const Int4& k, const Int4& l) |
| 314 |
{ |
| 315 |
//hk0 : h+k = 2n, h0l : l = 2n, 0kl : l = 2n, hhl : l = 2n |
| 316 |
if ( l == 0 && (h + k) % 2 !=0 ) return false; |
| 317 |
if ( k == 0 && (l ) % 2 !=0 ) return false; |
| 318 |
if ( h == 0 && (l ) % 2 !=0 ) return false; |
| 319 |
if ( k == h && (l) % 2 !=0 ) return false; |
| 320 |
return true; |
| 321 |
} |
| 322 |
bool is_not_extinct_t_2phk0_2hll(const Int4& h, const Int4& k, const Int4& l) |
| 323 |
{ |
| 324 |
//hk0 : h+k = 2n, hhl : l = 2n |
| 325 |
if ( l == 0 && (h + k) % 2 !=0 ) return false; |
| 326 |
if ( k == h && (l) % 2 !=0 ) return false; |
| 327 |
return true; |
| 328 |
} |
| 329 |
bool is_not_extinct_t_23phk0(const Int4& h, const Int4& k, const Int4& l) |
| 330 |
{ |
| 331 |
//hk0 : h+k = 2n, h0l : h+l = 2n, 0kl : k+l = 2n |
| 332 |
if ( l == 0 && (h + k) % 2 !=0 ) return false; |
| 333 |
if ( k == 0 && (h + l) % 2 !=0 ) return false; |
| 334 |
if ( h == 0 && (l + k) % 2 !=0 ) return false; |
| 335 |
return true; |
| 336 |
} |
| 337 |
bool is_not_extinct_t_21phk0_2hhl(const Int4& h, const Int4& k, const Int4& l) |
| 338 |
{ |
| 339 |
//hk0 : h+k = 2n, hhl : l = 2n |
| 340 |
if ( l == 0 && (h + k) % 2 !=0 ) return false; |
| 341 |
if ( k == h && (l) % 2 !=0 ) return false; |
| 342 |
return true; |
| 343 |
} |
| 344 |
|
| 345 |
bool is_not_extinct_t_21phk0_2h0l(const Int4& h, const Int4& k, const Int4& l) |
| 346 |
{ |
| 347 |
//hk0 : h+k = 2n, h0l : l = 2n, 0kl : l = 2n |
| 348 |
if ( l == 0 && (h + k) % 2 !=0 ) return false; |
| 349 |
if ( k == 0 && (l) % 2 !=0 ) return false; |
| 350 |
if ( h == 0 && (l) % 2 !=0 ) return false; |
| 351 |
return true; |
| 352 |
} |
| 353 |
bool is_not_extinct_t_21hk0_200l(const Int4& h, const Int4& k, const Int4& l) |
| 354 |
{ |
| 355 |
//hk0 : h,k = 2n, 00l : l = 4n |
| 356 |
if ( l == 0 && !(h % 2 == 0 && (k) % 2 == 0 ) ) return false; |
| 357 |
if ( k == 0 && h == 0 && (l) % 4 !=0 ) return false; |
| 358 |
return true; |
| 359 |
} |
| 360 |
bool is_not_extinct_t_2ah0l(const Int4& h, const Int4& k, const Int4& l) |
| 361 |
{ |
| 362 |
//h0l : h, l = 2n, 0kl : k, l = 2n |
| 363 |
if ( k == 0 && !(h % 2 == 0 && (l) % 2 == 0 ) ) return false; |
| 364 |
if ( h == 0 && !(k % 2 == 0 && (l) % 2 == 0 ) ) return false; |
| 365 |
return true; |
| 366 |
} |
| 367 |
bool is_not_extinct_t_4phhl_2hmh0(const Int4& h, const Int4& k, const Int4& l) |
| 368 |
{ |
| 369 |
//hhl : 2h+l = 4n, h-h0 : h = 2n |
| 370 |
if ( k == h && (2 * h + l) % 4 !=0 ) return false; |
| 371 |
if ( l == 0 && k == -h && h % 2 !=0 ) return false; |
| 372 |
return true; |
| 373 |
} |
| 374 |
bool is_not_extinct_t_4phhl_2hmh0_2ah0l(const Int4& h, const Int4& k, const Int4& l) |
| 375 |
{ |
| 376 |
//hhl : 2h+l = 4n, h-h0 : h = 2n, h0l : h, l = 2n, 0kl : k, l = 2n |
| 377 |
if ( k == h && (2 * h + l) % 4 !=0 ) return false; |
| 378 |
if ( l == 0 && k == -h && h % 2 !=0 ) return false; |
| 379 |
if ( k == 0 && !(h % 2 == 0 && (l) % 2 == 0 ) ) return false; |
| 380 |
if ( h == 0 && !(k % 2 == 0 && (l) % 2 == 0 ) ) return false; |
| 381 |
return true; |
| 382 |
} |
| 383 |
bool is_not_extinct_t_2hk0_4phhl(const Int4& h, const Int4& k, const Int4& l) |
| 384 |
{ |
| 385 |
//hk0 : h,k = 2n, hhl : 2h+l = 4n |
| 386 |
if ( l == 0 && !(h % 2 == 0 && (k) % 2 == 0 ) ) return false; |
| 387 |
if ( k == h && (2 * h + l) % 4 !=0 ) return false; |
| 388 |
return true; |
| 389 |
} |
| 390 |
bool is_not_extinct_t_23ahk0_4phhl(const Int4& h, const Int4& k, const Int4& l) |
| 391 |
{ |
| 392 |
//hk0 : h,k = 2n, h0l : h, l = 2n, 0kl : k, l = 2n, hhl : 2h+l = 4n |
| 393 |
if ( l == 0 && !(h % 2 == 0 && (k) % 2 == 0 ) ) return false; |
| 394 |
if ( k == 0 && !(h % 2 == 0 && (l) % 2 == 0 ) ) return false; |
| 395 |
if ( h == 0 && !(l % 2 == 0 && (k) % 2 == 0 ) ) return false; |
| 396 |
if ( k == h && (2 * h + l) % 4 !=0 ) return false; |
| 397 |
return true; |
| 398 |
} |
| 399 |
bool is_not_extinct_rhom_2hhl(const Int4& h, const Int4& k, const Int4& l) |
| 400 |
{ |
| 401 |
//hhl : l = 2n, hkh: k = 2n, hkk : h = 2n |
| 402 |
if ( k == h && l % 2 != 0 ) return false; |
| 403 |
if ( l == h && k % 2 != 0 ) return false; |
| 404 |
if ( l == k && h % 2 != 0 ) return false; |
| 405 |
return true; |
| 406 |
} |
| 407 |
|
| 408 |
bool is_not_extinct_rhom_hex_2hmh0l(const Int4& h, const Int4& k, const Int4& l) |
| 409 |
{ |
| 410 |
// h-h0l : l = 2n, h0-hl : l = 2n, 0h-hl : l = 2n |
| 411 |
if ( k == - h && l % 2 != 0 ) return false; |
| 412 |
if ( k == 0 && l % 2 != 0 ) return false; |
| 413 |
if ( h == 0 && l % 2 != 0 ) return false; |
| 414 |
return true; |
| 415 |
} |
| 416 |
|
| 417 |
//Monoclinic P |
| 418 |
bool is_not_extinct_mono_2h00(const Int4& h, const Int4& k, const Int4& l) |
| 419 |
{ |
| 420 |
// h00:h=2n |
| 421 |
if ( k == 0 && l == 0 && h % 2 != 0 ) return false; |
| 422 |
return true; |
| 423 |
} |
| 424 |
bool is_not_extinct_mono_20k0(const Int4& h, const Int4& k, const Int4& l) |
| 425 |
{ |
| 426 |
// 0k0:k=2n |
| 427 |
if ( h == 0 && l == 0 && k % 2 != 0 ) return false; |
| 428 |
return true; |
| 429 |
} |
| 430 |
bool is_not_extinct_mono_200l(const Int4& h, const Int4& k, const Int4& l) |
| 431 |
{ |
| 432 |
// 00l:l=2n |
| 433 |
if ( h == 0 && k == 0 && l % 2 != 0 ) return false; |
| 434 |
return true; |
| 435 |
} |
| 436 |
bool is_not_extinct_mono_20kl(const Int4& h, const Int4& k, const Int4& l) |
| 437 |
{ |
| 438 |
// 0kl:k=2n |
| 439 |
if ( h == 0 && k % 2 != 0 ) return false; |
| 440 |
return true; |
| 441 |
} |
| 442 |
bool is_not_extinct_mono_2h0l(const Int4& h, const Int4& k, const Int4& l) |
| 443 |
{ |
| 444 |
// h0l:l=2n |
| 445 |
if ( k == 0 && l % 2 != 0 ) return false; |
| 446 |
return true; |
| 447 |
} |
| 448 |
bool is_not_extinct_mono_2hk0(const Int4& h, const Int4& k, const Int4& l) |
| 449 |
{ |
| 450 |
// hk0:h=2n |
| 451 |
if ( l == 0 && h % 2 != 0 ) return false; |
| 452 |
return true; |
| 453 |
} |
| 454 |
bool is_not_extinct_mono_2l0kl(const Int4& h, const Int4& k, const Int4& l) |
| 455 |
{ |
| 456 |
// 0kl:l=2n |
| 457 |
if ( h == 0 && l % 2 != 0 ) return false; |
| 458 |
return true; |
| 459 |
} |
| 460 |
bool is_not_extinct_mono_2hh0l(const Int4& h, const Int4& k, const Int4& l) |
| 461 |
{ |
| 462 |
// h0l:h=2n |
| 463 |
if ( k == 0 && h % 2 != 0 ) return false; |
| 464 |
return true; |
| 465 |
} |
| 466 |
bool is_not_extinct_mono_2khk0(const Int4& h, const Int4& k, const Int4& l) |
| 467 |
{ |
| 468 |
// hk0:k=2n |
| 469 |
if ( l == 0 && k % 2 != 0 ) return false; |
| 470 |
return true; |
| 471 |
} |
| 472 |
bool is_not_extinct_mono_2hk0_200l(const Int4& h, const Int4& k, const Int4& l) |
| 473 |
{ |
| 474 |
// hk0:h=2n, 00l : l = 2n |
| 475 |
if ( l == 0 && h % 2 != 0 ) return false; |
| 476 |
if ( h == 0 && k == 0 && l % 2 != 0 ) return false; |
| 477 |
return true; |
| 478 |
} |
| 479 |
bool is_not_extinct_mono_2phk0_200l(const Int4& h, const Int4& k, const Int4& l) |
| 480 |
{ |
| 481 |
// hk0:h+k=2n, 00l : l = 2n |
| 482 |
if ( l == 0 && ( h + k ) % 2 != 0 ) return false; |
| 483 |
if ( h == 0 && k == 0 && l % 2 != 0 ) return false; |
| 484 |
return true; |
| 485 |
} |
| 486 |
bool is_not_extinct_mono_2dhk0_200l(const Int4& h, const Int4& k, const Int4& l) |
| 487 |
{ |
| 488 |
// hk0:k=2n, 00l : l = 2n |
| 489 |
if ( l == 0 && k % 2 != 0 ) return false; |
| 490 |
if ( h == 0 && k == 0 && l % 2 != 0 ) return false; |
| 491 |
return true; |
| 492 |
} |
| 493 |
bool is_not_extinct_mono_2p0kl(const Int4& h, const Int4& k, const Int4& l) |
| 494 |
{ |
| 495 |
// 0kl:k+l=2n |
| 496 |
if ( h == 0 && (k + l) % 2 != 0 ) return false; |
| 497 |
return true; |
| 498 |
} |
| 499 |
bool is_not_extinct_mono_2ph0l(const Int4& h, const Int4& k, const Int4& l) |
| 500 |
{ |
| 501 |
// h0l:h+l=2n |
| 502 |
if ( k == 0 && ( h + l ) % 2 != 0 ) return false; |
| 503 |
return true; |
| 504 |
} |
| 505 |
bool is_not_extinct_mono_2phk0(const Int4& h, const Int4& k, const Int4& l) |
| 506 |
{ |
| 507 |
// hk0:h+k=2n |
| 508 |
if ( l == 0 && ( h + k ) % 2 != 0 ) return false; |
| 509 |
return true; |
| 510 |
} |
| 511 |
bool is_not_extinct_mono_2h0l_20k0(const Int4& h, const Int4& k, const Int4& l) |
| 512 |
{ |
| 513 |
//h0l : l = 2n, 0k0 : k = 2n |
| 514 |
if ( k == 0 && l % 2 != 0 ) return false; |
| 515 |
if ( h == 0 && l == 0 && k % 2 != 0 ) return false; |
| 516 |
return true; |
| 517 |
} |
| 518 |
bool is_not_extinct_mono_2ph0l_20k0(const Int4& h, const Int4& k, const Int4& l) |
| 519 |
{ |
| 520 |
//h0l : h + l = 2n, 0k0 : k = 2n |
