| 1 |
/* ELF executable support for BFD. |
| 2 |
|
| 3 |
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, |
| 4 |
2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 |
| 5 |
Free Software Foundation, Inc. |
| 6 |
|
| 7 |
This file is part of BFD, the Binary File Descriptor library. |
| 8 |
|
| 9 |
This program is free software; you can redistribute it and/or modify |
| 10 |
it under the terms of the GNU General Public License as published by |
| 11 |
the Free Software Foundation; either version 3 of the License, or |
| 12 |
(at your option) any later version. |
| 13 |
|
| 14 |
This program is distributed in the hope that it will be useful, |
| 15 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 |
GNU General Public License for more details. |
| 18 |
|
| 19 |
You should have received a copy of the GNU General Public License |
| 20 |
along with this program; if not, write to the Free Software |
| 21 |
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| 22 |
MA 02110-1301, USA. */ |
| 23 |
|
| 24 |
|
| 25 |
/* |
| 26 |
SECTION |
| 27 |
ELF backends |
| 28 |
|
| 29 |
BFD support for ELF formats is being worked on. |
| 30 |
Currently, the best supported back ends are for sparc and i386 |
| 31 |
(running svr4 or Solaris 2). |
| 32 |
|
| 33 |
Documentation of the internals of the support code still needs |
| 34 |
to be written. The code is changing quickly enough that we |
| 35 |
haven't bothered yet. */ |
| 36 |
|
| 37 |
/* For sparc64-cross-sparc32. */ |
| 38 |
#define _SYSCALL32 |
| 39 |
#include "sysdep.h" |
| 40 |
#include "bfd.h" |
| 41 |
#include "bfdlink.h" |
| 42 |
#include "libbfd.h" |
| 43 |
#define ARCH_SIZE 0 |
| 44 |
#include "elf-bfd.h" |
| 45 |
#include "libiberty.h" |
| 46 |
#include "safe-ctype.h" |
| 47 |
|
| 48 |
static int elf_sort_sections (const void *, const void *); |
| 49 |
static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *); |
| 50 |
static bfd_boolean prep_headers (bfd *); |
| 51 |
static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ; |
| 52 |
static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ; |
| 53 |
static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size, |
| 54 |
file_ptr offset); |
| 55 |
|
| 56 |
/* Swap version information in and out. The version information is |
| 57 |
currently size independent. If that ever changes, this code will |
| 58 |
need to move into elfcode.h. */ |
| 59 |
|
| 60 |
/* Swap in a Verdef structure. */ |
| 61 |
|
| 62 |
void |
| 63 |
_bfd_elf_swap_verdef_in (bfd *abfd, |
| 64 |
const Elf_External_Verdef *src, |
| 65 |
Elf_Internal_Verdef *dst) |
| 66 |
{ |
| 67 |
dst->vd_version = H_GET_16 (abfd, src->vd_version); |
| 68 |
dst->vd_flags = H_GET_16 (abfd, src->vd_flags); |
| 69 |
dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx); |
| 70 |
dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt); |
| 71 |
dst->vd_hash = H_GET_32 (abfd, src->vd_hash); |
| 72 |
dst->vd_aux = H_GET_32 (abfd, src->vd_aux); |
| 73 |
dst->vd_next = H_GET_32 (abfd, src->vd_next); |
| 74 |
} |
| 75 |
|
| 76 |
/* Swap out a Verdef structure. */ |
| 77 |
|
| 78 |
void |
| 79 |
_bfd_elf_swap_verdef_out (bfd *abfd, |
| 80 |
const Elf_Internal_Verdef *src, |
| 81 |
Elf_External_Verdef *dst) |
| 82 |
{ |
| 83 |
