Linux Kernel Support for
Enterprise Systems

Simon WINWOOD
University of New South Wales, Australia

Produced with IKTEX seminar style & PSTricks



Goals:
[ Introduce some current work for Enterprise Systems
[ Give an idea of the future direction of the Linux kernel

Contents:
[1 Introduction
[1 Kernel level scalability (RCU)
[ Security (LSM and SELinux)
[1 Application performance (MPSS)

TRODUCTION



Goal is to improve linux kernel for enterprise systems
Multi-Queue scheduler (SMP)

Block I/O performance

Fast locking

O O O 0O

Multiple page size support (this talk)

TRODUCTION



[1 General Operating System Research.
[1 SASOS features in IA64 Linux

[1 GELATO: Large disk and file support

[ GELATO: Large page support (IA64)

TRODUCTION



Mission Critical

[1 May be in a high-risk environment (i.e. Internet)
[1 Sensitive data
[1 Need control over exactly what applications can do

Multi Processor

[1 Large (> 2) numbers of processors
[0 Threads share memory — lock contention
[ Memory coherence is potentially expensive

Large Memory Sizes

[1 Applications have larger working sets
[1 Applications use more memory

TRODUCTION



http://lsm.immunix.org/

http://www.nsa.gov/selinux/

ECURITY



SELinux was introduced at the March 2001 2.5 Kernel Summit.
Added Non-Discretionary Access Control to Linux.

Implemented as a patch against vanilla Linux — added hooks to
various functions.

Linus suggested a more generic approach: add hooks which call
functions in a module

[ LSM

ECURITY



Gives complete control to the root user.

Applications which require some privilege are granted all rights.

[1 If the application gets hacked, an intruder can take control over the
whole system.
[0 Why should sendmail (for example) be able to add users?

There is no administrator enforced security policy (i.e., no
Mandatory Access Control (MAC)).

[1 A company may wish to restrict the sharing of certain sensitive
information between employees.

ECURITY



Provide generic hooks for implementing an arbitrary policy.
Security policies are loaded using kernel modules.
Provides very fine-grained security decisions.

Security modules may allow or disallow an access. XS

Avalilable modules:
1 SELinux
DTE Linux
Openwall kernel patch
POSIX.1e capabilities
Linux Intrusion Detection System (LIDS)

O O O 0O

Default (super-user)

ECURITY



SELinux is a proof-of-concept for MAC under Linux.

It contains policy-independent security enforcement and a
replaceable security server.

The example security server implements:

[ ldentity-Based Access Control (IBAC)
[1 Role-Based Access Control (RBAC)
[1 Type Enforcement (TE)

(don’t worry, | will explain what these mean)

ECURITY

10



Mandatory Access Control (MAC)
[1 Allows for a global security policy, enforced over the whole system.

|dentity-Based Access Control (IBAC)

[1 Similar to a Linux UID in that they represent a user.
[1 Orthogonal to a UID in that they aren’t changed by su etc.

Role-Based Access Control (RBAC)

[1 An identity is restricted to a set of roles.
[1 An identity may assume a role only through certain programs.

Type Enforcement (TE)

[1 Every object (file, socket, process, etc.) in the system is assigned a
type

[1 Each role is associated with a set of allowable types

[1 Roles give much coarser control than types

ECURITY 11



On a security check, LSM calls the appropriate security hook.

SELinux infers the source and target Security ID (SID) from the LSM
security handle.

SELinux looks up the <source, target, access> vector in the

policy-independent access vector cache (AVC) — assume no match.

SELinux consults the security server to see if the <source, target,
access> vector is allowed.

Operation is allowed or denied as appropriate.

ECURITY

12



Security

| |

| . |

| B / \ :

| .

. ! |

| . .