| 521 |
if ( k == 0 && ( h +l ) % 2 != 0 ) return false; |
| 522 |
if ( h == 0 && l == 0 && k % 2 != 0 ) return false; |
| 523 |
return true; |
| 524 |
} |
| 525 |
bool is_not_extinct_mono_2dh0l_20k0(const Int4& h, const Int4& k, const Int4& l) |
| 526 |
{ |
| 527 |
//h0l : h = 2n, 0k0 : k = 2n |
| 528 |
if ( k == 0 && h % 2 != 0 ) return false; |
| 529 |
if ( h == 0 && l == 0 && k % 2 != 0 ) return false; |
| 530 |
return true; |
| 531 |
} |
| 532 |
bool is_not_extinct_mono_20kl_2h00(const Int4& h, const Int4& k, const Int4& l) |
| 533 |
{ |
| 534 |
//0kl : k = 2n, h00 : h = 2n |
| 535 |
if ( h == 0 && k % 2 != 0 ) return false; |
| 536 |
if ( k == 0 && l == 0 && h % 2 != 0 ) return false; |
| 537 |
return true; |
| 538 |
} |
| 539 |
bool is_not_extinct_mono_2d0kl_2h00(const Int4& h, const Int4& k, const Int4& l) |
| 540 |
{ |
| 541 |
//0kl : l = 2n, h00 : h = 2n |
| 542 |
if ( h == 0 && l % 2 != 0 ) return false; |
| 543 |
if ( k == 0 && l == 0 && h % 2 != 0 ) return false; |
| 544 |
return true; |
| 545 |
} |
| 546 |
bool is_not_extinct_mono_2p0kl_20k0(const Int4& h, const Int4& k, const Int4& l) |
| 547 |
{ |
| 548 |
//0kl : k + l = 2n, 0k0 : k = 2n |
| 549 |
if ( h == 0 && ( k + l ) % 2 != 0 ) return false; |
| 550 |
if ( h == 0 && l == 0 && k % 2 != 0 ) return false; |
| 551 |
return true; |
| 552 |
} |
| 553 |
//Orthorhombic |
| 554 |
bool is_not_extinct_orth_2dh00(const Int4& h, const Int4& k, const Int4& l) |
| 555 |
{ |
| 556 |
//h00 : h = 2n, 0k0 : k = 2n, 00l : l = 2n |
| 557 |
if ( h == 0 && l == 0 && k % 2 != 0 ) return false; |
| 558 |
if ( k == 0 && l == 0 && h % 2 != 0 ) return false; |
| 559 |
if ( h == 0 && k == 0 && l % 2 != 0 ) return false; |
| 560 |
return true; |
| 561 |
} |
| 562 |
bool is_not_extinct_orth_23phk0(const Int4& h, const Int4& k, const Int4& l) |
| 563 |
{ |
| 564 |
//hk0:h+k=2n,h0l:h+l=2n,0kl:k+l=2n |
| 565 |
if ( l == 0 && ( h + k ) % 2 != 0 ) return false; |
| 566 |
if ( k == 0 && ( h + l ) % 2 != 0 ) return false; |
| 567 |
if ( h == 0 && ( k + l ) % 2 != 0 ) return false; |
| 568 |
return true; |
| 569 |
} |
| 570 |
bool is_not_extinct_orth_2d30kl(const Int4& h, const Int4& k, const Int4& l) |
| 571 |
{ |
| 572 |
//0kl : k = 2n,������ h0l : l = 2n, ������ hk0 : h = 2n |
| 573 |
if ( h == 0 && k % 2 != 0 ) return false; |
| 574 |
if ( k == 0 && l % 2 != 0 ) return false; |
| 575 |
if ( l == 0 && h % 2 != 0 ) return false; |
| 576 |
return true; |
| 577 |
} |
| 578 |
bool standard_function_for_abc(const Int4& h, const Int4& k, const Int4& l) |
| 579 |
{ |
| 580 |
//0kl:l = 2n, h0l:l=2n, hk0:h+k=2n |
| 581 |
if ( h == 0 && l % 2 != 0 ) return false; |
| 582 |
if ( k == 0 && l % 2 != 0 ) return false; |
| 583 |
if ( l == 0 && ( h + k ) % 2 != 0 ) return false; |
| 584 |
return true; |
| 585 |
} |
| 586 |
bool standard_function2_for_abc(const Int4& h, const Int4& k, const Int4& l) |
| 587 |
{ |
| 588 |
//h0l:l=2n |
| 589 |
if ( k == 0 && l % 2 != 0 ) return false; |
| 590 |
return true; |
| 591 |
} |
| 592 |
bool standard_function_for_abc_200l(const Int4& h, const Int4& k, const Int4& l) |
| 593 |
{ |
| 594 |
//00l:l = 2n |
| 595 |
if ( h == 0 && k == 0 && l % 2 != 0 ) return false; |
| 596 |
return true; |
| 597 |
} |
| 598 |
bool standard_function_for_abc_22h00(const Int4& h, const Int4& k, const Int4& l) |
| 599 |
{ |
| 600 |
// h00 : k = 2n, 0k0 : k = 2n. |
| 601 |
if ( h == 0 && l == 0 && k % 2 != 0 ) return false; |
| 602 |
if ( k == 0 && l == 0 && h % 2 != 0 ) return false; |
| 603 |
return true; |
| 604 |
} |
| 605 |
bool standard_function_for_abc_220kl(const Int4& h, const Int4& k, const Int4& l) |
| 606 |
{ |
| 607 |
//0kl : l = 2n, h0l : l = 2n |
| 608 |
if ( h == 0 && l % 2 != 0 ) return false; |
| 609 |
if ( k == 0 && l % 2 != 0 ) return false; |
| 610 |
return true; |
| 611 |
} |
| 612 |
bool standard_function_for_abc_2d20kl(const Int4& h, const Int4& k, const Int4& l) |
| 613 |
{ |
| 614 |
//0kl : k = 2n, h0l : h = 2n |
| 615 |
if ( h == 0 && k % 2 != 0 ) return false; |
| 616 |
if ( k == 0 && h % 2 != 0 ) return false; |
| 617 |
return true; |
| 618 |
} |
| 619 |
bool standard_function_for_abc_2p20kl(const Int4& h, const Int4& k, const Int4& l) |
| 620 |
{ |
| 621 |
//0kl : k+l = 2n h0l : h+l = 2n |
| 622 |
if ( h == 0 && ( k + l ) % 2 != 0 ) return false; |
| 623 |
if ( k == 0 && ( h + l ) % 2 != 0 ) return false; |
| 624 |
return true; |
| 625 |
} |
| 626 |
bool standard_function_for_abc_220kl_2phk0(const Int4& h, const Int4& k, const Int4& l) |
| 627 |
{ |
| 628 |
//0kl : k = 2n, ������������ h0l : h = 2n, ������������ hk0 : h+k = 2n |
| 629 |
if ( h == 0 && k % 2 != 0 ) return false; |
| 630 |
if ( k == 0 && h % 2 != 0 ) return false; |
| 631 |
if ( l == 0 && ( h + k ) % 2 != 0 ) return false; |
| 632 |
return true; |
| 633 |
} |
| 634 |
bool standard_function2_for_abc_22d0kl(const Int4& h, const Int4& k, const Int4& l) |
| 635 |
{ |
| 636 |
//0kl : l = 2n, h0l : h = 2n |
| 637 |
if ( h == 0 && l % 2 != 0 ) return false; |
| 638 |
if ( k == 0 && h % 2 != 0 ) return false; |
| 639 |
return true; |
| 640 |
} |
| 641 |
bool standard_function2_for_abc_22dd0kl(const Int4& h, const Int4& k, const Int4& l) |
| 642 |
{ |
| 643 |
//0kl : k = 2n, h0l : l = 2n |
| 644 |
if ( h == 0 && k % 2 != 0 ) return false; |
| 645 |
if ( k == 0 && l % 2 != 0 ) return false; |
| 646 |
return true; |
| 647 |
} |
| 648 |
bool standard_function2_for_abc_2p0kl_2h0l(const Int4& h, const Int4& k, const Int4& l) |
| 649 |
{ |
| 650 |
//0kl: k+l=2n , h0l: l=2n |
| 651 |
if ( h == 0 && ( k + l ) % 2 != 0 ) return false; |
| 652 |
if ( k == 0 && l % 2 != 0 ) return false; |
| 653 |
return true; |
| 654 |
} |
| 655 |
bool standard_function2_for_abc_2ph0l_2hk0(const Int4& h, const Int4& k, const Int4& l) |
| 656 |
{ |
| 657 |
//h0l: h+l=2n , hk0: h=2n |
| 658 |
if ( k == 0 && ( h + l ) % 2 != 0 ) return false; |
| 659 |
if ( l == 0 && h % 2 != 0 ) return false; |
| 660 |
return true; |
| 661 |
} |
| 662 |
bool standard_function2_for_abc_2ph0l(const Int4& h, const Int4& k, const Int4& l) |
| 663 |
{ |
| 664 |
//h0l: h+l=2n |
| 665 |
if ( k == 0 && ( h + l ) % 2 != 0 ) return false; |
| 666 |
return true; |
| 667 |
} |
| 668 |
bool standard_function2_for_abc_2p0kl_2dh0l(const Int4& h, const Int4& k, const Int4& l) |
| 669 |
{ |
| 670 |
//0kl : k+l = 2n, h0l : h = 2n |
| 671 |
if ( h == 0 && ( k + l ) % 2 != 0 ) return false; |
| 672 |
if ( k == 0 && h % 2 != 0 ) return false; |
| 673 |
return true; |
| 674 |
} |
| 675 |
bool standard_function2_for_abc_22p0kl_2hk0(const Int4& h, const Int4& k, const Int4& l) |
| 676 |
{ |
| 677 |
//0kl : k+l = 2n ,������������ h0l : h+l = 2n, hk0 : h = 2n |
| 678 |
if ( h == 0 && ( k + l ) % 2 != 0 ) return false; |
| 679 |
if ( k == 0 && ( h + l ) % 2 != 0 ) return false; |
| 680 |
if ( l == 0 && h % 2 != 0 ) return false; |
| 681 |
return true; |
| 682 |
} |
| 683 |
bool standard_function2_for_abc_230kl(const Int4& h, const Int4& k, const Int4& l) |
| 684 |
{ |
| 685 |
//0kl : l = 2, ������������ h0l : l = 2n , ������hk0 : h = 2n |
| 686 |
if ( h == 0 && l % 2 != 0 ) return false; |
| 687 |
if ( k == 0 && l % 2 != 0 ) return false; |
| 688 |
if ( l == 0 && h % 2 != 0 ) return false; |
| 689 |
return true; |
| 690 |
} |
| 691 |
bool standard_function2_for_abc_220kl_2phk0(const Int4& h, const Int4& k, const Int4& l) |
| 692 |
{ |
| 693 |
//0kl : k = 2n, ������h0l : l = 2n, ������ hk0 : h+k = 2n |
| 694 |
if ( h == 0 && k % 2 != 0 ) return false; |
| 695 |
if ( k == 0 && l % 2 != 0 ) return false; |
| 696 |
if ( l == 0 && ( h + k ) % 2 != 0 ) return false; |
| 697 |
return true; |
| 698 |
} |
| 699 |
bool standard_function_for_abc_210kl(const Int4& h, const Int4& k, const Int4& l) |
| 700 |
{ |
| 701 |
//0kl : l = 2n |
| 702 |
if ( h == 0 && l % 2 != 0 ) return false; |
| 703 |
return true; |
| 704 |
} |
| 705 |
bool standard_function_for_abc_2ahk0(const Int4& h, const Int4& k, const Int4& l) |
| 706 |
{ |
| 707 |
//hk0 : h,k = 2n |
| 708 |
if ( l == 0 && !( h % 2 == 0 && k % 2 == 0 ) ) return false; |
| 709 |
return true; |
| 710 |
} |
| 711 |
bool standard_function_for_abc_2ahk0_20kl(const Int4& h, const Int4& k, const Int4& l) |
| 712 |
{ |
| 713 |
//hk0 : h, k = 2n, 0kl : l = 2n |
| 714 |
if ( l == 0 && !( h % 2 == 0 && k % 2 == 0 ) ) return false; |
| 715 |
if ( h == 0 && l % 2 != 0 ) return false; |
| 716 |
return true; |
| 717 |
} |
| 718 |
bool standard_function_for_abc_2ahk0_2h0l(const Int4& h, const Int4& k, const Int4& l) |
| 719 |
{ |
| 720 |
