
Linux Kernel Support for
Enterprise Systems

Simon WINWOOD

University of New South Wales, Australia

Produced with LATEX seminar style & PSTricks 1



INTRODUCTION

THIS TALK:

Goals:

➜ Introduce some current work for Enterprise Systems

➜ Give an idea of the future direction of the Linux kernel

Contents:

➜ Introduction

➜ Kernel level scalability (RCU)

➜ Security (LSM and SELinux)

➜ Application performance (MPSS)

TRODUCTION 2



IBM: ENTERPRISE LINUX GROUP:

➜ Goal is to improve linux kernel for enterprise systems

➜ Multi-Queue scheduler (SMP)

➜ Block I/O performance

➜ Fast locking

➜ Multiple page size support (this talk)

TRODUCTION 3



UNSW: OPERATING SYSTEMS, EMBEDDED AND DISTRIBUTED

SYSTEMS RESEARCH GROUP:

➜ General Operating System Research.

➜ SASOS features in IA64 Linux

➜ GELATO: Large disk and file support

➜ GELATO: Large page support (IA64)

TRODUCTION 4



ENTERPRISE SYSTEM CHARACTERISTICS:

Mission Critical

➜ May be in a high-risk environment (i.e. Internet)

➜ Sensitive data

➜ Need control over exactly what applications can do

Multi Processor

➜ Large (> 2) numbers of processors

➜ Threads share memory — lock contention

➜ Memory coherence is potentially expensive

Large Memory Sizes

➜ Applications have larger working sets

➜ Applications use more memory

TRODUCTION 5



SECURITY

LSM AND SELINUX:

http://lsm.immunix.org/

http://www.nsa.gov/selinux/

ECURITY 6



BACKGROUND:

SELinux was introduced at the March 2001 2.5 Kernel Summit.

Added Non-Discretionary Access Control to Linux.

Implemented as a patch against vanilla Linux — added hooks to
various functions.

Linus suggested a more generic approach: add hooks which call
functions in a module

➜ LSM

ECURITY 7



WHAT’S WRONG WITH chmod?:

Gives complete control to the root user.

Applications which require some privilege are granted all rights.

➜ If the application gets hacked, an intruder can take control over the
whole system.

➜ Why should sendmail (for example) be able to add users?

There is no administrator enforced security policy (i.e., no
Mandatory Access Control (MAC)).

➜ A company may wish to restrict the sharing of certain sensitive

information between employees.

ECURITY 8



LINUX SECURITY MODULES:

Provide generic hooks for implementing an arbitrary policy.

Security policies are loaded using kernel modules.

Provides very fine-grained security decisions.

Security modules may allow or disallow an access.XS

Available modules:

➜ SELinux

➜ DTE Linux

➜ Openwall kernel patch

➜ POSIX.1e capabilities

➜ Linux Intrusion Detection System (LIDS)

➜ Default (super-user)

ECURITY 9



SECURITY ENHANCED LINUX (SELINUX):

SELinux is a proof-of-concept for MAC under Linux.

It contains policy-independent security enforcement and a
replaceable security server.

The example security server implements:

➜ Identity-Based Access Control (IBAC)

➜ Role-Based Access Control (RBAC)

➜ Type Enforcement (TE)

(don’t worry, I will explain what these mean)

ECURITY 10



WHAT DOES IT ALL MEAN?:

Mandatory Access Control (MAC)

➜ Allows for a global security policy, enforced over the whole system.

Identity-Based Access Control (IBAC)

➜ Similar to a Linux UID in that they represent a user.

➜ Orthogonal to a UID in that they aren’t changed by su etc.

Role-Based Access Control (RBAC)

➜ An identity is restricted to a set of roles.

➜ An identity may assume a role only through certain programs.

Type Enforcement (TE)

➜ Every object (file, socket, process, etc.) in the system is assigned a
type

➜ Each role is associated with a set of allowable types

➜ Roles give much coarser control than types

ECURITY 11



SELINUX AND LSM:

➀ On a security check, LSM calls the appropriate security hook.

➁ SELinux infers the source and target Security ID (SID) from the LSM
security handle.

➂ SELinux looks up the <source, target, access> vector in the
policy-independent access vector cache (AVC) — assume no match.

➃ SELinux consults the security server to see if the <source, target,

access> vector is allowed.

➄ Operation is allowed or denied as appropriate.