' |:E >~ AVC | Server :
|
|
|
|
|

ECURITY



Protecting physical disks:

allow fsadm_t fsadm_exec_t:process
{ entrypoint execute };

allow fsadm_t fixed_disk_device_t:blk_file
{ read write 7};

allow initrc_t fsadm_t:process transition;

allow sysadm_t fsadm_t:process transition;
Restricting module insertion:

allow insmod_t insmod_exec_t:process
{ entrypoint execute };
allow insmod_t self:capability sys_module;

allow sysadm_t insmod_t:process transition;

ECURITY

14



allow

allow

allow

allow

allow

allow

allow

allow

sendmail_t etc_aliases_t:file

{ read write };

sendmail_t etc_mail_t:dir

{ read search add_name remove_name };
sendmail_t etc_mail_t:file

{ create read write unlink };
sendmail_t smtp_port_t:tcp_socket name_bind
sendmail_t mail_spool_t:dir

{ read search add_name remove_name };
sendmail_t mail_spool_t:file

{ create read write unlink };
sendmail_t mqueue_spool_t:dir

{ read search add_name remove_name };
sendmail_t mqueue_spool_t:file

{ create read write unlink };

b

ECURITY

15



LSM:

[0 Micro-benchmark (1mbench): Worst case 7.2%, best case 0-2%
[0 Macro-benchmark (kernel compile): negligible.

SELInux:

[J Micro-benchmark (1mbench): Worst case 33%, best case 1-2%
[1 Macro-benchmark (kernel compile): 4%.
[1 Macro-benchmark (WebStone 2.5): negligible.

ECURITY

16



http://lse.sourceforge.net/locking/rcupdate.html

EAD-COPY-UPDATE (RCU)

17



In general, if 2 threads may access the same data at the same
time, locking is required.

For short lived locks, basic primitive is the spin lock:

spinlock(lock) {
success = false;
while(success == false) {
begin_atomic {
if (lock == 0) {
lock = 1;

success = true;

EAD-COPY-UPDATE (RCU)

18



If two or more processors try to access the same lock, one
processor will fall.

If neither processor is modifying the list, then a read-write lock can
be used

[1 This lock allows multiple readers to hold the lock at any time, or 1
writer
[1 The lock variable still needs to be modified

The lock needs to be locked, even if no other processor will attempt
to use it.

[1 thatis, even in the common case, the lock variable still needs to be
modified
[1 accessing a dirty cache line on another processor can be expensive!

EAD-COPY-UPDATE (RCU) 19



To modify a list, update all global references to the object, and
delete when no references remain.

[1 Big problem: how to determine if an object is still referenced.

Note that a thread cannot hold a lock across a context switch

[1 After each processor has had a context switch, we can delete the
object.

EAD-COPY-UPDATE (RCU) 20



A context switch is an example of a quiescent point

A quiescent point is any point at which the current processor does
not hold any references to shared objects. Other quiescent points
include:

[1 Idle loop execution

[1 User-mode execution

[ Daemon execution

EAD-COPY-UPDATE (RCU)

21



22



23



EAD-COP

Y-UPDATE (RCU)

24



ﬁ_

EAD-COPY-UPDATE (RCU)

25



ﬁ_/

1,

EAD-COPY-UPDATE (RCU)

26



Instead of freeing an object, it is added to an RCU gqueue

When the kernel has determined that each processor has gone
through a quiescent point, all objects on the list are freed

Various different implementations exist, differing in how they

determine quiescent points
[1 there is also an implementation for the pre-emptible kernel
[ implementations differ in the overhead and latency of object deletion

EAD-COPY-UPDATE (RCU)

27



int lookup_key(list_t *1list, key_t key)
{

int found = 0;

list_t *this;

spin_lock(&list->1lock);
for(this = list->next; this != list; this = this->next)
if (this->key == key) {
found = 1;
goto out;
+
out:
spin_unlock(&list->lock);

return found;

EAD-COPY-UPDATE (RCU)



void delete_element(list_t *1list, list_t *el)
{
spin_lock(&list->lock);
el->prev->next = el->next;
el->next->prev = el->prev;
spin_unlock(&list->lock);
kfree(el);

EAD-COPY-UPDATE (RCU)

29



int lookup_key(list_t *list, key_t key)