//hk0 : h, k = 2n, h0l : l = 2n |
| 721 |
if ( l == 0 && !( h % 2 == 0 && k % 2 == 0 ) ) return false; |
| 722 |
if ( k == 0 && l % 2 != 0 ) return false; |
| 723 |
return true; |
| 724 |
} |
| 725 |
bool standard_function_for_abc_220kl_2ahk0(const Int4& h, const Int4& k, const Int4& l) |
| 726 |
{ |
| 727 |
//0kl : l = 2n, ������ h0l : l = 2n, hk0 : h,k = 2n |
| 728 |
if ( h == 0 && l % 2 != 0 ) return false; |
| 729 |
if ( k == 0 && l % 2 != 0 ) return false; |
| 730 |
if ( l == 0 && !( h % 2 == 0 && k % 2 == 0 ) ) return false; |
| 731 |
return true; |
| 732 |
} |
| 733 |
bool standard_function_for_abc_42p0kl(const Int4& h, const Int4& k, const Int4& l) |
| 734 |
{ |
| 735 |
//0kl : k+l = 4n, h0l : h+l = 4n |
| 736 |
if ( h == 0 && ( k+l) % 4 != 0 ) return false; |
| 737 |
if ( k == 0 && ( h+l) % 4 != 0 ) return false; |
| 738 |
return true; |
| 739 |
} |
| 740 |
bool standard_function_for_abc_43p0kl(const Int4& h, const Int4& k, const Int4& l) |
| 741 |
{ |
| 742 |
//0kl : k+l = 4n, h0l : h+l = 4n, hk0 : h+k = 4n |
| 743 |
if ( h == 0 && ( k+l) % 4 != 0 ) return false; |
| 744 |
if ( k == 0 && ( h+l) % 4 != 0 ) return false; |
| 745 |
if ( l == 0 && ( h+k) % 4 != 0 ) return false; |
| 746 |
return true; |
| 747 |
} |
| 748 |
bool standard_function_for_abc_2a0kl(const Int4& h, const Int4& k, const Int4& l) |
| 749 |
{ |
| 750 |
//0kl : k,l = 2n h0l : h,l = 2n |
| 751 |
if ( h == 0 && !( k % 2 == 0 && l % 2 == 0 ) ) return false; |
| 752 |
if ( k == 0 && !( h % 2 == 0 && l % 2 == 0 ) ) return false; |
| 753 |
return true; |
| 754 |
} |
| 755 |
bool standard_function_for_abc_2ah0l(const Int4& h, const Int4& k, const Int4& l) |
| 756 |
{ |
| 757 |
//h0l : h,l = 2n |
| 758 |
if ( k == 0 && !( h % 2 == 0 && l % 2 == 0 ) ) return false; |
| 759 |
return true; |
| 760 |
} |
| 761 |
bool standard_function_for_abc_23a0kl(const Int4& h, const Int4& k, const Int4& l) |
| 762 |
{ |
| 763 |
//0kl : k, l = 2n h0l : h, l = 2n hk0 : h,k = 2n |
| 764 |
if ( h == 0 && !( k % 2 == 0 && l % 2 == 0 ) ) return false; |
| 765 |
if ( k == 0 && !( h % 2 == 0 && l % 2 == 0 ) ) return false; |
| 766 |
if ( l == 0 && !( h % 2 == 0 && k % 2 == 0 ) ) return false; |
| 767 |
return true; |
| 768 |
} |
| 769 |
bool special_reflection_conditions_3h_4phkl(const Int4& h, const Int4& k, const Int4& l) |
| 770 |
{ |
| 771 |
// (A,face) hkl : h=2n+1 or h+k+l=4n |
| 772 |
if( (h+k+l-2) % 4 == 0 ) return false; |
| 773 |
return true; |
| 774 |
} |
| 775 |
bool special_reflection_conditions_3l_4p2hl(const Int4& h, const Int4& k, const Int4& l) |
| 776 |
{ |
| 777 |
// (A,body) hkl : l=2n+1 or 2h+l=4n |
| 778 |
if( (2*h+l-2) % 4 == 0 ) return false; |
| 779 |
return true; |
| 780 |
} |
| 781 |
bool special_reflection_conditions_3h_6ahkl_4ahkl(const Int4& h, const Int4& k, const Int4& l) |
| 782 |
{ |
| 783 |
// (B,face) hkl:h=2n+1 or h,k,l=4n+2 or h,k,l=4n |
| 784 |
if( h % 2 == 0 && !( (h - k) % 4 == 0 && (k - l) % 4 == 0 ) ) return false; |
| 785 |
return true; |
| 786 |
} |
| 787 |
bool special_reflection_conditions_3l_2ahk_4phkl(const Int4& h, const Int4& k, const Int4& l) |
| 788 |
{ |
| 789 |
// (B,body) hkl : l=2n+1or h,k=2n, h+k+l=4n |
| 790 |
if( l % 2 == 0 ) |
| 791 |
{ |
| 792 |
if( h % 2 != 0 ) return false; |
| 793 |
if( (h + k + l) % 4 != 0 ) return false; |
| 794 |
} |
| 795 |
return true; |
| 796 |
} |
| 797 |
bool special_reflection_conditions_3l_2h(const Int4& h, const Int4& k, const Int4& l) |
| 798 |
{ |
| 799 |
// (C) hkl : l=2n+1 or h=2n |
| 800 |
if( h % 2 != 0 && l % 2 == 0 ) return false; |
| 801 |
return true; |
| 802 |
} |
| 803 |
bool special_reflection_conditions_2l_3shk_3s2hk(const Int4& h, const Int4& k, const Int4& l) |
| 804 |
{ |
| 805 |
// (D) hkil : l=2n or h-k=3n+1 or h-k=3n+2 |
| 806 |
if( (h - k) % 3 == 0 && l % 2 != 0 ) return false; |
| 807 |
return true; |
| 808 |
} |
| 809 |
bool special_reflection_conditions_oddh_oddk_3lhkil(const Int4& h, const Int4& k, const Int4& l) |
| 810 |
{ |
| 811 |
// (E) hkil : h=2n+1 or k=2n+1 or l=3n |
| 812 |
if( h % 2 == 0 && k % 2 == 0 && l % 3 != 0 ) return false; |
| 813 |
return true; |
| 814 |
} |
| 815 |
bool special_reflection_conditions_2h_2k_2hhl_2hkh_2hkk(const Int4& h, const Int4& k, const Int4& l) |
| 816 |
{ |
| 817 |
// (F) hkl: h=2n or k=2n or l=2n, hhl: l=2n, hkh: k=2n, hkk: h=2n |
| 818 |
if( k == l && h % 2 != 0 ) return false; |
| 819 |
if( h == l && k % 2 != 0 ) return false; |
| 820 |
if( h == k && l % 2 != 0 ) return false; |
| 821 |
if( h % 2 != 0 && k % 2 != 0 && l % 2 != 0 ) return false; |
| 822 |
return true; |
| 823 |
} |
| 824 |
bool special_reflection_conditions_2h_2k_2lhkl(const Int4& h, const Int4& k, const Int4& l) |
| 825 |
{ |
| 826 |
// (F) hkl: h=2n or k=2n or l=2n |
| 827 |
if( h % 2 != 0 && k % 2 != 0 && l % 2 != 0 ) return false; |
| 828 |
return true; |
| 829 |
} |
| 830 |
bool special_reflection_conditions_oddh_oddk_oddl_4phkl(const Int4& h, const Int4& k, const Int4& l) |
| 831 |
{ |
| 832 |
// (F) hkl: h=2n+1 or k=2n+1 or l=2n+1 or h+k+l=4n |
| 833 |
if( h % 2 == 0 && k % 2 == 0 && l % 2 == 0 && (h+k+l) % 4 != 0) return false; |
| 834 |
return true; |
| 835 |
} |
| 836 |
bool special_reflection_conditions_2phkl_oddhkl_4hkl_6hkl(const Int4& h, const Int4& k, const Int4& l) |
| 837 |
{ |
| 838 |
// (G) hkl:h+k+l=2n or either one of h, k, l is 2n+1, 4n and 4n+2 |
| 839 |
if( (h+k+l) % 2 != 0 ) |
| 840 |
{ |
| 841 |
if( h % 4 != 0 && k % 4 != 0 && l % 4 != 0 ) return false; |
| 842 |
if( (h-2) % 4 != 0 && (k-2) % 4 != 0 && (l-2) % 4 != 0 ) return false; |
| 843 |
} |
| 844 |
return true; |
| 845 |
} |
| 846 |
bool special_reflection_conditions_22hkl_2oddhkl_4k_6l_6ahkl_4hkl(const Int4& h, const Int4& k, const Int4& l) |
| 847 |
{ |
| 848 |
// (H) hkl: two of h,k,l are odd or either one of h,k,l is 2n+1,k=4n and l=4n+2 or h,k,l=4n+2 or h,k,l=4n |
| 849 |
const Int4 num_odd = (abs(h) % 2) + (abs(k) % 2) + (abs(l) % 2); |
| 850 |
if( num_odd < 1 ) |
| 851 |
{ |
| 852 |
if( (h - k) % 4 != 0 || (k - l) % 4 != 0 ) return false; |
| 853 |
} |
| 854 |
else if( num_odd < 2 ) |
| 855 |
{ |
| 856 |
if( h % 4 != 0 && k % 4 != 0 && l % 4 != 0 ) return false; |
| 857 |
if( (h - 2) % 4 != 0 && (k - 2) % 4 != 0 && (l - 2) % 4 != 0 ) return false; |
| 858 |
} |
| 859 |
return true; |
| 860 |
} |
| 861 |
bool special_reflection_conditions_oddh_6ahkl_4ahkl(const Int4& h, const Int4& k, const Int4& l) |
| 862 |
{ |
| 863 |
// (I) hkl:h=2n+1 or h,k,l=4n+2 or h,k,l=4n |
| 864 |
if( h % 2 == 0 && k % 2 == 0 && l % 2 == 0 ) |
| 865 |
{ |
| 866 |
if( (h - k) % 4 != 0 || (k - l) % 4 != 0 ) return false; |
| 867 |
} |
| 868 |
return true; |
| 869 |
} |
| 870 |
bool special_reflection_conditions_2ahkl_4phkl_8h_12k_6phkl_oddahk_9ahk_4l_11ahk_4l_9h_7k_4l_11h(const Int4& h, const Int4& k, const Int4& l) |
| 871 |
{ |
| 872 |
// (J) hkl:h,k,l=2n,h+k+l=4n or h=8n, k=8n+4 and h+k+l=4n+2 or h,k=2n+1, l=4n+2 or h,k=8n+1, l=4n or h,k=8n+3, |
| 873 |
//l=4n or h=8n+1, k=8n-1, l=4n or h=8n+3, k=8n-3, l=4n |
| 874 |
if( h % 2 == 0 ) |
| 875 |
{ |
| 876 |
if( k % 2 == 0 ) // All even |
| 877 |
{ |
| 878 |
if( (h + k + l) % 4 != 0 ) |
| 879 |
{ // h+k+l = 4n+2 |
| 880 |
if( h % 8 != 0 && k % 8 != 0 && l % 8 != 0 ) return false; |
| 881 |
if( (h - 4) % 8 != 0 && (k - 4) % 8 != 0 && (l - 4) % 8 != 0 ) return false; |
| 882 |
} |
| 883 |
} |
| 884 |
else // k, l are odd |
| 885 |
{ |
| 886 |
if( h % 4 == 0 && (k + l) % 8 != 0 && !( (k - l) % 8 == 0 && abs(k) % 8 < 4 ) ) return false; |
| 887 |
} |
| 888 |
} |
| 889 |
else if( k % 2 == 0 ) // h, l are odd |
| 890 |
{ |
| 891 |
if( k % 4 == 0 && (h + l) % 8 != 0 && !( (h - l) % 8 == 0 && abs(h) % 8 < 4 ) ) return false; |
| 892 |
} |
| 893 |
else // h, k are odd |
| 894 |
{ |
| 895 |
if( l % 4 == 0 && (h + k) % 8 != 0 && !( (h - k) % 8 == 0 && abs(h) % 8 < 4 ) ) return false; |
| 896 |
} |
| 897 |
|
| 898 |
return true; |
| 899 |
} |
| 900 |
bool special_reflection_conditions_2hk_4phkl_8h_12k_6phkl_oddahk_6l_9h_11k_4l_15h_13k_9h_14k_4l_15h_11k_4l(const Int4& h, const Int4& k, const Int4& l) |
| 901 |
{ |
| 902 |
// (J2) hkl:h,k=2n,h+k+l=4n or h=8n, k=8n+4 and h+k+l=4n+2 or h,k=2n+1, l=4n+2 or h=8n+1, k=8n+3, l=4n |
| 903 |
//or h=8n+7, k=8n+5, l=4n or h=8n+1, k=8n+5, l=4n or h=8n+7, k=8n+3, l=4n |
| 904 |
if( h % 2 == 0 ) |
| 905 |
{ |
| 906 |
if( k % 2 == 0 ) // All even |
| 907 |
{ |
| 908 |
if( (h + k + l) % 4 != 0 ) |
| 909 |
{ // h+k+l = 4n+2 |
| 910 |
if( h % 8 != 0 && k % 8 != 0 && l % 8 != 0 ) return false; |
| 911 |