H_PUT_16 (abfd, src->vd_version, dst->vd_version); |
| 84 |
H_PUT_16 (abfd, src->vd_flags, dst->vd_flags); |
| 85 |
H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx); |
| 86 |
H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt); |
| 87 |
H_PUT_32 (abfd, src->vd_hash, dst->vd_hash); |
| 88 |
H_PUT_32 (abfd, src->vd_aux, dst->vd_aux); |
| 89 |
H_PUT_32 (abfd, src->vd_next, dst->vd_next); |
| 90 |
} |
| 91 |
|
| 92 |
/* Swap in a Verdaux structure. */ |
| 93 |
|
| 94 |
void |
| 95 |
_bfd_elf_swap_verdaux_in (bfd *abfd, |
| 96 |
const Elf_External_Verdaux *src, |
| 97 |
Elf_Internal_Verdaux *dst) |
| 98 |
{ |
| 99 |
dst->vda_name = H_GET_32 (abfd, src->vda_name); |
| 100 |
dst->vda_next = H_GET_32 (abfd, src->vda_next); |
| 101 |
} |
| 102 |
|
| 103 |
/* Swap out a Verdaux structure. */ |
| 104 |
|
| 105 |
void |
| 106 |
_bfd_elf_swap_verdaux_out (bfd *abfd, |
| 107 |
const Elf_Internal_Verdaux *src, |
| 108 |
Elf_External_Verdaux *dst) |
| 109 |
{ |
| 110 |
H_PUT_32 (abfd, src->vda_name, dst->vda_name); |
| 111 |
H_PUT_32 (abfd, src->vda_next, dst->vda_next); |
| 112 |
} |
| 113 |
|
| 114 |
/* Swap in a Verneed structure. */ |
| 115 |
|
| 116 |
void |
| 117 |
_bfd_elf_swap_verneed_in (bfd *abfd, |
| 118 |
const Elf_External_Verneed *src, |
| 119 |
Elf_Internal_Verneed *dst) |
| 120 |
{ |
| 121 |
dst->vn_version = H_GET_16 (abfd, src->vn_version); |
| 122 |
dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt); |
| 123 |
dst->vn_file = H_GET_32 (abfd, src->vn_file); |
| 124 |
dst->vn_aux = H_GET_32 (abfd, src->vn_aux); |
| 125 |
dst->vn_next = H_GET_32 (abfd, src->vn_next); |
| 126 |
} |
| 127 |
|
| 128 |
/* Swap out a Verneed structure. */ |
| 129 |
|
| 130 |
void |
| 131 |
_bfd_elf_swap_verneed_out (bfd *abfd, |
| 132 |
const Elf_Internal_Verneed *src, |
| 133 |
Elf_External_Verneed *dst) |
| 134 |
{ |
| 135 |
H_PUT_16 (abfd, src->vn_version, dst->vn_version); |
| 136 |
H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt); |
| 137 |
H_PUT_32 (abfd, src->vn_file, dst->vn_file); |
| 138 |
H_PUT_32 (abfd, src->vn_aux, dst->vn_aux); |
| 139 |
H_PUT_32 (abfd, src->vn_next, dst->vn_next); |
| 140 |
} |
| 141 |
|
| 142 |
/* Swap in a Vernaux structure. */ |
| 143 |
|
| 144 |
void |
| 145 |
_bfd_elf_swap_vernaux_in (bfd *abfd, |
| 146 |
const Elf_External_Vernaux *src, |
| 147 |
Elf_Internal_Vernaux *dst) |
| 148 |
{ |
| 149 |
dst->vna_hash = H_GET_32 (abfd, src->vna_hash); |
| 150 |
dst->vna_flags = H_GET_16 (abfd, src->vna_flags); |
| 151 |
dst->vna_other = H_GET_16 (abfd, src->vna_other); |
| 152 |
dst->vna_name = H_GET_32 (abfd, src->vna_name); |
| 153 |
dst->vna_next = H_GET_32 (abfd, src->vna_next); |
| 154 |
} |
| 155 |
|
| 156 |
/* Swap out a Vernaux structure. */ |
| 157 |
|
| 158 |
void |
| 159 |
_bfd_elf_swap_vernaux_out (bfd *abfd, |
| 160 |
const Elf_Internal_Vernaux *src, |
| 161 |
Elf_External_Vernaux *dst) |
| 162 |
{ |
| 163 |
H_PUT_32 (abfd, src->vna_hash, dst->vna_hash); |
| 164 |
H_PUT_16 (abfd, src->vna_flags, dst->vna_flags); |
| 165 |
H_PUT_16 (abfd, src->vna_other, dst->vna_other); |
| 166 |
H_PUT_32 (abfd, src->vna_name, dst->vna_name); |
| 167 |
H_PUT_32 (abfd, src->vna_next, dst->vna_next); |
| 168 |
} |
| 169 |
|
| 170 |
/* Swap in a Versym structure. */ |
| 171 |
|
| 172 |
void |
| 173 |