{
list_t *this;
for(this = list->next; this != 1list; this = this->next)
if (this->key == key)
return 1
return O;
}

EAD-COPY-UPDATE (RCU)

30



void delete_element(list_t *1list, list_t *el)
{
spin_lock(&list->1lock);
el->prev->next = el->next;
el->next->prev = el->prev;
spin_unlock(&list->lock);
call_rcu(&el->rcu_head, my_kfree, el);

void my_kfree(list_t xel)

{
kfree(el);

EAD-COPY-UPDATE (RCU)



The following projects are using RCU:

[

O O O

Directory Entry scalability

Hot-Plug processor support

Module unloading and cleanup
Scalable file descriptor management
IPV4 route cache lookup

EAD-COPY-UPDATE (RCU)

32



RCU performs best when the majority of accesses to a list are
reads

The following results have been reported:

[ FD management: 30%
[1 DCache management: 25%

RCU will become more important as linux scales to larger numbers
of CPUs

EAD-COPY-UPDATE (RCU)

33



ULTIPLE PAGE SIZE SUPPORT

34



Enterprise Linux Group’s focus: performance

[ Linux for Enterprise Computing (scalability, funct..)
[ Linux for Scientific Computing

Applications’ working sets are outstripping TLB coverage

Evidence that large pages might improve performance: previous
work USENIX-98

[1 Ganapathy et al.: SGI IRIX-6.4
[1 Subramaniam et al.: HP HP-UX

TRODUCTION

35



Evaluate large pages: are they really worth it?
Architecture independent design

Support for multiple (concurrent) page sizes
Only incur large page overhead when needed

Minimise modifications
[1 Easier to test/understand
[1 Can extend implementation if required
[1 Higher likelihood for adoption

TRODUCTION

36



A TLB caches virtual to physical mappings

Accessed for every memory instruction

[ Critical to overall performance => small and fast
[1 Physically indexed caches require translation before lookup

Modern CPUs support larger page sizes for greater TLB coverage

[1 E.g. Pentium 4: 64 entry TLB coverage of 256K @ 4K pages, 256M
@ 4M pages

ACKGROUND: GENERAL VIRTUAL MEMORY (VM)

37



Pros:

[0 Primary: Reduce TLB misses by increasing coverage
[1 Secondary: Increase 1/0O bandwidth utilisation and lower total I/O time,
if I/O supports it

[1 Secondary: Reduce memory requirements for page tables — E.g. A
128M mapping only requires 32 * 4AM-PTEs vs. 32K * 4K-PTEs => 32
pages of unswappable memory and Linux is not a swappable kernel !

ACKGROUND: GENERAL VIRTUAL MEMORY (VM)

38



cons:

[1 Assumes some page locality

[1 Applications with small working sets or very sparse working sets will
not benefit

Increased kernel complexity
Increased page fault latency
Higher granularity of resource accounting

N N IO

Using large pages may waste space needlessly

ACKGROUND: GENERAL VIRTUAL MEMORY (VM)

39



Other:

[ Architectures usually support a range of page sizes
O 1A32: 4K, 4M/2M

0 1A64: 4K, 8K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M
[0 UltraSparc II: 8K, 64K, 512K, 4M
[0 Similar for Alpha, PA-RISC, MIPS, some PPCs, etc.

[ Aligned in both physical and virtual space — E.g. 4M pages aligned to
a 4M phys. address

ACKGROUND: GENERAL VIRTUAL MEMORY (VM)

40



2/3-level hierarchical page tables

Regions are described with VMA data structures

[

O O O O

Start/end of region

access rights

backing file (if any)

behavior hints

nopage method for establishing mappings

Page frames are represented by the page data structure

[]
[]

Contains flags such as dirty. referenced, locked
Used by the swap subsystem to choose victim pages

ACKGROUND: LINUX VM

41



Caches file data: allows multiple tasks to map a file using the same
physical page