if( (h - 4) % 8 != 0 && (k - 4) % 8 != 0 && (l - 4) % 8 != 0 ) return false; |
| 912 |
} |
| 913 |
} |
| 914 |
else // k, l are odd |
| 915 |
{ |
| 916 |
if( h % 4 == 0 && (k - l - 4) % 8 != 0 && (k + l - 4) % 8 == 0 ) return false; |
| 917 |
} |
| 918 |
} |
| 919 |
else if( k % 2 == 0 ) // h, l are odd |
| 920 |
{ |
| 921 |
if( k % 4 == 0 && (h - l - 4) % 8 != 0 && (h + l - 4) % 8 != 0 ) return false; |
| 922 |
} |
| 923 |
else // h, k are odd |
| 924 |
{ |
| 925 |
if( l % 4 == 0 && (h - k - 4) % 8 != 0 && (h + k - 4) % 8 != 0 ) return false; |
| 926 |
} |
| 927 |
return true; |
| 928 |
} |
| 929 |
bool special_reflection_conditions_oddh_4h_oddh_4phkl_hhl(const Int4& h, const Int4& k, const Int4& l) |
| 930 |
{ |
| 931 |
// (K) hkl: h=2n+1 or h=4n, hhl: h=2n+1 or h+k+l=4n |
| 932 |
if( h % 2 == 0 && k % 2 == 0 && l % 2 == 0 ) |
| 933 |
{ |
| 934 |
if( ( h == k || k == l || h == l ) && (h + k + l) % 4 != 0 ) return false; |
| 935 |
if( (h - 2) % 4 == 0 && (k - 2) % 4 == 0 && (l - 2) % 4 == 0 ) return false; |
| 936 |
} |
| 937 |
return true; |
| 938 |
} |
| 939 |
bool special_reflection_conditions_oddh_oddk_oddl_4hkl(const Int4& h, const Int4& k, const Int4& l) |
| 940 |
{ |
| 941 |
// (K) hkl: h=2n+1 or k=2n+1 or l=2n+1 or h=4n or k=4n or l=4n |
| 942 |
if( (h - 2) % 4 == 0 && (k - 2) % 4 == 0 && (l - 2) % 4 == 0 ) return false; |
| 943 |
return true; |
| 944 |
} |
| 945 |
bool special_reflection_conditions_4phl_4pkh_4plk_4plh_4phk_4pkl(const Int4& h, const Int4& k, const Int4& l) |
| 946 |
{ |
| 947 |
// (L) hkl: 2h+l=4n or 2k+h=4n or 2l+k=4n or 2l+h=4n or 2h+k=4n or 2k+l=4n |
| 948 |
//(Equivalently, {u_1,u_2,u_3\} mod 4 != {0,1,1}, {0,1,3}, {0,3,3}, {2,2,2}) |
| 949 |
if( h % 2 != 0 ) |
| 950 |
{ // two odds and one even |
| 951 |
if( k % 4 != 0 && l % 4 != 0 ) return false; |
| 952 |
} |
| 953 |
else if( k % 2 != 0 ) |
| 954 |
{ // only h is even |
| 955 |
if( h % 4 != 0 ) return false; |
| 956 |
} |
| 957 |
else |
| 958 |
{ // all even |
| 959 |
if( (h - 2) % 4 != 0 || (k - 2) % 4 != 0 || (l - 2) % 4 != 0 ) return false; |
| 960 |
} |
| 961 |
return true; |
| 962 |
} |
| 963 |
bool special_reflection_conditions_2ahk_4phkl_oddahk_6l_8h_12k_6phkl(const Int4& h, const Int4& k, const Int4& l) |
| 964 |
{ |
| 965 |
// (M) hkl: h,k=2n, h+k+l=4n or h,k=2n+1, l=4n+2 or h=8n, k=8n+4 and h+k+l=4n+2 |
| 966 |
if( h % 2 != 0 ) |
| 967 |
{ // two odds and one even |
| 968 |
if( (k - 2) % 4 != 0 && (l - 2) % 4 != 0 ) return false; |
| 969 |
} |
| 970 |
else if( k % 2 != 0 ) |
| 971 |
{ // only h is even |
| 972 |
if( (h - 2) % 4 != 2 ) return false; |
| 973 |
} |
| 974 |
else |
| 975 |
{ // all even |
| 976 |
if( (h + k + l) % 2 != 0 ) return false; |
| 977 |
// if( (h + k + l) % 4 != 0 ) |
| 978 |
// { |
| 979 |
if( h % 8 != 0 && k % 8 != 0 && l % 8 != 0 ) return false; |
| 980 |
if( (h - 4) % 8 != 0 && (k - 4) % 8 != 0 && (l - 4) % 8 != 0 ) return false; |
| 981 |
// } |
| 982 |
} |
| 983 |
|
| 984 |
return true; |
| 985 |
} |
| 986 |
bool special_reflection_conditions_oddahk_6l_4ahkl(const Int4& h, const Int4& k, const Int4& l) |
| 987 |
{ |
| 988 |
// (N) hkl: h,k=2n+1, l=4n+2 or h,k,l=4n |
| 989 |
if( h % 2 != 0 ) |
| 990 |
{ // two odds and one even |
| 991 |
if( (k - 2) % 4 != 0 && (l - 2) % 4 != 0 ) return false; |
| 992 |
} |
| 993 |
else if( k % 2 != 0 ) |
| 994 |
{ // only h is even |
| 995 |
if( (h - 2) % 4 != 0 ) return false; |
| 996 |
} |
| 997 |
else |
| 998 |
{ // all even |
| 999 |
if( h % 4 != 0 || k % 4 != 0 || l % 4 != 0 ) return false; |
| 1000 |
} |
| 1001 |
return true; |
| 1002 |
} |
| 1003 |
|
| 1004 |
static const Int4 DATA_NUM_CUBIC_F = 7; |
| 1005 |
static const Int4 DATA_NUM_CUBIC_I = 13; |
| 1006 |
static const Int4 DATA_NUM_CUBIC_P = 12; |
| 1007 |
static const Int4 DATA_NUM_HEXAGONAL = 9; |
| 1008 |
static const Int4 DATA_NUM_TETRAGONAL_P = 23; |
| 1009 |
static const Int4 DATA_NUM_TETRAGONAL_I = 11; |
| 1010 |
static const Int4 DATA_NUM_ORTHORHOMBIC_P =71 ; //95; |
| 1011 |
static const Int4 DATA_NUM_ORTHORHOMBIC_C =9; |
| 1012 |
static const Int4 DATA_NUM_ORTHORHOMBIC_F =7; |
| 1013 |
static const Int4 DATA_NUM_ORTHORHOMBIC_I =8; |
| 1014 |
static const Int4 DATA_NUM_RHOMBOHEDRAL_RHOM_AXIS = 2; |
| 1015 |
static const Int4 DATA_NUM_RHOMBOHEDRAL_HEX_AXIS = 2; |
| 1016 |
static const Int4 DATA_NUM_MONOCLINIC_P_A_AXIS =8; |
| 1017 |
static const Int4 DATA_NUM_MONOCLINIC_P_B_AXIS =8; |
| 1018 |
static const Int4 DATA_NUM_MONOCLINIC_P_C_AXIS =8; |
| 1019 |
static const Int4 DATA_NUM_MONOCLINIC_B_A_AXIS =2; |
| 1020 |
static const Int4 DATA_NUM_MONOCLINIC_B_B_AXIS =2; |
| 1021 |
static const Int4 DATA_NUM_MONOCLINIC_B_C_AXIS =2; |
| 1022 |
static const Int4 DATA_NUM_TRICLINIC =1; |
| 1023 |
|
| 1024 |
|
| 1025 |
Int4 putNumberOfTypesOfSystematicAbsences(const BravaisType& type) |
| 1026 |
{ |
| 1027 |
if( type.enumBravaisType() == Cubic_F ) |
| 1028 |
{ |
| 1029 |
return DATA_NUM_CUBIC_F; |
| 1030 |
} |
| 1031 |
if( type.enumBravaisType() == Cubic_I ) |
| 1032 |
{ |
| 1033 |
return DATA_NUM_CUBIC_I; |
| 1034 |
} |
| 1035 |
if ( type.enumBravaisType() == Cubic_P ) |
| 1036 |
{ |
| 1037 |
return DATA_NUM_CUBIC_P; |
| 1038 |
} |
| 1039 |
if ( type.enumBravaisType() == Hexagonal ) |
| 1040 |
{ |
| 1041 |
return DATA_NUM_HEXAGONAL; |
| 1042 |
} |
| 1043 |
if ( type.enumBravaisType() == Tetragonal_P ) |
| 1044 |
{ |
| 1045 |
return DATA_NUM_HEXAGONAL; |
| 1046 |
} |
| 1047 |
if ( type.enumBravaisType() == Tetragonal_I ) |
| 1048 |
{ |
| 1049 |
return DATA_NUM_HEXAGONAL; |
| 1050 |
} |
| 1051 |
if ( type.enumBravaisType() == Rhombohedral ) |
| 1052 |
{ |
| 1053 |
if( type.enumRHaxis() == Rho_Axis ) |
| 1054 |
{ |
| 1055 |
return DATA_NUM_RHOMBOHEDRAL_RHOM_AXIS; |
| 1056 |
} |
| 1057 |
if( type.enumRHaxis() == Hex_Axis ) |
| 1058 |
{ |
| 1059 |
return DATA_NUM_RHOMBOHEDRAL_HEX_AXIS; |
| 1060 |
} |
| 1061 |
} |
| 1062 |
if ( type.enumBravaisType() == Orthorhombic_P ) |
| 1063 |
{ |
| 1064 |
return DATA_NUM_ORTHORHOMBIC_P; |
| 1065 |
} |
| 1066 |
if ( type.enumBravaisType() == Orthorhombic_C ) |
| 1067 |
{ |
| 1068 |
return DATA_NUM_ORTHORHOMBIC_C; |
| 1069 |
} |
| 1070 |
if ( type.enumBravaisType() == Orthorhombic_F ) |
| 1071 |
{ |
| 1072 |
return DATA_NUM_ORTHORHOMBIC_F; |
| 1073 |
} |
| 1074 |
if ( type.enumBravaisType() == Orthorhombic_I ) |
| 1075 |
{ |
| 1076 |
return DATA_NUM_ORTHORHOMBIC_I; |
| 1077 |
} |
| 1078 |
if ( type.enumBravaisType() == Monoclinic_P ) |
| 1079 |
{ |
| 1080 |
if( type.enumABCaxis() == A_Axis ) |
| 1081 |
{ |
| 1082 |
return DATA_NUM_MONOCLINIC_P_A_AXIS; |
| 1083 |
} |
| 1084 |
if( type.enumABCaxis() == B_Axis ) |
| 1085 |
{ |
| 1086 |
return DATA_NUM_MONOCLINIC_P_B_AXIS; |
| 1087 |
} |
| 1088 |
if( type.enumABCaxis() == C_Axis ) |
| 1089 |
{ |
| 1090 |
return DATA_NUM_MONOCLINIC_P_C_AXIS; |
| 1091 |
} |
| 1092 |
} |
| 1093 |
if ( type.enumBravaisType() == Monoclinic_B ) |
| 1094 |
{ |
| 1095 |
if( type.enumABCaxis() == A_Axis ) |
| 1096 |
{ |
| 1097 |
return DATA_NUM_MONOCLINIC_B_A_AXIS; |
| 1098 |
} |
| 1099 |
if( type.enumABCaxis() == B_Axis ) |
| 1100 |
{ |
| 1101 |
return DATA_NUM_MONOCLINIC_B_B_AXIS; |
| 1102 |
} |
| 1103 |
if( type.enumABCaxis() == C_Axis ) |
| 1104 |
{ |
| 1105 |
return DATA_NUM_MONOCLINIC_B_C_AXIS; |
| 1106 |
} |
| 1107 |
} |
| 1108 |
if ( type.enumBravaisType() == Triclinic ) |
| 1109 |
{ |
| 1110 |
return DATA_NUM_TRICLINIC; |
| 1111 |
} |
| 1112 |
|
| 1113 |
assert( false ); |
| 1114 |
return -1; |
| 1115 |
} |
| 1116 |
|
| 1117 |
const DataReflectionConditions& putInformationOnReflectionConditions(const BravaisType& brav_type, const Int4& irc_type) |
| 1118 |
{ |
| 1119 |
// static const DataReflectionConditions DATA_NONE("None", "", &is_not_extinct_none); |
| 1120 |
static const DataReflectionConditions DATA_CUBIC_F[DATA_NUM_CUBIC_F] |
| 1121 |
= { |
| 1122 |
DataReflectionConditions("No condition:196,202,209,216,225" , "", &is_not_extinct_none), |
| 1123 |
DataReflectionConditions("210","h00:h=4n,0k0:k=4n,00l:l=4n", &is_not_extinct_4h00), |
| 1124 |
DataReflectionConditions("203,227","0kl:k+l=4n,h0l:h+l=4n,hk0:h+k=4n,h00:h=4n,0k0:k=4n,00l:l=4n", &is_not_extinct_4h00_40kl), |
| 1125 |
DataReflectionConditions("219,226","hhl:h,l=2n,hkh:h,k=2n,hkk:h,k=2n", &is_not_extinct_2hhl), |
| 1126 |
DataReflectionConditions("228","0kl:k+l=4n,h0l:h+l=4n,hk0:h+k=4n,hhl:h,l=2n,hkh:h,k=2n,hkk:h,k=2n,h00:h=4n,0k0:k=4n,00l:l=4n", &is_not_extinct_40kl_2hhl_4h00), |
| 1127 |
// A, face |
| 1128 |
DataReflectionConditions("203f(x,0,0),203b(1/2,1/2,1/2),203a(0,0,0),210f(x,0,0),210b(1/2,1/2,1/2),210a(0,0,0),227f(x,0,0),227b(1/2,1/2,1/2),227a(0,0,0)" |
