| 1 |
rtomiyasu |
3 |
/* |
| 2 |
|
|
* The MIT License |
| 3 |
|
|
|
| 4 |
|
|
Conograph (powder auto-indexing program) |
| 5 |
|
|
|
| 6 |
|
|
Copyright (c) <2012> <Ryoko Oishi-Tomiyasu, KEK> |
| 7 |
|
|
|
| 8 |
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy |
| 9 |
|
|
of this software and associated documentation files (the "Software"), to deal |
| 10 |
|
|
in the Software without restriction, including without limitation the rights |
| 11 |
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 12 |
|
|
copies of the Software, and to permit persons to whom the Software is |
| 13 |
|
|
furnished to do so, subject to the following conditions: |
| 14 |
|
|
|
| 15 |
|
|
The above copyright notice and this permission notice shall be included in |
| 16 |
|
|
all copies or substantial portions of the Software. |
| 17 |
|
|
|
| 18 |
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 19 |
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 20 |
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 21 |
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 22 |
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 23 |
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 24 |
|
|
THE SOFTWARE. |
| 25 |
|
|
* |
| 26 |
|
|
*/ |
| 27 |
|
|
#ifndef SYMMAT_H_ |
| 28 |
|
|
#define SYMMAT_H_ |
| 29 |
|
|
|
| 30 |
rtomiyasu |
25 |
#include <assert.h> |
| 31 |
|
|
#include "../utility_data_structure/nrutil_nr.hh" |
| 32 |
rtomiyasu |
3 |
|
| 33 |
|
|
using namespace std; |
| 34 |
|
|
|
| 35 |
|
|
// Class of a symmmetric matrix (a_ij) determined by m_mat as below. |
| 36 |
|
|
// m_mat[0] m_mat[1] m_mat[2] |
| 37 |
rtomiyasu |
25 |
// (a_ij) = m_mat[1] m_mat[3] m_mat[4] |
| 38 |
rtomiyasu |
3 |
// m_mat[2] m_mat[4] m_mat[5] |
| 39 |
|
|
template <class T> |
| 40 |
|
|
class SymMat |
| 41 |
|
|
{ |
| 42 |
|
|
private: |
| 43 |
|
|
const Int4 ISIZE; |
| 44 |
|
|
const Int4 NUM_ELEMENT; |
| 45 |
|
|
T* m_mat; |
| 46 |
|
|
|
| 47 |
|
|
inline T& operator[](const int&); |
| 48 |
|
|
inline const T& operator[](const int&) const; |
| 49 |
|
|
|
| 50 |
|
|
public: |
| 51 |
|
|
SymMat(const Int4& isize); |
| 52 |
|
|
SymMat(const Int4& isize, const T&); |
| 53 |
|
|
SymMat(const SymMat<T>&); // copy constructor |
| 54 |
|
|
~SymMat(); |
| 55 |
|
|
|
| 56 |
|
|
SymMat<T>& operator=(const T&); |
| 57 |
|
|
SymMat<T>& operator=(const SymMat<T>&); |
| 58 |
|
|
SymMat<T>& operator+=(const SymMat<T>&); |
| 59 |
|
|
SymMat<T>& operator-=(const SymMat<T>&); |
| 60 |
|
|
SymMat<T>& operator*=(const T&); |
| 61 |
|
|
template<class U> |
| 62 |
|
|
SymMat<T>& operator/=(const U&); |
| 63 |
|
|
|
| 64 |
|
|
inline T& operator()(const int&, const int&); |
| 65 |
|
|
inline const T& operator()(const int&, const int&) const; |
| 66 |
|
|
|
| 67 |
|
|
inline const Int4& size() const { return ISIZE; }; |
| 68 |
|
|
|
| 69 |
|
|
// for GUI |
| 70 |
|
|
const T *getref_m_mat() const {return m_mat;} |
| 71 |
|
|
T *getref_m_mat() {return m_mat;} |
| 72 |
|
|
}; |
| 73 |
|
|
|
| 74 |
|
|
template <class T> |
| 75 |
|
|
SymMat<T>::SymMat(const Int4& isize) : ISIZE(isize), NUM_ELEMENT(isize*(isize+1)/2), m_mat(NULL) |
| 76 |
|
|
{ |
| 77 |
|