_bfd_elf_swap_versym_in (bfd *abfd, |
| 174 |
const Elf_External_Versym *src, |
| 175 |
Elf_Internal_Versym *dst) |
| 176 |
{ |
| 177 |
dst->vs_vers = H_GET_16 (abfd, src->vs_vers); |
| 178 |
} |
| 179 |
|
| 180 |
/* Swap out a Versym structure. */ |
| 181 |
|
| 182 |
void |
| 183 |
_bfd_elf_swap_versym_out (bfd *abfd, |
| 184 |
const Elf_Internal_Versym *src, |
| 185 |
Elf_External_Versym *dst) |
| 186 |
{ |
| 187 |
H_PUT_16 (abfd, src->vs_vers, dst->vs_vers); |
| 188 |
} |
| 189 |
|
| 190 |
/* Standard ELF hash function. Do not change this function; you will |
| 191 |
cause invalid hash tables to be generated. */ |
| 192 |
|
| 193 |
unsigned long |
| 194 |
bfd_elf_hash (const char *namearg) |
| 195 |
{ |
| 196 |
const unsigned char *name = (const unsigned char *) namearg; |
| 197 |
unsigned long h = 0; |
| 198 |
unsigned long g; |
| 199 |
int ch; |
| 200 |
|
| 201 |
while ((ch = *name++) != '\0') |
| 202 |
{ |
| 203 |
h = (h << 4) + ch; |
| 204 |
if ((g = (h & 0xf0000000)) != 0) |
| 205 |
{ |
| 206 |
h ^= g >> 24; |
| 207 |
/* The ELF ABI says `h &= ~g', but this is equivalent in |
| 208 |
this case and on some machines one insn instead of two. */ |
| 209 |
h ^= g; |
| 210 |
} |
| 211 |
} |
| 212 |
return h & 0xffffffff; |
| 213 |
} |
| 214 |
|
| 215 |
/* DT_GNU_HASH hash function. Do not change this function; you will |
| 216 |
cause invalid hash tables to be generated. */ |
| 217 |
|
| 218 |
unsigned long |
| 219 |
bfd_elf_gnu_hash (const char *namearg) |
| 220 |
{ |
| 221 |
const unsigned char *name = (const unsigned char *) namearg; |
| 222 |
unsigned long h = 5381; |
| 223 |
unsigned char ch; |
| 224 |
|
| 225 |
while ((ch = *name++) != '\0') |
| 226 |
h = (h << 5) + h + ch; |
| 227 |
return h & 0xffffffff; |
| 228 |
} |
| 229 |
|
| 230 |
/* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with |
| 231 |
the object_id field of an elf_obj_tdata field set to OBJECT_ID. */ |
| 232 |
bfd_boolean |
| 233 |
bfd_elf_allocate_object (bfd *abfd, |
| 234 |
size_t object_size, |
| 235 |
enum elf_object_id object_id) |
| 236 |
{ |
| 237 |
BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata)); |
| 238 |
abfd->tdata.any = bfd_zalloc (abfd, object_size); |
| 239 |
if (abfd->tdata.any == NULL) |
| 240 |
return FALSE; |
| 241 |
|
| 242 |
elf_object_id (abfd) = object_id; |
| 243 |
elf_program_header_size (abfd) = (bfd_size_type) -1; |
| 244 |
return TRUE; |
| 245 |
} |
| 246 |
|
| 247 |
|
| 248 |
bfd_boolean |
| 249 |
bfd_elf_make_generic_object (bfd *abfd) |
| 250 |
{ |
| 251 |
return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata), |
| 252 |
GENERIC_ELF_TDATA); |
| 253 |
} |
| 254 |
|
| 255 |
bfd_boolean |
| 256 |
bfd_elf_mkcorefile (bfd *abfd) |
| 257 |
{ |
| 258 |
/* I think this can be done just like an object file. */ |
| 259 |
return bfd_elf_make_generic_object (abfd); |
| 260 |
} |
| 261 |
|
| 262 |
static char * |
| 263 |
bfd_elf_get_str_section (bfd *abfd, unsigned int shindex) |
| 264 |
{ |
| 265 |
Elf_Internal_Shdr **i_shdrp; |
| 266 |
bfd_byte *shstrtab = NULL; |
| 267 |
file_ptr offset; |
| 268 |
bfd_size_type shstrtabsize; |
| 269 |
|
| 270 |
i_shdrp = elf_elfsections (abfd); |
| 271 |
if (i_shdrp == 0 |
| 272 |
|| shindex >= elf_numsections (abfd) |
| 273 |
|| i_shdrp[shindex] == 0) |