Used by setting nopage to filemap_nopage in VMA
Also implements read and write

Used by most filesystems

ACKGROUND: LINUX VM

42



mm_struct

mmap —

pgd

Virtual Memory Area

* Virtual Address Space

Page Directory

Page Table

Physical Address Space

ACKGROUND: LINUX VM

43



Chose application hints over kernel heuristics

[1 Application may know more about its behavior than kernel
1 Much simpler
I Implies modifications to applications or libraries

Page size is per-VMA
[1 Can split a VMA if the application requests a sub-region

Applications use the madvise system call
[1 Added a new setpageorder (o) operation

ACKGROUND: LINUX VM

44



Don’t want to implement a totally new page table (PT)
Constrained by 1386 PT structure

Use existing PT with some modifications:

[1 Store the page size in every page in the superpage

[ If a page size is greater than the number of PTES, store the PTE in
the next level up

[1 Need to modify all kernel functions which modify the PT

ACKGROUND: LINUX VM

45



aM

/"/\
N =

i)

VAN

N

Physical memory

Page Table

Page Directory

ACKGROUND: LINUX VM

46



Store the largest page size a frame belongs to in page data
Structure

[1 A superpage is a sequence of contiguous page data structures

Operations which need to use the superpage as a whole use the
first page

I referencing the page

[1 dirtying the page

[1 backing file information

Operations which are per-page are unchanged

[ wait queue

[J locked, error, uptodate

ACKGROUND: LINUX VM

47



Basic idea is a special large page zone (pool)

Avoids problem of OS “polluting” pages with kernel data
(unswappable)

Obviously a short-term solution
e May be OK for some dedicated applications

e The rmap patch may be useful

ACKGROUND: LINUX VM

48



Application accesses VA -> TLB miss

Hardware or kernel looks up page table -> Page fault

Kernel looks up VMA corresponding to fault addr.

Kernel checks whether it is a new mapping (not swapped out, etc.)
Kernel scans page table for an empty region <= vma->vm_order
Kernel calls nopage method (filemap_nopage)

Pagecache checks if corresponding file data is cached.
Pagecache allocates memory and reads each page in.

NNy ) [ A Iy N B B

Kernel inserts new page into the pagetable and restarts faulting
instruction

ACKGROUND: LINUX VM 49



Show efficacy of large Page size in a controlled setup

System Pentium-4:

[1 64-byte cachelines

[1 L2-cache: 256K, 64 B CL, 8-way Set-Associate
[1 D-L1 cache: 8K, 64 B CL, 4-way Set-Associate
[0 D-TLB-4K: 64 entries, Fully-Associate

[J D-TLB-4M: Shared with 4K D-TLB.

Stride through memory such that each load results in new data
cacheline and new cacheline for PTE

[1 avoid reuse of PTEs

[1 Access every 16th page (4-bytes per PTE) + 64 bytes

ACKGROUND: LINUX VM

50



500
450
400
350
300
250
200
150
100

50

Time (milliseconds)

DTLB micro-benchmark

1000 iterations, 128k increments

| | 4Ik pagelsize
4AM pagesiz

Test size (megabytes)

ACKGROUND: LINUX VM

51



Performance improvement with all three heap regions
mapped to large pages

yoel gzz

Ratio ———
|

—— H mw 222

—t— - olpnebadw ggzg

— - denel €Tz

H— 4 ap 60z

—— - ooenAes goz

— - ssal zoz

n - ssaidwod ToZ

| | | | | | | | |

0 5 0 5 0 5 0 5 0 5 0
Lo < < ™ ™ N N — —

(1uaaiad) Juswanoidwi aduewlopad

52

ACKGROUND: LINUX VM



Benchmark | Improvement (%)
gzip 12.3
vpr 16.7
gcc 9.3
mcf 9.4
crafty 15.2
parser 16.3
eon 12.1
gap 5.9
vortex 22.2
bzip2 14.4
twolf 12.5

ACKGROUND: LINUX VM

53



Moving upgrade decisions into the kernel
Splitting pages for reference and dirty accounting

Better memory management
[1 Page amalgamation daemon
[1 Intelligent swapping
[1 Intelligent allocation

ACKGROUND: LINUX VM

54