| 1129 |
, "hkl:h=2n+1 or h+k+l=4n", &special_reflection_conditions_3h_4phkl), |
| 1130 |
// B, face |
| 1131 |
DataReflectionConditions("203d(5/8,5/8,5/8),203c(1/8,1/8,1/8),210d(5/8,5/8,5/8),210c(1/8,1/8,1/8),227d(5/8,5/8,5/8),227c(1/8,1/8,1/8)" |
| 1132 |
, "hkl:h=2n+1 or h,k,l=4n+2 or h,k,l=4n", &special_reflection_conditions_3h_6ahkl_4ahkl), |
| 1133 |
}; |
| 1134 |
|
| 1135 |
static const DataReflectionConditions DATA_CUBIC_I[DATA_NUM_CUBIC_I] |
| 1136 |
= { |
| 1137 |
DataReflectionConditions("No condition:197,199,204,211,217,229" , "", &is_not_extinct_none), |
| 1138 |
DataReflectionConditions( "206","0kl:k,l=2n,h0l:h,l=2n,hk0:h,k=2n", &is_not_extinct_20kl ), |
| 1139 |
DataReflectionConditions( "214","h00:h=4n,0k0:k=4n,00l:l=4n", &is_not_extinct_4h00 ), |
| 1140 |
DataReflectionConditions( "220,230","hhl:2h+l=4n,hkh:2h+k=4n,hkk:h+2k=4n,h00:h=4n,0k0:k=4n,00l:l=4n", &is_not_extinct_4hhl_4h00 ), |
| 1141 |
//F |
| 1142 |
DataReflectionConditions("220c(x,x,x),230e(x,x,x)" , "hkl:h=2n+1 or k=2n+1 or l=2n+1 or h+k+l=4n", &special_reflection_conditions_oddh_oddk_oddl_4phkl), |
| 1143 |
//I |
| 1144 |
DataReflectionConditions("214b(7/8,7/8,7/8),214a(1/8,1/8,1/8)" , "hkl:h=2n+1 or h,k,l=4n+2 or h,k,l=4n", &special_reflection_conditions_oddh_6ahkl_4ahkl), |
| 1145 |
//J |
| 1146 |
DataReflectionConditions("214d(5/8,0/1/4),214c(1/8,0,1/4)" |
| 1147 |
, "hkl:h,k,l=2n,h+k+l=4n or h=8n,k=8n+4 and h+k+l=4n+2 or h,k=2n+1,l=4n+2 or h,k=8n+1,l=4n or h,k=8n+3,l=4n or h=8n+1,k=8n-1,l=4n or h=8n+3,k=8n-3,l=4n" |
| 1148 |
, &special_reflection_conditions_2ahkl_4phkl_8h_12k_6phkl_oddahk_9ahk_4l_11ahk_4l_9h_7k_4l_11h), |
| 1149 |
//J2 |
| 1150 |
DataReflectionConditions("220b(7/8,0,1/4),220a(3/8,0,1/4)" |
| 1151 |
, "hkl:h,k=2n,h+k+l=4n or h=8n,k=8n+4 and h+k+l=4n+2 or h,k=2n+1,l=4n+2 or h=8n+1,k=8n+3,l=4n or h=8n+7,k=8n+5,l=4n or h=8n+1,k=8n+5,l=4n or h=8n+7,k=8n+3,l=4n" |
| 1152 |
, &special_reflection_conditions_2hk_4phkl_8h_12k_6phkl_oddahk_6l_9h_11k_4l_15h_13k_9h_14k_4l_15h_11k_4l), |
| 1153 |
//K |
| 1154 |
DataReflectionConditions("214f(x,0,1/4)" , "hkl:h=2n+1 or h=4n,hhl:h=2n+1 or h+k+l=4n", &special_reflection_conditions_oddh_4h_oddh_4phkl_hhl), |
| 1155 |
|
| 1156 |
DataReflectionConditions("220d(x,0,1/4),230g(1/8,y,-y+1/4)" , "hkl:h=2n+1 or h=4n", &special_reflection_conditions_oddh_oddk_oddl_4hkl), |
| 1157 |
//L |
| 1158 |
DataReflectionConditions("230f(x,0,1/4)" , "hkl:2h+l=4n or 2k+h=4n or 2l+k=4n o r2l+h=4n or 2h+k=4n or 2k+l=4n" |
| 1159 |
, &special_reflection_conditions_4phl_4pkh_4plk_4plh_4phk_4pkl), |
| 1160 |
//M |
| 1161 |
DataReflectionConditions("230d(3/8,0,1/4),230c(1/8,0,1/4)" , "hkl:h,k=2n,h+k+l=4n or h,k=2n+1,l=4n+2 or h=8n,k=8n+4 and h+k+l=4n+2" |
| 1162 |
, &special_reflection_conditions_2ahk_4phkl_oddahk_6l_8h_12k_6phkl), |
| 1163 |
//N |
| 1164 |
DataReflectionConditions("230b(1/8,1/8,1/8)" , "hkl:h,k=2n+1,l=4n+2 or h,k,l=4n" |
| 1165 |
, &special_reflection_conditions_oddahk_6l_4ahkl), |
| 1166 |
|
| 1167 |
}; |
| 1168 |
static const DataReflectionConditions DATA_CUBIC_P[DATA_NUM_CUBIC_P] |
| 1169 |
= { |
| 1170 |
DataReflectionConditions("No condition:195,200,207,215,221" , "", &is_not_extinct_none), |
| 1171 |
DataReflectionConditions( "198,208","h00:h=2n,0k0:k=2n,00l:l=2n", &is_not_extinct_2h00 ), |
| 1172 |
DataReflectionConditions( "201,224","h00:h=2n,0k0:k=2n,00l:l=2n,0kl:k+l=2n,h0l:h+l=2n,hk0:h+k=2n", &is_not_extinct_2h00_20kl ), |
| 1173 |
DataReflectionConditions( "205","hk0:h=2n,0kl:k=2n,h0l:l=2n,h00:h=2n,0k0:k=2n,00l:l=2n", &is_not_extinct_2hk0_2h00 ), |
| 1174 |
DataReflectionConditions( "205(mirror-reversed)","hk0:k=2n,0kl:l=2n,h0l:h=2n,h00:h=2n,0k0:k=2n,00l:l=2n",&is_not_extinct_2hk0mirror_2h00), |
| 1175 |
DataReflectionConditions( "212,213","h00:h=4n,0k0:k=4n,00l:l=4n", &is_not_extinct_4h00 ), |
| 1176 |
DataReflectionConditions( "218,223","hhl:l=2n,hkh:k=2n,hkk:h=2n,h00:h=2n,0k0:k=2n,00l:l=2n", &is_not_extinct_2hhl_2h00 ), |
| 1177 |
DataReflectionConditions( "222","0kl:k+l=2n,h0l:h+l=2n,hk0:h+k=2n,hhl:l=2n,hkh:k=2n,hkk:h=2n,h00:h=2n,0k0:k=2n,00l:l=2n", &is_not_extinct_2hhl_2h00_20kl ), |
| 1178 |
//F |
| 1179 |
DataReflectionConditions("208j(x,1/2,0),208i(x,0,1/2)" |
| 1180 |
, "hkl:h=2n or k=2n or l=2n,hhl:l=2n,hkh:k=2n,hkk:h=2n", &special_reflection_conditions_2h_2k_2hhl_2hkh_2hkk), |
| 1181 |
DataReflectionConditions("218h(x,0,1/2),218g(x,1/2,0),223j(1/4,y,y+1/2),223h(x,1/2,0),223g(x,0,1/2)" |
| 1182 |
, "hkl:h=2n or k=2n or l=2n", &special_reflection_conditions_2h_2k_2lhkl), |
| 1183 |
//G |
| 1184 |
DataReflectionConditions("208f(1/4,1/2,0),208e(1/4,0,1/2),218d(1/4,0,1/2),218c(1/4,1/2,0),223d(1/4,1/2,0),223c(1/4,0,1/2)" |
| 1185 |
, "hkl:h+k+l=2n or either one of h,k,l is 2n+1,4n and 4n+2", &special_reflection_conditions_2phkl_oddhkl_4hkl_6hkl), |
| 1186 |
//H |
| 1187 |
DataReflectionConditions("212b(5/8,5/8,5/8),212a(1/8,1/8,1/8),213b(7/8,7/8,7/8),213a(3/8,3/8,3/8)" |
| 1188 |
, "hkl:two of h,k,l are odd or either one of h,k,l is 2n+1,k=4n and l=4n+2 or h,k,l=4n+2 or h,k,l=4n", &special_reflection_conditions_22hkl_2oddhkl_4k_6l_6ahkl_4hkl), |
| 1189 |
|
| 1190 |
|
| 1191 |
|
| 1192 |
}; |
| 1193 |
static const DataReflectionConditions DATA_HEXAGONAL[DATA_NUM_HEXAGONAL] |
| 1194 |
= { |
| 1195 |
//Hexagonal :hex |
| 1196 |
DataReflectionConditions("No condition:143,147,149,150,156,157,162,164,168,174,175,177,183,187,189,191" , "", &is_not_extinct_none), |
| 1197 |
DataReflectionConditions( "144,145,151,152,153,154,171,172,180,181","000l:l=3n", &is_not_extinct_tr_3000l ), |
| 1198 |
DataReflectionConditions( "158,165,185,188,193","h-h0l:l=2n,h0-hl:l=2n,0h-hl:l=2n", &is_not_extinct_tr_2hmh0l ), |
| 1199 |
DataReflectionConditions( "159,163,186,190,194","hh-2hl:l=2n,h-2hhl:l=2n,-2hhhl:l=2n", &is_not_extinct_2hhm2hl ), |
| 1200 |
DataReflectionConditions( "169,170,178,179","000l:l=6n", &is_not_extinct_hex_6000l ), |
| 1201 |
DataReflectionConditions( "173,176,182","000l:l=2n", &is_not_extinct_hex_2000l ), |
| 1202 |
DataReflectionConditions( "184,192","hh-2hl:l=2n,h-2hhl:l=2n,-2hhhl:l=2n,h-h0l:l=2n,h0-hl:l=2n,0h-hl:l=2n", &is_not_extinct_hex_2hhm2hl_2hmh0l_2000l ), |
| 1203 |
//D |
| 1204 |
DataReflectionConditions("159b(1/3,2/3,z),163f(1/3,2/3,z),163d(2/3,1/3,1/4),163c(1/3,2/3,1/4),173b(1/3,2/3,z),176f(1/3,2/3,z),176d(2/3,1/3,1/4),176c(1/3,2/3,1/4),182f(1/3,2/3,z),182d(1/3,2/3,3/4),182c(1/3,2/3,1/4),186b(1/3,2/3,z),190f(1/3,2/3,z),190d(2/3,1/3,1/4),190c(1/3,2/3,1/4),194f(1/3,2/3,z),194d(1/3,2/3,3/4),194c(1/3,2/3,1/4)" |
| 1205 |
, "hkil:l=2n or h-k=3n+1 or h-k=3n+2", &special_reflection_conditions_2l_3shk_3s2hk), |
| 1206 |
//E |
| 1207 |
DataReflectionConditions("171b(1/2,1/2,z),172b(1/2,1/2,z),180f(1/2,0,z),180d(1/2,0,1/2),180c(1/2,0,0),181f(1/2,0,z),181d(1/2,0,1/2),181c(1/2,0,0)" |
| 1208 |
, "hkil:h=2n+1 or k=2n+1 or l=3n", &special_reflection_conditions_oddh_oddk_3lhkil) |
| 1209 |
}; |
| 1210 |
static const DataReflectionConditions DATA_TETRAGONAL_P[DATA_NUM_TETRAGONAL_P] |
| 1211 |
= { |
| 1212 |
DataReflectionConditions("No condition:75,81,83,89,99,111,115,123" , "", &is_not_extinct_none), |
| 1213 |
DataReflectionConditions( "76,78,91,95","00l:l=4n", &is_not_extinct_400l ), |
| 1214 |
DataReflectionConditions( "77,84,93","00l:l=2n", &is_not_extinct_200l ), |
| 1215 |
DataReflectionConditions( "86","hk0:h+k=2n,00l:l=2n", &is_not_extinct_2hk0_200l ), |
| 1216 |
DataReflectionConditions( "90,113","h00:h=2n,0k0:k=2n", &is_not_extinct_2h00_20k0 ), |
| 1217 |
DataReflectionConditions( "92,96","00l:l=4n,h00:h=2n,0k0:k=2n", &is_not_extinct_400l_2h00_0k0 ), |
| 1218 |
DataReflectionConditions( "94","h00:h=2n,0k0:k=2n,00l:l=2n", &is_not_extinct_2h00 ), |
| 1219 |
DataReflectionConditions( "100,117,127","h0l:l=2n,0kl:l=2n,h00:h=2n,0k0:k=2n", &is_not_extinct_t_2h0l_2h00 ),//t:Tetragonal |
| 1220 |
DataReflectionConditions( "101,116,132","h0l:l=2n,0kl:l=2n", &is_not_extinct_t_2h0l ), |
| 1221 |
DataReflectionConditions( "102,118,136","h0l:h+l=2n,0kl:k+l=2n,h00:h=2n,0k0:k=2n", &is_not_extinct_t_2ph0l_2h00 ),//p:plush+l=0 |
| 1222 |
DataReflectionConditions( "103,124","h0l:l=2n,0kl:l=2n,hhl:l=2n", &is_not_extinct_t_2h0l_2hhl ), |
| 1223 |
DataReflectionConditions( "105,112,131","hhl:l=2n", &is_not_extinct_t_2hhl ), |
| 1224 |
DataReflectionConditions( "106,135","h0l:h=2n,0kl:k=2n,hhl:l=2n,h00:h=2n,0k0:k=2n", &is_not_extinct_t_2h00_2h0l_2hhl ), |
| 1225 |
DataReflectionConditions( "114","hhl:l=2n,h00:h=2n,0k0:k=2n", &is_not_extinct_t_2h00_2hhl ), |