| 274 |
return NULL; |
| 275 |
|
| 276 |
shstrtab = i_shdrp[shindex]->contents; |
| 277 |
if (shstrtab == NULL) |
| 278 |
{ |
| 279 |
/* No cached one, attempt to read, and cache what we read. */ |
| 280 |
offset = i_shdrp[shindex]->sh_offset; |
| 281 |
shstrtabsize = i_shdrp[shindex]->sh_size; |
| 282 |
|
| 283 |
/* Allocate and clear an extra byte at the end, to prevent crashes |
| 284 |
in case the string table is not terminated. */ |
| 285 |
if (shstrtabsize + 1 <= 1 |
| 286 |
|| (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL |
| 287 |
|| bfd_seek (abfd, offset, SEEK_SET) != 0) |
| 288 |
shstrtab = NULL; |
| 289 |
else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize) |
| 290 |
{ |
| 291 |
if (bfd_get_error () != bfd_error_system_call) |
| 292 |
bfd_set_error (bfd_error_file_truncated); |
| 293 |
shstrtab = NULL; |
| 294 |
/* Once we've failed to read it, make sure we don't keep |
| 295 |
trying. Otherwise, we'll keep allocating space for |
| 296 |
the string table over and over. */ |
| 297 |
i_shdrp[shindex]->sh_size = 0; |
| 298 |
} |
| 299 |
else |
| 300 |
shstrtab[shstrtabsize] = '\0'; |
| 301 |
i_shdrp[shindex]->contents = shstrtab; |
| 302 |
} |
| 303 |
return (char *) shstrtab; |
| 304 |
} |
| 305 |
|
| 306 |
char * |
| 307 |
bfd_elf_string_from_elf_section (bfd *abfd, |
| 308 |
unsigned int shindex, |
| 309 |
unsigned int strindex) |
| 310 |
{ |
| 311 |
Elf_Internal_Shdr *hdr; |
| 312 |
|
| 313 |
if (strindex == 0) |
| 314 |
return ""; |
| 315 |
|
| 316 |
if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd)) |
| 317 |
return NULL; |
| 318 |
|
| 319 |
hdr = elf_elfsections (abfd)[shindex]; |
| 320 |
|
| 321 |
if (hdr->contents == NULL |
| 322 |
&& bfd_elf_get_str_section (abfd, shindex) == NULL) |
| 323 |
return NULL; |
| 324 |
|
| 325 |
if (strindex >= hdr->sh_size) |
| 326 |
{ |
| 327 |
unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx; |
| 328 |
(*_bfd_error_handler) |
| 329 |
(_("%B: invalid string offset %u >= %lu for section `%s'"), |
| 330 |
abfd, strindex, (unsigned long) hdr->sh_size, |
| 331 |
(shindex == shstrndx && strindex == hdr->sh_name |
| 332 |
? ".shstrtab" |
| 333 |
: bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name))); |
| 334 |
return ""; |
| 335 |
} |
| 336 |
|
| 337 |
return ((char *) hdr->contents) + strindex; |
| 338 |
} |
| 339 |
|
| 340 |
/* Read and convert symbols to internal format. |
| 341 |
SYMCOUNT specifies the number of symbols to read, starting from |
| 342 |
symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF |
| 343 |
are non-NULL, they are used to store the internal symbols, external |
| 344 |
symbols, and symbol section index extensions, respectively. |
| 345 |
Returns a pointer to the internal symbol buffer (malloced if necessary) |
| 346 |
or NULL if there were no symbols or some kind of problem. */ |
| 347 |
|
| 348 |
Elf_Internal_Sym * |
| 349 |
bfd_elf_get_elf_syms (bfd *ibfd, |
| 350 |
Elf_Internal_Shdr *symtab_hdr, |
| 351 |
size_t symcount, |
| 352 |
size_t symoffset, |
| 353 |
Elf_Internal_Sym *intsym_buf, |
| 354 |
void *extsym_buf, |
| 355 |
Elf_External_Sym_Shndx *extshndx_buf) |
| 356 |
{ |
| 357 |
Elf_Internal_Shdr *shndx_hdr; |
| 358 |
void *alloc_ext; |
| 359 |
const bfd_byte *esym; |
| 360 |