|
assert( isize >= 0 ); |
| 78 |
|
|
if( isize > 0 ) m_mat = new T[NUM_ELEMENT]; |
| 79 |
|
|
} |
| 80 |
|
|
|
| 81 |
|
|
template <class T> |
| 82 |
|
|
SymMat<T>::SymMat(const Int4& isize, const T& a) : ISIZE(isize), NUM_ELEMENT(isize*(isize+1)/2), m_mat(NULL) |
| 83 |
|
|
{ |
| 84 |
|
|
assert( isize >= 0 ); |
| 85 |
|
|
if( isize > 0 ) m_mat = new T[NUM_ELEMENT]; |
| 86 |
|
|
for(int k=0; k<NUM_ELEMENT; k++) m_mat[k]=a; |
| 87 |
|
|
} |
| 88 |
|
|
|
| 89 |
|
|
template <class T> |
| 90 |
|
|
SymMat<T>::SymMat(const SymMat<T>&rhs) : ISIZE(rhs.ISIZE), NUM_ELEMENT(ISIZE*(ISIZE+1)/2), m_mat(NULL) |
| 91 |
|
|
{ |
| 92 |
|
|
if( ISIZE > 0 ) m_mat = new T[NUM_ELEMENT]; |
| 93 |
|
|
for(int k=0; k<NUM_ELEMENT; k++) m_mat[k]=rhs.m_mat[k]; |
| 94 |
|
|
} |
| 95 |
|
|
|
| 96 |
|
|
template <class T> |
| 97 |
|
|
SymMat<T>::~SymMat() |
| 98 |
|
|
{ |
| 99 |
|
|
delete[] (m_mat); |
| 100 |
|
|
} |
| 101 |
|
|
|
| 102 |
|
|
template <class T> |
| 103 |
|
|
SymMat<T>& SymMat<T>::operator=(const T& a) |
| 104 |
|
|
{ |
| 105 |
|
|
for(int k=0; k<NUM_ELEMENT; k++) m_mat[k]=a; |
| 106 |
|
|
return *this; |
| 107 |
|
|
} |
| 108 |
|
|
|
| 109 |
|
|
template <class T> |
| 110 |
|
|
SymMat<T>& SymMat<T>::operator=(const SymMat<T>& rhs) |
| 111 |
|
|
{ |
| 112 |
|
|
if(this != &rhs) |
| 113 |
|
|
{ |
| 114 |
|
|
assert( ISIZE == rhs.ISIZE ); |
| 115 |
|
|
for(int k=0; k<NUM_ELEMENT; k++) m_mat[k]=rhs.m_mat[k]; |
| 116 |
|
|
} |
| 117 |
|
|
return *this; |
| 118 |
|
|
} |
| 119 |
|
|
|
| 120 |
|
|
template <class T> |
| 121 |
|
|
SymMat<T>& SymMat<T>::operator+=(const SymMat<T>& rhs) |
| 122 |
|
|
{ |
| 123 |
|
|
assert( ISIZE == rhs.ISIZE ); |
| 124 |
|
|
for(int k=0; k<NUM_ELEMENT; k++) m_mat[k]+=rhs.m_mat[k]; |
| 125 |
|
|
return *this; |
| 126 |
|
|
} |
| 127 |
|
|
|
| 128 |
|
|
template <class T> |
| 129 |
|
|
SymMat<T>& SymMat<T>::operator-=(const SymMat<T>& rhs) |
| 130 |
|
|
{ |
| 131 |
|
|
assert( ISIZE == rhs.ISIZE ); |
| 132 |
|
|
for(int k=0; k<NUM_ELEMENT; k++) m_mat[k]-=rhs.m_mat[k]; |
| 133 |
|
|
return *this; |
| 134 |
|
|
} |
| 135 |
|
|
|
| 136 |
|
|
template <class T> |
| 137 |
|
|
SymMat<T>& SymMat<T>::operator*=(const T& a) |
| 138 |
|
|
{ |
| 139 |
|
|
for(int k=0; k<NUM_ELEMENT; k++) m_mat[k]*=a; |
| 140 |
|
|
return *this; |
| 141 |
|
|
} |
| 142 |
|
|
|
| 143 |
|
|
template <class T> template<class U> |
| 144 |
|
|
SymMat<T>& SymMat<T>::operator/=(const U& a) |
| 145 |
|
|
{ |
| 146 |
|
|
for(int k=0; k<NUM_ELEMENT; k++) m_mat[k]/=a; |
| 147 |
|
|
return *this; |
| 148 |
|
|
} |
| 149 |
|
|
|
| 150 |
|
|
template <class T> |
| 151 |
|
|
inline SymMat<T> operator+(const SymMat<T>& lhs, const SymMat<T>& rhs) |
| 152 |
|
|
{ |
| 153 |
|
|
SymMat<T> ans(lhs); |
| 154 |
|
|
ans += rhs; |
| 155 |
|
|
return ans; |
| 156 |
|
|
} |
| 157 |
|
|
|
| 158 |
|
|
template <class T> |
| 159 |
|
|
inline SymMat<T> operator-(const SymMat<T>& lhs, const SymMat<T>& rhs) |
| 160 |
|
|
{ |
| 161 |
|
|
SymMat<T> ans(lhs); |
| 162 |
|
|
ans -= rhs; |
| 163 |
|
|
return ans; |
| 164 |
|
|
} |
| 165 |
|
|
|
| 166 |
|
|
template <class T> |
| 167 |
|
|
inline SymMat<T> operator*(const SymMat<T>& lhs, const T& a) |
| 168 |
|
|
