Download List

Project Description

libbnr is an implementation of the Bayesian Noise Reduction (BNR) algorithm. All samples of text contain some degree of noise (data which is either intentionally or unintentionally irrelevant to accurate statistical analysis of the sample where removal of the data would result in a cleaner analysis). The Bayesian noise reduction algorithm provides a means of cleaner machine learning by providing more useful data, which ultimately leads to better sample analysis. With the noisy data removed from the sample, what is left is only data relevant to the classification. libbnr can be linked in with your classifier and called using the standard C interface.
Information regarding Project Releases and Project Resources. Note that the information here is a quote from page, and the downloads themselves may not be hosted on OSDN.

2005-01-03 22:26

A critical bug causing an invalid memory read on bnr_hash_destroy() has been fixed.
Tags: Minor bugfixes

2005-01-02 09:47

Some minor changes to the API were made to accommodate
needs by some filters. Some symbols were also renamed to
avoid conflict with other libraries.
Tags: Minor bugfixes

2004-12-29 04:47

This version employs a purely statistical method of noise
reduction using a pattern learning and consistency checking
approach. Patterns of p-value tuples are generated and
learned as metatokens within the classifier. The disposition
of patterns are then compared against the p-values of the
tokens included in the pattern. Any inconsistencies
exceeding an exclusionary radius are then eliminated as
Tags: Major feature enhancements

2004-07-26 16:39

Some initial release bugs in the algorithm were
repaired. The code was upgraded to v1.2 of the
Tags: Major bugfixes

2004-07-22 19:12

Tags: Initial freshmeat announcement

Project Resources