| 1226 |
DataReflectionConditions( "125","hk0:h+k=2n,h0l:h=2n,0kl:k=2n", &is_not_extinct_t_2phk0_2h0l ), |
| 1227 |
DataReflectionConditions( "126","hk0:h+k=2n,h0l:h+l=2n,0kl:k+l=2n,hhl:l=2n", &is_not_extinct_t_2phk0_2hhl ), |
| 1228 |
DataReflectionConditions( "104,128","h0l:h+l=2n,0kl:k+l=2n,hhl:l=2n,h00:h=2n,0k0:k=2n", &is_not_extinct_t_2ph0l_2hhl_2h00 ), |
| 1229 |
DataReflectionConditions( "85,129","hk0:h+k=2n", &is_not_extinct_t_2phk0 ), |
| 1230 |
DataReflectionConditions( "130","hk0:h+k=2n,h0l:l=2n,0kl:l=2n,hhl:l=2n", &is_not_extinct_t_2phk0_2h0l_2hll ), |
| 1231 |
DataReflectionConditions( "133","hk0:h+k=2n,hhl:l=2n", &is_not_extinct_t_2phk0_2hll ), |
| 1232 |
DataReflectionConditions( "134","hk0:h+k=2n,h0l:h+l=2n,0kl:k+l=2n", &is_not_extinct_t_23phk0 ),//3:hk0,0kl,h0l |
| 1233 |
DataReflectionConditions( "137","hk0:h+k=2n,hhl:l=2n", &is_not_extinct_t_21phk0_2hhl ),//1:hk0,no h0k or 0kl |
| 1234 |
DataReflectionConditions( "138","hk0:h+k=2n,h0l:l=2n,0kl:l=2n", &is_not_extinct_t_21phk0_2h0l ),//if Tetragonal and 2 conditions (h0l,0kl)no 1 or 3 |
| 1235 |
}; |
| 1236 |
static const DataReflectionConditions DATA_TETRAGONAL_I[DATA_NUM_TETRAGONAL_I] |
| 1237 |
= { |
| 1238 |
DataReflectionConditions("No condition:79,82,87,97,107,119,121,139" , "", &is_not_extinct_none), |
| 1239 |
DataReflectionConditions( "80,98","00l:l=4n", &is_not_extinct_400l ), |
| 1240 |
DataReflectionConditions( "88","hk0:h,k=2n,00l:l=4n", &is_not_extinct_t_21hk0_200l ), |
| 1241 |
DataReflectionConditions( "108,120,140","h0l:h,l=2n,0kl:k,l=2n", &is_not_extinct_t_2ah0l ),//a:and h,l=2n |
| 1242 |
DataReflectionConditions( "109,122","hhl:2h+l=4n,h-h0:h=2n", &is_not_extinct_t_4phhl_2hmh0 ),//mh:h-h0 |
| 1243 |
DataReflectionConditions( "110","hhl:2h+l=4n,h-h0:h=2n,h0l:h,l=2n,0kl:k,l=2n", &is_not_extinct_t_4phhl_2hmh0_2ah0l ), |
| 1244 |
DataReflectionConditions( "141","hk0:h,k=2n,hhl:2h+l=4n", &is_not_extinct_t_2hk0_4phhl ), |
| 1245 |
DataReflectionConditions( "142","hk0:h,k=2n,hhl:2h+l=4n,h0l:h,l=2n,0kl:k,l=2n", &is_not_extinct_t_23ahk0_4phhl ), |
| 1246 |
|
| 1247 |
//A,body |
| 1248 |
DataReflectionConditions("80a(0,0,z),88e(0,0,z),88b(0,0,1/2),88a(0,0,0),98c(0,0,z),98b(0,0,1/2),98a(0,0,0),109a(0,0,z),122c(0,0,z),122b(0,0,1/2),122a(0,0,0),141g(x,x,0),141e(0,0,z),141b(0,0,1/2),141a(0,0,0),142f(x,x,1/4)" |
| 1249 |
, "hkl:h=2n+1 or 2h+l=4n", &special_reflection_conditions_3l_4p2hl), |
| 1250 |
//B,body |
| 1251 |
DataReflectionConditions("88d(0,1/4,5/8),88c(0,1/4,1/8),141d(0,1/4,5/8),141c(0,1/4,1/8)" |
| 1252 |
, "hkl:l=2n+1 or h,k=2n,h+k+l=4n", &special_reflection_conditions_3l_2ahk_4phkl), |
| 1253 |
//C |
| 1254 |
DataReflectionConditions("141f(x,1/4,1/8),142e(1/4,y,1/8)" |
| 1255 |
, "hkl:l=2n+1 or h=2n", &special_reflection_conditions_3l_2h), |
| 1256 |
}; |
| 1257 |
static const DataReflectionConditions DATA_RHOMBOHEDRAL_RHOM_AXIS[DATA_NUM_RHOMBOHEDRAL_RHOM_AXIS] |
| 1258 |
= { |
| 1259 |
DataReflectionConditions("No condition:146,148,155,160,166" , "", &is_not_extinct_none), |
| 1260 |
DataReflectionConditions("161,167","hhl:l=2n,hkh:k=2n,hkk:h=2n", &is_not_extinct_rhom_2hhl ), |
| 1261 |
}; |
| 1262 |
|
| 1263 |
static const DataReflectionConditions DATA_RHOMBOHEDRAL_HEX_AXIS[DATA_NUM_RHOMBOHEDRAL_HEX_AXIS] |
| 1264 |
= { |
| 1265 |
DataReflectionConditions("No condition:146,148,155,160,166" , "", &is_not_extinct_none), |
| 1266 |
DataReflectionConditions("161,167", "h-h0l:l=2n,h0-hl:l=2n,0h-hl:l=2n", &is_not_extinct_rhom_hex_2hmh0l), |
| 1267 |
}; |
| 1268 |
|
| 1269 |
//Monoclinic P |
| 1270 |
static const DataReflectionConditions DATA_MONOCLINIC_P_A_AXIS[DATA_NUM_MONOCLINIC_P_A_AXIS] |
| 1271 |
= { |
| 1272 |
DataReflectionConditions("No condition:3,6,10" , "", &is_not_extinct_none), |
| 1273 |
DataReflectionConditions( "4,11","h00:h=2n", &is_not_extinct_mono_2h00 ), |
| 1274 |
DataReflectionConditions( "7,13","0kl:k=2n", &is_not_extinct_mono_20kl ), |
| 1275 |
DataReflectionConditions( "7(cell choice 2),13(cell choice 2)","0kl:k+l=2n", &is_not_extinct_mono_2p0kl ), |
| 1276 |
DataReflectionConditions( "7(cell choice 3),13(cell choice 3)","0kl:l=2n", &is_not_extinct_mono_2l0kl ),//l in 2l:l=2n |
| 1277 |
DataReflectionConditions( "14","0kl:k=2n,h00:h=2n", &is_not_extinct_mono_20kl_2h00 ), |
| 1278 |
DataReflectionConditions( "14(cell choice 2)","0kl:k+l=2n,0k0:k=2n", &is_not_extinct_mono_2p0kl_20k0 ), |
| 1279 |
DataReflectionConditions( "14(cell choice 3)","0kl:l=2n,h00:h=2n", &is_not_extinct_mono_2d0kl_2h00 ) |
| 1280 |
}; |
| 1281 |
|
| 1282 |
|
| 1283 |
static const DataReflectionConditions DATA_MONOCLINIC_P_B_AXIS[DATA_NUM_MONOCLINIC_P_B_AXIS] |
| 1284 |
={ |
| 1285 |
DataReflectionConditions("No condition:3,6,10" , "", &is_not_extinct_none), |
| 1286 |
DataReflectionConditions( "4,11","0k0:k=2n", &is_not_extinct_mono_20k0 ), |
| 1287 |
DataReflectionConditions( "7,13","h0l:l=2n", &is_not_extinct_mono_2h0l ), |
| 1288 |
DataReflectionConditions( "7(cell choice 2),13(cell choice 2)","h0l:h+l=2n", &is_not_extinct_mono_2ph0l ), |
| 1289 |
DataReflectionConditions( "7(cell choice 3),13(cell choice 3)","h0l:h=2n", &is_not_extinct_mono_2hh0l ), |
| 1290 |
DataReflectionConditions( "14","h0l:l=2n,0k0:h=2n", &is_not_extinct_mono_2h0l_20k0 ), |
| 1291 |
DataReflectionConditions( "14(cell choice 2)","h0l:h+l=2n,0k0:k=2n", &is_not_extinct_mono_2ph0l_20k0 ), |
| 1292 |
DataReflectionConditions( "14(cell choice 3)","h0l:h=2n,0k0:l=2n", &is_not_extinct_mono_2dh0l_20k0 ) |
| 1293 |
}; |
| 1294 |
|
| 1295 |
static const DataReflectionConditions DATA_MONOCLINIC_P_C_AXIS[DATA_NUM_MONOCLINIC_P_C_AXIS] |
| 1296 |
={ |
| 1297 |
DataReflectionConditions("No condition:3,6,10" , "", &is_not_extinct_none), |
| 1298 |
DataReflectionConditions( "4,11","00l:l=2n", &is_not_extinct_mono_200l ), |
| 1299 |
DataReflectionConditions( "7,13","hk0:h=2n", &is_not_extinct_mono_2hk0 ), |
| 1300 |
DataReflectionConditions( "7(cell choice 2),13(cell choice 2)","hk0:h+k=2n", &is_not_extinct_mono_2phk0 ), |
| 1301 |
DataReflectionConditions( "7(cell choice 3),13(cell choice 3)","hk0:k=2n", &is_not_extinct_mono_2khk0 ), |
| 1302 |
DataReflectionConditions( "14","hk0:h=2n,00l:l=2n", &is_not_extinct_mono_2hk0_200l ), |
| 1303 |
DataReflectionConditions( "14(cell choice 2)","hk0:h+k=2n,00l:k=2n", &is_not_extinct_mono_2phk0_200l ), |
| 1304 |
DataReflectionConditions( "14(cell choice 3)","hk0:k=2n,00l:l=2n", &is_not_extinct_mono_2dhk0_200l ) |
| 1305 |
}; |
| 1306 |
|
| 1307 |
static const DataReflectionConditions DATA_MONOCLINIC_B_A_AXIS[DATA_NUM_MONOCLINIC_B_A_AXIS] |
| 1308 |
= { |
| 1309 |
DataReflectionConditions("No condition:5,8,12" , "", &is_not_extinct_none), |
| 1310 |
DataReflectionConditions( "9,15", "0kl:k=2n", &is_not_extinct_mono_20kl ) |
| 1311 |
}; |
| 1312 |
|
| 1313 |
static const DataReflectionConditions DATA_MONOCLINIC_B_B_AXIS[DATA_NUM_MONOCLINIC_B_B_AXIS] |
| 1314 |
= { |
| 1315 |
DataReflectionConditions("No condition:5,8,12" , "", &is_not_extinct_none), |
| 1316 |
DataReflectionConditions( "9,15", "h0l:l=2n", &is_not_extinct_mono_2h0l ) |
| 1317 |
}; |
| 1318 |
|
| 1319 |
static const DataReflectionConditions DATA_MONOCLINIC_B_C_AXIS[DATA_NUM_MONOCLINIC_B_C_AXIS] |
| 1320 |
= { |
| 1321 |
DataReflectionConditions("No condition:5,8,12" , "", &is_not_extinct_none), |
| 1322 |
DataReflectionConditions( "9,15", "hk0:h=2n", &is_not_extinct_mono_2hk0 ) |
| 1323 |
}; |
| 1324 |
static const DataReflectionConditions DATA_ORTHORHOMBIC_P[DATA_NUM_ORTHORHOMBIC_P] |
| 1325 |
= { |
| 1326 |
DataReflectionConditions("No condition:16,25,47" , "", &is_not_extinct_none), |
| 1327 |
DataReflectionConditions("19","h00:h=2n,0k0:k=2n,00l:l=2n", &is_not_extinct_orth_2dh00), |
| 1328 |
DataReflectionConditions("48","hk0:h+k=2n,h0l:h+l=2n,0kl:k+l=2n", &is_not_extinct_orth_23phk0, DataReflectionConditions::AXIS_ABC), |
| 1329 |
DataReflectionConditions("61","0kl:k=2n,h0l:l=2n,hk0:h=2n", &is_not_extinct_orth_2d30kl),//3:0kl,h0l,hk0 |
| 1330 |
DataReflectionConditions("61(mirror-reversed)","0kl:l=2n,h0l:h=2n,hk0:k=2n", &is_not_extinct_orth_2d30kl, DataReflectionConditions::AXIS_ACB),//3:0kl,h0l,hk0 |
| 1331 |
|
| 1332 |
DataReflectionConditions("17","00l:l=2n", &standard_function_for_abc_200l, DataReflectionConditions::AXIS_ABC), |
| 1333 |
DataReflectionConditions("17(cab)","h00:h=2n", &standard_function_for_abc_200l, DataReflectionConditions::AXIS_CAB), |
| 1334 |
DataReflectionConditions("17(bca)","0k0:k=2n", &standard_function_for_abc_200l, DataReflectionConditions::AXIS_BCA), |