ECURITY 12



SELINUX AND LSM (CONT.):

Kernel Module

AVC
Security 
Server

LSM <−> SELinux Stubs

Policy−independent

ECURITY 13



SOME EXAMPLES:

Protecting physical disks:

allow fsadm_t fsadm_exec_t:process

{ entrypoint execute };

allow fsadm_t fixed_disk_device_t:blk_file

{ read write };

allow initrc_t fsadm_t:process transition;

allow sysadm_t fsadm_t:process transition;

Restricting module insertion:

allow insmod_t insmod_exec_t:process

{ entrypoint execute };

allow insmod_t self:capability sys_module;

allow sysadm_t insmod_t:process transition;

ECURITY 14



SOME EXAMPLES: RESTRICTING sendmail:

allow sendmail_t etc_aliases_t:file

{ read write };

allow sendmail_t etc_mail_t:dir

{ read search add_name remove_name };

allow sendmail_t etc_mail_t:file

{ create read write unlink };

allow sendmail_t smtp_port_t:tcp_socket name_bind;

allow sendmail_t mail_spool_t:dir

{ read search add_name remove_name };

allow sendmail_t mail_spool_t:file

{ create read write unlink };

allow sendmail_t mqueue_spool_t:dir

{ read search add_name remove_name };

allow sendmail_t mqueue_spool_t:file

{ create read write unlink };

ECURITY 15



WHAT DOES IT COST?:

LSM:

➜ Micro-benchmark (lmbench): Worst case 7.2%, best case 0–2%

➜ Macro-benchmark (kernel compile): negligible.

SELinux:

➜ Micro-benchmark (lmbench): Worst case 33%, best case 1–2%

➜ Macro-benchmark (kernel compile): 4%.

➜ Macro-benchmark (WebStone 2.5): negligible.

ECURITY 16



READ-COPY-UPDATE (RCU)

http://lse.sourceforge.net/locking/rcupdate.html

EAD-COPY-UPDATE (RCU) 17



LOCKING IN THE KERNEL:

In general, if 2 threads may access the same data at the same
time, locking is required.

For short lived locks, basic primitive is the spin lock :

spinlock(lock) {

success = false;

while(success == false) {

begin_atomic {

if(lock == 0) {

lock = 1;

success = true;

}
}

}
}

EAD-COPY-UPDATE (RCU) 18



WHAT IS THE PROBLEM?:

If two or more processors try to access the same lock, one
processor will fail.

If neither processor is modifying the list, then a read-write lock can
be used

➜ This lock allows multiple readers to hold the lock at any time, or 1

writer

➜ The lock variable still needs to be modified

The lock needs to be locked, even if no other processor will attempt
to use it.

➜ that is, even in the common case, the lock variable still needs to be

modified

➜ accessing a dirty cache line on another processor can be expensive!

EAD-COPY-UPDATE (RCU) 19



SOLUTION: READ-COPY-UPDATE (RCU):

To modify a list, update all global references to the object, and
delete when no references remain.

➜ Big problem: how to determine if an object is still referenced.

Note that a thread cannot hold a lock across a context switch

➜ After each processor has had a context switch, we can delete the
object.

EAD-COPY-UPDATE (RCU) 20



QUIESCENT POINTS:

A context switch is an example of a quiescent point

A quiescent point is any point at which the current processor does
not hold any references to shared objects. Other quiescent points
include:

➜ Idle loop execution

➜ User-mode execution

➜ Daemon execution

EAD-COPY-UPDATE (RCU) 21



HOW THEY WORK:

A
B

yx z

EAD-COPY-UPDATE (RCU) 22



HOW THEY WORK:

y

x z

A

B

EAD-COPY-UPDATE (RCU) 23



HOW THEY WORK:

y

x z

AB

EAD-COPY-UPDATE (RCU) 24



HOW THEY WORK:

y

x z

EAD-COPY-UPDATE (RCU) 25



HOW THEY WORK:

x z

EAD-COPY-UPDATE (RCU) 26



IMPLEMENTATION:

Instead of freeing an object, it is added to an RCU queue

When the kernel has determined that each processor has gone
through a quiescent point, all objects on the list are freed

Various different implementations exist, differing in how they
determine quiescent points

➜ there is also an implementation for the pre-emptible kernel

➜ implementations differ in the overhead and latency of object deletion

EAD-COPY-UPDATE (RCU) 27



AN EXAMPLE (WITHOUT RCU):

int lookup_key(list_t *list, key_t key)

{
int found = 0;

list_t *this;

spin_lock(&list->lock);

for(this = list->next; this != list; this = this->next)

if(this->key == key) {

found = 1;

goto out;

}

out:
spin_unlock(&list->lock);

return found;

}

EAD-COPY-UPDATE (RCU) 28



AN EXAMPLE (WITHOUT RCU) (CONT.):

void delete_element(list_t *list, list_t *el)

{
spin_lock(&list->lock);

el->prev->next = el->next;

el->next->prev = el->prev;

spin_unlock(&list->lock);

kfree(el);