{ |
| 169 |
|
|
SymMat<T> ans(lhs); |
| 170 |
|
|
ans *= a; |
| 171 |
|
|
return ans; |
| 172 |
|
|
} |
| 173 |
|
|
|
| 174 |
|
|
template <class T, class U> |
| 175 |
|
|
inline SymMat<T> operator/(const SymMat<T>& lhs, const U& a) |
| 176 |
|
|
{ |
| 177 |
|
|
SymMat<T> ans(lhs); |
| 178 |
|
|
ans /= a; |
| 179 |
|
|
return ans; |
| 180 |
|
|
} |
| 181 |
|
|
|
| 182 |
|
|
template <class T> |
| 183 |
|
|
inline T& SymMat<T>::operator[](const int& j) |
| 184 |
|
|
{ |
| 185 |
|
|
assert( 0 <= j && j < NUM_ELEMENT ); |
| 186 |
|
|
return m_mat[j]; |
| 187 |
|
|
} |
| 188 |
|
|
|
| 189 |
|
|
template <class T> |
| 190 |
|
|
inline const T& SymMat<T>::operator[](const int& j) const |
| 191 |
|
|
{ |
| 192 |
|
|
assert( 0 <= j && j < NUM_ELEMENT ); |
| 193 |
|
|
return m_mat[j]; |
| 194 |
|
|
} |
| 195 |
|
|
|
| 196 |
|
|
|
| 197 |
|
|
inline Int4 put_index(const int& ISIZE, const int& j, const int& k) |
| 198 |
|
|
{ |
| 199 |
|
|
if( j < k ) return j*(ISIZE*2-j-1)/2 + k; |
| 200 |
|
|
else return k*(ISIZE*2-k-1)/2 + j; |
| 201 |
|
|
} |
| 202 |
|
|
|
| 203 |
|
|
|
| 204 |
|
|
template <class T> |
| 205 |
|
|
inline T& SymMat<T>::operator()(const int& j, const int& k) |
| 206 |
|
|
{ |
| 207 |
|
|
// assert( 0 <= j && j < ISIZE ); |
| 208 |
|
|
// assert( 0 <= k && k < ISIZE ); |
| 209 |
|
|
return m_mat[put_index(ISIZE, j, k)]; |
| 210 |
|
|
} |
| 211 |
|
|
|
| 212 |
|
|
template <class T> |
| 213 |
|
|
inline const T& SymMat<T>::operator()(const int& j, const int& k) const |
| 214 |
|
|
{ |
| 215 |
|
|
// assert( 0 <= j && j < ISIZE ); |
| 216 |
|
|
// assert( 0 <= k && k < ISIZE ); |
| 217 |
|
|
return m_mat[put_index(ISIZE, j, k)]; |
| 218 |
|
|
} |
| 219 |
|
|
|
| 220 |
|
|
|
| 221 |
|
|
inline Double Determinant3(const SymMat<Double>& rhs) |
| 222 |
|
|
{ |
| 223 |
|
|
assert( rhs.size() == 3 ); |
| 224 |
|
|
|
| 225 |
|
|
return rhs(0,0)*rhs(1,1)*rhs(2,2) |
| 226 |
|
|
- rhs(1,2)*rhs(1,2)*rhs(0,0) - rhs(0,2)*rhs(0,2)*rhs(1,1) - rhs(0,1)*rhs(0,1)*rhs(2,2) |
| 227 |
|
|
+ rhs(0,1)*rhs(0,2)*rhs(1,2)*2.0; |
| 228 |
|
|
} |
| 229 |
|
|
|
| 230 |
|
|
|
| 231 |
|
|
inline SymMat<Double> Inverse3(const SymMat<Double>& rhs) |
| 232 |
|
|
{ |
| 233 |
|
|
assert( rhs.size() == 3 ); |
| 234 |
|
|
|
| 235 |
|
|
const Double det01 = rhs(0,0)*rhs(1,1)-rhs(0,1)*rhs(1,0); |
| 236 |
|
|
const Double det02 = rhs(0,0)*rhs(2,2)-rhs(0,2)*rhs(2,0); |
| 237 |
|
|
const Double det12 = rhs(1,1)*rhs(2,2)-rhs(1,2)*rhs(2,1); |
| 238 |
|
|
const Double det01_02 = rhs(0,0)*rhs(1,2)-rhs(0,2)*rhs(1,0); |
| 239 |
|
|
const Double det01_12 = rhs(0,1)*rhs(1,2)-rhs(0,2)*rhs(1,1); |
| 240 |
|
|
const Double det02_12 = rhs(0,1)*rhs(2,2)-rhs(0,2)*rhs(2,1); |
| 241 |
|
|
|
| 242 |
|
|
const Double det = 1.0/(rhs(0,0)*det12 - rhs(0,1)*det02_12 + rhs(0,2)*det01_12); |
| 243 |
|
|
|
| 244 |
|
|
SymMat<Double> ans(3); |
| 245 |
|
|
ans(0,0) = det12; |
| 246 |
|
|
ans(1,1) = det02; |
| 247 |
|
|
ans(2,2) = det01; |
| 248 |
|
|
ans(0,1) = -det02_12; |
| 249 |
|
|
ans(0,2) = det01_12; |
| 250 |
|
|
ans(1,2) = -det01_02; |
| 251 |
|
|
|
| 252 |
|
|
ans *= det; |
| 253 |
|
|
return ans; |
| 254 |
|
|
} |
| 255 |
|
|
|
| 256 |
|
|
#endif /*SymMat_H_*/ |