| 1335 |
|
| 1336 |
DataReflectionConditions("18","h00:h=2n,0k0:k=2n", &standard_function_for_abc_22h00, DataReflectionConditions::AXIS_ABC),//2:h00,0k0 |
| 1337 |
DataReflectionConditions("18(cab)","0k0:k=2n,00l:l=2n", &standard_function_for_abc_22h00, DataReflectionConditions::AXIS_CBA), |
| 1338 |
DataReflectionConditions("18(bca)","00l:l=2n,h00:h=2n", &standard_function_for_abc_22h00, DataReflectionConditions::AXIS_BCA), |
| 1339 |
|
| 1340 |
DataReflectionConditions("27,49","0kl:l=2n,h0l:l=2n", &standard_function_for_abc_220kl, DataReflectionConditions::AXIS_ABC),//2:0kl,h0l |
| 1341 |
DataReflectionConditions("27(cab),49(cab)","h0l:h=2n,hk0:h=2n", &standard_function_for_abc_220kl, DataReflectionConditions::AXIS_CBA), |
| 1342 |
DataReflectionConditions("27(bca),49(bca)","hk0:k=2n,0kl:k=2n", &standard_function_for_abc_220kl, DataReflectionConditions::AXIS_BCA), |
| 1343 |
|
| 1344 |
DataReflectionConditions("32,55","0kl:k=2n,h0l:h=2n", &standard_function_for_abc_2d20kl, DataReflectionConditions::AXIS_ABC), |
| 1345 |
DataReflectionConditions("32(cab),55(cab)","h0l:l=2n,hk0:k=2n", &standard_function_for_abc_2d20kl, DataReflectionConditions::AXIS_CBA), |
| 1346 |
DataReflectionConditions("32(bca),55(bca)","hk0:h=2n,0kl:l=2n", &standard_function_for_abc_2d20kl, DataReflectionConditions::AXIS_BCA), |
| 1347 |
|
| 1348 |
DataReflectionConditions("34,58","0kl:k+l=2n,h0l:h+l=2n", &standard_function_for_abc_2p20kl, DataReflectionConditions::AXIS_ABC), |
| 1349 |
DataReflectionConditions("34(cab),58(cab)","h0l:h+l=2n,hk0:h+k=2n", &standard_function_for_abc_2p20kl, DataReflectionConditions::AXIS_ABC), |
| 1350 |
DataReflectionConditions("34(bca),58(bca)","hk0:k+h=2n,0kl:k+l=2n", &standard_function_for_abc_2p20kl, DataReflectionConditions::AXIS_ABC), |
| 1351 |
|
| 1352 |
DataReflectionConditions("50","0kl:k=2n,h0l:h=2n,hk0:h+k=2n", &standard_function_for_abc_220kl_2phk0, DataReflectionConditions::AXIS_ABC), |
| 1353 |
DataReflectionConditions("50(cab)","h0l:l=2n,hk0:k=2n,0kl:k+l=2n", &standard_function_for_abc_220kl_2phk0, DataReflectionConditions::AXIS_CBA), |
| 1354 |
DataReflectionConditions("50(bca)","hk0:h=2n,0kl:l=2n,h0l:h+l=2n", &standard_function_for_abc_220kl_2phk0, DataReflectionConditions::AXIS_BAC), |
| 1355 |
|
| 1356 |
|
| 1357 |
DataReflectionConditions("56","0kl:l=2n,h0l:l=2n,hk0:h+k=2n", &standard_function_for_abc, DataReflectionConditions::AXIS_ABC), |
| 1358 |
DataReflectionConditions("56(cab)","h0l:h=2n,hk0:h=2n,0kl:k+l=2n", &standard_function_for_abc, DataReflectionConditions::AXIS_CAB), |
| 1359 |
DataReflectionConditions("56(bca)","hk0:k=2n,0kl:k=2n,h0l:h+l=2n", &standard_function_for_abc, DataReflectionConditions::AXIS_BCA), |
| 1360 |
|
| 1361 |
// case of (abc), the string conditions are different, the function are the same |
| 1362 |
DataReflectionConditions("26,28(-cba),51(bca)", "h0l:l=2n", &standard_function2_for_abc, DataReflectionConditions::AXIS_ABC), |
| 1363 |
DataReflectionConditions("26(cab),28(a-cb),51", "hk0:h=2n", &standard_function2_for_abc, DataReflectionConditions::AXIS_CAB), |
| 1364 |
DataReflectionConditions("26(bca),28(ba-c),51(cab)", "0kl:k=2n", &standard_function2_for_abc, DataReflectionConditions::AXIS_BCA), |
| 1365 |
DataReflectionConditions("26(ba-c),28(bca),51(-cba)", "0kl:l=2n", &standard_function2_for_abc, DataReflectionConditions::AXIS_BAC), |
| 1366 |
DataReflectionConditions("26(-cba),28,51(a-cb)", "h0l:h=2n", &standard_function2_for_abc, DataReflectionConditions::AXIS_CBA), |
| 1367 |
DataReflectionConditions("26(a-cb),28(cab),51(ba-c)", "hk0:k=2n", &standard_function2_for_abc, DataReflectionConditions::AXIS_ACB), |
| 1368 |
|
| 1369 |
DataReflectionConditions("29,57" , "0kl:l=2n,h0l:h=2n", &standard_function2_for_abc_22d0kl, DataReflectionConditions::AXIS_ABC), |
| 1370 |
DataReflectionConditions("29(cab),57(cab)" , "h0l:h=2n,hk0:k=2n", &standard_function2_for_abc_22d0kl, DataReflectionConditions::AXIS_CAB), |
| 1371 |
DataReflectionConditions("29(bca),57(bca)" , "h0l:k=2n,0kl:l=2n", &standard_function2_for_abc_22d0kl, DataReflectionConditions::AXIS_BCA), |
| 1372 |
DataReflectionConditions("29(ba-c),57(ba-c)" , "h0l:l=2n,0kl:k=2n", &standard_function2_for_abc_22d0kl, DataReflectionConditions::AXIS_BAC), |
| 1373 |
DataReflectionConditions("29(-cba),57(-cba)" , "hk0:h=2n,h0l:l=2n", &standard_function2_for_abc_22d0kl, DataReflectionConditions::AXIS_CBA), |
| 1374 |
DataReflectionConditions("29(a-cb),57(a-cb)" , "0kl:k=2n,hk0:h=2n", &standard_function2_for_abc_22d0kl, DataReflectionConditions::AXIS_ACB), |
| 1375 |
|
| 1376 |
DataReflectionConditions("30,53" , "0kl:k+l=2n,h0l:l=2n", &standard_function2_for_abc_2p0kl_2h0l, DataReflectionConditions::AXIS_ABC), |
| 1377 |
DataReflectionConditions("30(cab),53(cab)" , "h0l:h+l=2n,hk0:h=2n", &standard_function2_for_abc_2p0kl_2h0l, DataReflectionConditions::AXIS_CAB), |
| 1378 |
DataReflectionConditions("30(bca),53(bca)" , "hk0:h+k=2n,0kl:k=2n", &standard_function2_for_abc_2p0kl_2h0l, DataReflectionConditions::AXIS_BCA), |
| 1379 |
DataReflectionConditions("30(ba-c),53(ba-c)" , "h0l:h+l=2n,0kl:l=2n", &standard_function2_for_abc_2p0kl_2h0l, DataReflectionConditions::AXIS_BAC), |
| 1380 |
DataReflectionConditions("30(-cba),53(-cba)" , "hk0:h+k=2n,h0l:h=2n", &standard_function2_for_abc_2p0kl_2h0l, DataReflectionConditions::AXIS_CBA), |
| 1381 |
DataReflectionConditions("30(a-cb),53(a-cb)" , "0kl:k+l=2n,hk0:k=2n", &standard_function2_for_abc_2p0kl_2h0l, DataReflectionConditions::AXIS_ACB), |
| 1382 |
|
| 1383 |
DataReflectionConditions("31,59(bca)" , "h0l:h+l=2n", &standard_function2_for_abc_2ph0l, DataReflectionConditions::AXIS_ABC), |
| 1384 |
DataReflectionConditions("31(cab),59" , "hk0:h+k=2n", &standard_function2_for_abc_2ph0l, DataReflectionConditions::AXIS_CAB), |
| 1385 |
DataReflectionConditions("31(bca),59(cab)", "0kl:k+l=2n", &standard_function2_for_abc_2ph0l, DataReflectionConditions::AXIS_BCA), |
| 1386 |
|
| 1387 |
DataReflectionConditions("33,62" , "0kl:k+l=2n,h0l:h=2n", &standard_function2_for_abc_2p0kl_2dh0l, DataReflectionConditions::AXIS_ABC), |
| 1388 |
DataReflectionConditions("33(cab),62(cab)" , "h0l:h+l=2n,hk0:k=2n", &standard_function2_for_abc_2p0kl_2dh0l, DataReflectionConditions::AXIS_CAB), |
| 1389 |
DataReflectionConditions("33(bca),62(bca)" , "hk0:h+k=2n,0kl:l=2n", &standard_function2_for_abc_2p0kl_2dh0l, DataReflectionConditions::AXIS_BCA), |
| 1390 |
DataReflectionConditions("33(ba-c),62(ba-c)" , "h0l:h+l=2n,0kl:k=2n", &standard_function2_for_abc_2p0kl_2dh0l, DataReflectionConditions::AXIS_BAC), |
| 1391 |
DataReflectionConditions("33(-cba),62(-cba)" , "hk0:h+k=2n,h0l:l=2n", &standard_function2_for_abc_2p0kl_2dh0l, DataReflectionConditions::AXIS_CBA), |
| 1392 |
DataReflectionConditions("33(a-cb),62(a-cb)" , "0kl:k+l=2n,hk0:h=2n", &standard_function2_for_abc_2p0kl_2dh0l, DataReflectionConditions::AXIS_ACB), |
| 1393 |
|
| 1394 |
DataReflectionConditions("52" , "0kl:k+l=2n,h0l:h+l=2n,hk0:h=2n", &standard_function2_for_abc_22p0kl_2hk0, DataReflectionConditions::AXIS_ABC), |
| 1395 |
DataReflectionConditions("52(cab)" , "h0l:h+l=2n,hk0:h+k=2n,0kl:k=2n", &standard_function2_for_abc_22p0kl_2hk0, DataReflectionConditions::AXIS_CAB), |
| 1396 |
DataReflectionConditions("52(bca)" , "hk0:h+k=2n,0kl:k+l=2n,h0l:l=2n", &standard_function2_for_abc_22p0kl_2hk0, DataReflectionConditions::AXIS_BCA), |
| 1397 |
DataReflectionConditions("52(ba-c)" , "h0l:h+l=2n,0kl:k+l=2n,hk0:k=2n", &standard_function2_for_abc_22p0kl_2hk0, DataReflectionConditions::AXIS_BAC), |
| 1398 |
DataReflectionConditions("52(-cba)" , "hk0:h+k=2n,h0l:h+l=2n,0kl:l=2n", &standard_function2_for_abc_22p0kl_2hk0, DataReflectionConditions::AXIS_CBA), |
| 1399 |
DataReflectionConditions("52(a-cb)" , "0kl:k+l=2n,hk0:h+k=2n,h0l:h=2n", &standard_function2_for_abc_22p0kl_2hk0, DataReflectionConditions::AXIS_ACB), |
| 1400 |
|
| 1401 |
DataReflectionConditions("54" , "0kl:l=2n,h0l:l=2n,hk0:h=2n", &standard_function2_for_abc_230kl, DataReflectionConditions::AXIS_ABC), |
| 1402 |
DataReflectionConditions("54(cab)" , "h0l:h=2n,hk0:h=2n,0kl:k=2n", &standard_function2_for_abc_230kl, DataReflectionConditions::AXIS_CAB), |
| 1403 |
DataReflectionConditions("54(bca)" , "hk0:k=2n,0kl:k=2n,h0l:l=2n", &standard_function2_for_abc_230kl, DataReflectionConditions::AXIS_BCA), |
| 1404 |
DataReflectionConditions("54(ba-c)" , "h0l:l=2n,0kl:l=2n,hk0:k=2n", &standard_function2_for_abc_230kl, DataReflectionConditions::AXIS_BAC), |