}

EAD-COPY-UPDATE (RCU) 29



AN EXAMPLE (WITH RCU):

int lookup_key(list_t *list, key_t key)

{
list_t *this;

for(this = list->next; this != list; this = this->next)

if(this->key == key)

return 1

return 0;

}

EAD-COPY-UPDATE (RCU) 30



AN EXAMPLE (WITH RCU) (CONT.):

void delete_element(list_t *list, list_t *el)

{
spin_lock(&list->lock);

el->prev->next = el->next;

el->next->prev = el->prev;

spin_unlock(&list->lock);

call_rcu(&el->rcu_head, my_kfree, el);

}
void my_kfree(list_t *el)

{
kfree(el);

}

EAD-COPY-UPDATE (RCU) 31



PROJECTS USING RCU:

The following projects are using RCU:

➜ Directory Entry scalability

➜ Hot-Plug processor support

➜ Module unloading and cleanup

➜ Scalable file descriptor management

➜ IPV4 route cache lookup

EAD-COPY-UPDATE (RCU) 32



PERFORMANCE:

RCU performs best when the majority of accesses to a list are
reads

The following results have been reported:

➜ FD management: 30%

➜ DCache management: 25%

RCU will become more important as linux scales to larger numbers
of CPUs

EAD-COPY-UPDATE (RCU) 33



MULTIPLE PAGE SIZE SUPPORT

ULTIPLE PAGE SIZE SUPPORT 34



INTRODUCTION

MOTIVATION:

Enterprise Linux Group’s focus: performance

➜ Linux for Enterprise Computing (scalability, funct..)

➜ Linux for Scientific Computing

Applications’ working sets are outstripping TLB coverage

Evidence that large pages might improve performance: previous
work USENIX-98

➜ Ganapathy et al.: SGI IRIX-6.4

➜ Subramaniam et al.: HP HP-UX

TRODUCTION 35



GOALS:

Evaluate large pages: are they really worth it?

Architecture independent design

Support for multiple (concurrent) page sizes

Only incur large page overhead when needed

Minimise modifications

➜ Easier to test/understand

➜ Can extend implementation if required

➜ Higher likelihood for adoption

TRODUCTION 36



BACKGROUND: GENERAL VIRTUAL MEMORY (VM)

TLBS:

A TLB caches virtual to physical mappings

Accessed for every memory instruction

➜ Critical to overall performance => small and fast

➜ Physically indexed caches require translation before lookup

TLB misses are expensive!!!!!!

Modern CPUs support larger page sizes for greater TLB coverage

➜ E.g. Pentium 4: 64 entry TLB coverage of 256K @ 4K pages, 256M

@ 4M pages

ACKGROUND: GENERAL VIRTUAL MEMORY (VM) 37



LARGE PAGES:

Pros:

➜ Primary: Reduce TLB misses by increasing coverage

➜ Secondary: Increase I/O bandwidth utilisation and lower total I/O time,

if I/O supports it

➜ Secondary: Reduce memory requirements for page tables — E.g. A
128M mapping only requires 32 * 4M-PTEs vs. 32K * 4K-PTEs => 32

pages of unswappable memory and Linux is not a swappable kernel !

ACKGROUND: GENERAL VIRTUAL MEMORY (VM) 38



LARGE PAGES:

Cons:

➜ Assumes some page locality

➜ Applications with small working sets or very sparse working sets will
not benefit

➜ Increased kernel complexity

➜ Increased page fault latency

➜ Higher granularity of resource accounting

➜ Using large pages may waste space needlessly

ACKGROUND: GENERAL VIRTUAL MEMORY (VM) 39



Other:

➜ Architectures usually support a range of page sizes
➜ IA32: 4K, 4M/2M
➜ IA64: 4K, 8K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M
➜ UltraSparc II: 8K, 64K, 512K, 4M
➜ Similar for Alpha, PA-RISC, MIPS, some PPCs, etc.

➜ Aligned in both physical and virtual space — E.g. 4M pages aligned to

a 4M phys. address

ACKGROUND: GENERAL VIRTUAL MEMORY (VM) 40



BACKGROUND: LINUX VM

REPRESENTING MAPPINGS (VIRT. -> PHYS):

2/3-level hierarchical page tables

Regions are described with VMA data structures

➜ Start/end of region

➜ access rights

➜ backing file (if any)

➜ behavior hints

➜ nopage method for establishing mappings

Page frames are represented by the page data structure

➜ Contains flags such as dirty. referenced, locked

➜ Used by the swap subsystem to choose victim pages

ACKGROUND: LINUX VM 41



THE PAGE CACHE:

Caches file data: allows multiple tasks to map a file using the same
physical page