| 1405 |
DataReflectionConditions("54(-cba)" , "hk0:h=2n,h0l:h=2n,0kl:l=2n", &standard_function2_for_abc_230kl, DataReflectionConditions::AXIS_CBA), |
| 1406 |
DataReflectionConditions("54(a-cb)" , "0kl:k=2n,hk0:k=2n,h0l:h=2n", &standard_function2_for_abc_230kl, DataReflectionConditions::AXIS_ACB), |
| 1407 |
|
| 1408 |
DataReflectionConditions("60" , "0kl:k=2n,h0l:l=2n,hk0:h+k=2n", &standard_function2_for_abc_220kl_2phk0, DataReflectionConditions::AXIS_ABC), |
| 1409 |
DataReflectionConditions("60(cab)" , "h0l:l=2n,hk0:h=2n,0kl:k+l=2n", &standard_function2_for_abc_220kl_2phk0, DataReflectionConditions::AXIS_CAB), |
| 1410 |
DataReflectionConditions("60(bca)" , "hk0:h=2n,0kl:k=2n,h0l:h+l=2n", &standard_function2_for_abc_220kl_2phk0, DataReflectionConditions::AXIS_BCA), |
| 1411 |
DataReflectionConditions("60(ba-c)" , "h0l:h=2n,0kl:l=2n,hk0:h+k=2n", &standard_function2_for_abc_220kl_2phk0, DataReflectionConditions::AXIS_BAC), |
| 1412 |
DataReflectionConditions("60(-cba)" , "hk0:k=2n,h0l:h=2n,0kl:k+l=2n", &standard_function2_for_abc_220kl_2phk0, DataReflectionConditions::AXIS_CBA), |
| 1413 |
DataReflectionConditions("60(a-cb)" , "0kl:l=2n,hk0:k=2n,h0l:h+l=2n", &standard_function2_for_abc_220kl_2phk0, DataReflectionConditions::AXIS_ACB), |
| 1414 |
}; |
| 1415 |
static const DataReflectionConditions DATA_ORTHORHOMBIC_C[DATA_NUM_ORTHORHOMBIC_C] |
| 1416 |
= { |
| 1417 |
DataReflectionConditions("No condition:21,35,38,65" , "", &is_not_extinct_none), |
| 1418 |
DataReflectionConditions("20" , "00l:l=2n", &standard_function_for_abc_200l), |
| 1419 |
DataReflectionConditions("36,63" , "h0l:l=2n", &standard_function2_for_abc), |
| 1420 |
DataReflectionConditions("40(bca)" , "0kl:l=2n", &standard_function_for_abc_210kl), |
| 1421 |
DataReflectionConditions("37,66" , "0kl:l=2n,h0l:l=2n", &standard_function_for_abc_220kl), |
| 1422 |
DataReflectionConditions("39(bca),67" , "hk0:h,k=2n", &standard_function_for_abc_2ahk0), |
| 1423 |
DataReflectionConditions("41(bca),64(ba-c)" , "hk0:h,k=2n,0kl:l=2n", &standard_function_for_abc_2ahk0_20kl, DataReflectionConditions::AXIS_BAC), |
| 1424 |
DataReflectionConditions("41(-cba),64" , "hk0:h,k=2n,h0l:l=2n", &standard_function_for_abc_2ahk0_2h0l, DataReflectionConditions::AXIS_ABC), |
| 1425 |
DataReflectionConditions("68" , "0kl:l=2n,h0l:l=2n,hk0:h,k=2n", &standard_function_for_abc_220kl_2ahk0), |
| 1426 |
|
| 1427 |
}; |
| 1428 |
static const DataReflectionConditions DATA_ORTHORHOMBIC_F[DATA_NUM_ORTHORHOMBIC_F] |
| 1429 |
= { |
| 1430 |
DataReflectionConditions("No condition:22,42,69" , "", &is_not_extinct_none), |
| 1431 |
DataReflectionConditions("43" , "0kl:k+l=4n,h0l:h+l=4n", &standard_function_for_abc_42p0kl, DataReflectionConditions::AXIS_ABC), |
| 1432 |
DataReflectionConditions("43(cab)" , "h0l:h+l=4n,hk0:h+k=4n", &standard_function_for_abc_42p0kl, DataReflectionConditions::AXIS_CAB), |
| 1433 |
DataReflectionConditions("43(bca)" , "hk0:h+k=4n,0kl:k+l=4n", &standard_function_for_abc_42p0kl, DataReflectionConditions::AXIS_BCA), |
| 1434 |
|
| 1435 |
DataReflectionConditions("70" , "0kl:k+l=4n,h0l:h+l=4n,hk0:h+k=4n", &standard_function_for_abc_43p0kl), |
| 1436 |
|
| 1437 |
// A |
| 1438 |
DataReflectionConditions("43a(0,0,z),70g(0,0,z),70f(0,y,0),70e(x,0,0),70b(0,0,1/2),70a(0,0,0)" , "hkl:h=2n+1 or h+k+l=4n", &special_reflection_conditions_3h_4phkl), |
| 1439 |
|
| 1440 |
// B |
| 1441 |
DataReflectionConditions("70d(5/8,5/8,5/8),70c(1/8,1/8,1/8)" , "hkl:h=2n+1 or h,k,l=4n+2 or h,k,l=4n", &special_reflection_conditions_3h_6ahkl_4ahkl), |
| 1442 |
}; |
| 1443 |
|
| 1444 |
static const DataReflectionConditions DATA_ORTHORHOMBIC_I[DATA_NUM_ORTHORHOMBIC_I] |
| 1445 |
= { |
| 1446 |
DataReflectionConditions("No condition:23,24,44,71" , "", &is_not_extinct_none), |
| 1447 |
DataReflectionConditions("45,72" , "0kl:k,l=2n,h0l:h,l=2n", &standard_function_for_abc_2a0kl, DataReflectionConditions::AXIS_ABC), |
| 1448 |
DataReflectionConditions("45(cab),72(cab)" , "h0l:h,l=2n,hk0:h,k=2n", &standard_function_for_abc_2a0kl, DataReflectionConditions::AXIS_CAB), |
| 1449 |
DataReflectionConditions("45(bca),72(bca)" , "hk0:h,k=2n,0kl:k,l=2n", &standard_function_for_abc_2a0kl, DataReflectionConditions::AXIS_BCA), |
| 1450 |
|
| 1451 |
DataReflectionConditions("46,74" , "h0l:h,l=2n", &standard_function_for_abc_2ah0l, DataReflectionConditions::AXIS_ABC), |
| 1452 |
DataReflectionConditions("46(cab),74(cab)" , "hk0:h,k=2n", &standard_function_for_abc_2ah0l, DataReflectionConditions::AXIS_CAB), |
| 1453 |
DataReflectionConditions("46(bca),74(bca)" , "0kl:k,l=2n", &standard_function_for_abc_2ah0l, DataReflectionConditions::AXIS_BCA), |
| 1454 |
|
| 1455 |
DataReflectionConditions("73" , "0kl:k,l=2n,h0l:h,l=2n,hk0:h,k=2n", &standard_function_for_abc_23a0kl), |
| 1456 |
|
| 1457 |
}; |
| 1458 |
static const DataReflectionConditions DATA_TRICLINIC[DATA_NUM_TRICLINIC] |
| 1459 |
= { |
| 1460 |
DataReflectionConditions("No condition:1,2" , "", &is_not_extinct_none), |
| 1461 |
}; |
| 1462 |
|
| 1463 |
// if( irc_type < 0 ){ return DATA_NONE; } |
| 1464 |
|
| 1465 |
if( brav_type.enumBravaisType() == Cubic_F ) |
| 1466 |
{ |
| 1467 |
return DATA_CUBIC_F[(size_t) irc_type]; |
| 1468 |
} |
| 1469 |
if( brav_type.enumBravaisType() == Cubic_I ) |
| 1470 |
{ |
| 1471 |
return DATA_CUBIC_I[(size_t) irc_type]; |
| 1472 |
} |
| 1473 |
if ( brav_type.enumBravaisType() == Cubic_P ) |
| 1474 |
{ |
| 1475 |
return DATA_CUBIC_P[(size_t) irc_type]; |
| 1476 |
} |
| 1477 |
if ( brav_type.enumBravaisType() == Hexagonal ) |
| 1478 |
{ |
| 1479 |
return DATA_HEXAGONAL[(size_t) irc_type]; |
| 1480 |
} |
| 1481 |
if ( brav_type.enumBravaisType() == Tetragonal_P ) |
| 1482 |
{ |
| 1483 |
return DATA_TETRAGONAL_P[(size_t) irc_type]; |
| 1484 |
} |
| 1485 |
if ( brav_type.enumBravaisType() == Tetragonal_I ) |
| 1486 |
{ |
| 1487 |
return DATA_TETRAGONAL_I[(size_t) irc_type]; |
| 1488 |
} |
| 1489 |
if ( brav_type.enumBravaisType() == Rhombohedral ) |
| 1490 |
{ |
| 1491 |
if( brav_type.enumRHaxis() == Rho_Axis ) |
| 1492 |
{ |
| 1493 |
return DATA_RHOMBOHEDRAL_RHOM_AXIS[(size_t) irc_type]; |
| 1494 |
} |
| 1495 |
if( brav_type.enumRHaxis() == Hex_Axis ) |
| 1496 |
{ |
| 1497 |
return DATA_RHOMBOHEDRAL_HEX_AXIS[(size_t) irc_type]; |
| 1498 |
} |
| 1499 |
} |
| 1500 |
if ( brav_type.enumBravaisType() == Orthorhombic_P ) |
| 1501 |
{ |
| 1502 |
return DATA_ORTHORHOMBIC_P[(size_t) irc_type]; |
| 1503 |
} |
| 1504 |
if ( brav_type.enumBravaisType() == Orthorhombic_C ) |
| 1505 |
{ |
| 1506 |
return DATA_ORTHORHOMBIC_C[(size_t) irc_type]; |
| 1507 |
} |
| 1508 |
if ( brav_type.enumBravaisType() == Orthorhombic_F ) |
| 1509 |
{ |
| 1510 |
return DATA_ORTHORHOMBIC_F[(size_t) irc_type]; |
| 1511 |
} |
| 1512 |
if ( brav_type.enumBravaisType() == Orthorhombic_I ) |
| 1513 |
{ |
| 1514 |
return DATA_ORTHORHOMBIC_I[(size_t) irc_type]; |
| 1515 |
} |
| 1516 |
if ( brav_type.enumBravaisType() == Monoclinic_P ) |
| 1517 |
{ |
| 1518 |
if( brav_type.enumABCaxis() == A_Axis ) |
| 1519 |
{ |
| 1520 |
return DATA_MONOCLINIC_P_A_AXIS[(size_t) irc_type]; |
| 1521 |
} |
| 1522 |
if( brav_type.enumABCaxis() == B_Axis ) |
| 1523 |
{ |
| 1524 |
return DATA_MONOCLINIC_P_B_AXIS[(size_t) irc_type]; |
| 1525 |
} |
| 1526 |
if( brav_type.enumABCaxis() == C_Axis ) |
| 1527 |
{ |
| 1528 |
return DATA_MONOCLINIC_P_C_AXIS[(size_t) irc_type]; |
| 1529 |
} |
| 1530 |
} |
| 1531 |
if ( brav_type.enumBravaisType() == Monoclinic_B ) |
| 1532 |
{ |
| 1533 |
if( brav_type.enumABCaxis() == A_Axis ) |
| 1534 |
{ |
| 1535 |
return DATA_MONOCLINIC_B_A_AXIS[(size_t) irc_type]; |
| 1536 |
} |
| 1537 |
if( brav_type.enumABCaxis() == B_Axis ) |
| 1538 |
{ |
| 1539 |
return DATA_MONOCLINIC_B_B_AXIS[(size_t) irc_type]; |
| 1540 |
} |
| 1541 |
if( brav_type.enumABCaxis() == C_Axis ) |
| 1542 |
{ |
| 1543 |
return DATA_MONOCLINIC_B_C_AXIS[(size_t) irc_type]; |
| 1544 |
} |
| 1545 |
} |
| 1546 |
if ( brav_type.enumBravaisType() == Triclinic ) |
| 1547 |
{ |
| 1548 |
return DATA_TRICLINIC[(size_t) irc_type]; |
| 1549 |
} |
| 1550 |
|
| 1551 |
assert( false ); |
| 1552 |
return DATA_TRICLINIC[0]; |
| 1553 |
} |
| 1554 |
|
| 1555 |
string DataReflectionConditions::putShortStringType() const |
| 1556 |
{ |
| 1557 |
string ans; |
| 1558 |
istringstream iss(type); |
| 1559 |
ZErrorMessage zerr = getdelim(iss, ans, "("); |
| 1560 |
if( zerr.putErrorType() == ZErrorDelimiterNotFound || isalpha(*(ans.rbegin()) ) ) return ans; |
| 1561 |
return type; |
| 1562 |
} |