Used by setting nopage to filemap_nopage in VMA

Also implements read and write

Used by most filesystems

ACKGROUND: LINUX VM 42



LINUX VM:

Virtual Memory Area

mmap

pgd

mm_struct

Page Directory

Page Table

Physical Address Space

Virtual Address Space

ACKGROUND: LINUX VM 43



IMPLEMENTATION:

Chose application hints over kernel heuristics

➜ Application may know more about its behavior than kernel

➜ Much simpler

➜ Implies modifications to applications or libraries

Page size is per-VMA

➜ Can split a VMA if the application requests a sub-region

Applications use the madvise system call

➜ Added a new setpageorder(o) operation

ACKGROUND: LINUX VM 44



REPRESENTING SUPERPAGES:

Don’t want to implement a totally new page table (PT)

Constrained by i386 PT structure

Use existing PT with some modifications:

➜ Store the page size in every page in the superpage

➜ If a page size is greater than the number of PTEs, store the PTE in

the next level up

➜ Need to modify all kernel functions which modify the PT

ACKGROUND: LINUX VM 45



REPRESENTING SUPERPAGES (CONT.):

16K 4M

Physical memory

Page Table

Page Directory

ACKGROUND: LINUX VM 46



REPRESENTING SUPERPAGES (CONT.):

Store the largest page size a frame belongs to in page data
Structure

➜ A superpage is a sequence of contiguous page data structures

Operations which need to use the superpage as a whole use the
first page

➜ referencing the page

➜ dirtying the page

➜ backing file information

Operations which are per-page are unchanged

➜ wait queue

➜ locked, error, uptodate

ACKGROUND: LINUX VM 47



ALLOCATION OF SUPERPAGES:

Basic idea is a special large page zone (pool)

Avoids problem of OS “polluting” pages with kernel data
(unswappable)

Obviously a short-term solution

� May be OK for some dedicated applications

� The rmap patch may be useful

ACKGROUND: LINUX VM 48



WHAT HAPPENS ON A PAGE FAULT:

➀ Application accesses VA -> TLB miss

➁ Hardware or kernel looks up page table -> Page fault

➂ Kernel looks up VMA corresponding to fault addr.

➃ Kernel checks whether it is a new mapping (not swapped out, etc.)

➄ Kernel scans page table for an empty region <= vma->vm_order

➅ Kernel calls nopage method (filemap_nopage)

➆ Pagecache checks if corresponding file data is cached.

➇ Pagecache allocates memory and reads each page in.

➈ Kernel inserts new page into the pagetable and restarts faulting

instruction

ACKGROUND: LINUX VM 49



MICROBENCHMARK:

Show efficacy of large Page size in a controlled setup

System Pentium-4:

➜ 64-byte cachelines

➜ L2-cache: 256K, 64 B CL, 8-way Set-Associate

➜ D-L1 cache: 8K, 64 B CL, 4-way Set-Associate

➜ D-TLB-4K: 64 entries, Fully-Associate

➜ D-TLB-4M: Shared with 4K D-TLB.

Stride through memory such that each load results in new data
cacheline and new cacheline for PTE

➜ avoid reuse of PTEs

➜ Access every 16th page (4-bytes per PTE) + 64 bytes

ACKGROUND: LINUX VM 50



MICROBENCHMARK (CONT.):

0
50

100
150
200
250
300
350
400
450
500

0 20 40 60 80 100 120 140

T
im

e 
(m

ill
is

ec
on

ds
)

Test size (megabytes)

DTLB micro-benchmark
1000 iterations, 128k increments

4k pagesize
4M pagesize

ACKGROUND: LINUX VM 51



SPECJVM98:

0

5

10

15

20

25

30

35

40

45

50

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
05

_r
ay

tr
ac

e

_2
09

_d
b

_2
13

_j
av

ac

_2
22

_m
pe

ga
ud

io

_2
27

_m
tr

t

_2
28

_j
ac

k

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t (

pe
rc

en
t)

 

Performance improvement with all three heap regions
mapped to large pages

Ratio

ACKGROUND: LINUX VM 52



SPECINT2000:

Benchmark Improvement (%)

gzip 12.3

vpr 16.7

gcc 9.3

mcf 9.4

crafty 15.2

parser 16.3

eon 12.1

gap 5.9

vortex 22.2

bzip2 14.4

twolf 12.5

ACKGROUND: LINUX VM 53



WHAT’S NEXT?:

Moving upgrade decisions into the kernel

Splitting pages for reference and dirty accounting

Better memory management

➜ Page amalgamation daemon

➜ Intelligent swapping

➜ Intelligent allocation

ACKGROUND: LINUX VM 54