Elf_External_Sym_Shndx *alloc_extshndx; |
| 361 |
Elf_External_Sym_Shndx *shndx; |
| 362 |
Elf_Internal_Sym *alloc_intsym; |
| 363 |
Elf_Internal_Sym *isym; |
| 364 |
Elf_Internal_Sym *isymend; |
| 365 |
const struct elf_backend_data *bed; |
| 366 |
size_t extsym_size; |
| 367 |
bfd_size_type amt; |
| 368 |
file_ptr pos; |
| 369 |
|
| 370 |
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) |
| 371 |
abort (); |
| 372 |
|
| 373 |
if (symcount == 0) |
| 374 |
return intsym_buf; |
| 375 |
|
| 376 |
/* Normal syms might have section extension entries. */ |
| 377 |
shndx_hdr = NULL; |
| 378 |
if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr) |
| 379 |
shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr; |
| 380 |
|
| 381 |
/* Read the symbols. */ |
| 382 |
alloc_ext = NULL; |
| 383 |
alloc_extshndx = NULL; |
| 384 |
alloc_intsym = NULL; |
| 385 |
bed = get_elf_backend_data (ibfd); |
| 386 |
extsym_size = bed->s->sizeof_sym; |
| 387 |
amt = symcount * extsym_size; |
| 388 |
pos = symtab_hdr->sh_offset + symoffset * extsym_size; |
| 389 |
if (extsym_buf == NULL) |
| 390 |
{ |
| 391 |
alloc_ext = bfd_malloc2 (symcount, extsym_size); |
| 392 |
extsym_buf = alloc_ext; |
| 393 |
} |
| 394 |
if (extsym_buf == NULL |
| 395 |
|| bfd_seek (ibfd, pos, SEEK_SET) != 0 |
| 396 |
|| bfd_bread (extsym_buf, amt, ibfd) != amt) |
| 397 |
{ |
| 398 |
intsym_buf = NULL; |
| 399 |
goto out; |
| 400 |
} |
| 401 |
|
| 402 |
if (shndx_hdr == NULL || shndx_hdr->sh_size == 0) |
| 403 |
extshndx_buf = NULL; |
| 404 |
else |
| 405 |
{ |
| 406 |
amt = symcount * sizeof (Elf_External_Sym_Shndx); |
| 407 |
pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx); |
| 408 |
if (extshndx_buf == NULL) |
| 409 |
{ |
| 410 |
alloc_extshndx = bfd_malloc2 (symcount, |
| 411 |
sizeof (Elf_External_Sym_Shndx)); |
| 412 |
extshndx_buf = alloc_extshndx; |
| 413 |
} |
| 414 |
if (extshndx_buf == NULL |
| 415 |
|| bfd_seek (ibfd, pos, SEEK_SET) != 0 |
| 416 |
|| bfd_bread (extshndx_buf, amt, ibfd) != amt) |
| 417 |
{ |
| 418 |
intsym_buf = NULL; |
| 419 |
goto out; |
| 420 |
} |
| 421 |
} |
| 422 |
|
| 423 |
if (intsym_buf == NULL) |
| 424 |
{ |
| 425 |
alloc_intsym = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym)); |
| 426 |
intsym_buf = alloc_intsym; |
| 427 |
if (intsym_buf == NULL) |
| 428 |
goto out; |
| 429 |
} |
| 430 |
|
| 431 |
/* Convert the symbols to internal form. */ |
| 432 |
isymend = intsym_buf + symcount; |
| 433 |
for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf; |
| 434 |
isym < isymend; |
| 435 |
esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL) |
| 436 |
if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym)) |
| 437 |
{ |
| 438 |
symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size; |
| 439 |
(*_bfd_error_handler) (_("%B symbol number %lu references " |
| 440 |
"nonexistent SHT_SYMTAB_SHNDX section"), |
| 441 |
ibfd, (unsigned long) symoffset); |
| 442 |
if (alloc_intsym != NULL) |
| 443 |
free (alloc_intsym); |
| 444 |
intsym_buf = NULL; |
| 445 |
goto out; |
| 446 |
} |
| 447 |
|
| 448 |
out: |
| 449 |
if (alloc_ext != NULL) |
| 450 |
free (alloc_ext); |
| 451 |
if (alloc_extshndx != NULL) |
| 452 |
free (alloc_extshndx); |
| 453 |
|
| 454 |
return intsym_buf; |
| 455 |
} |
| 456 |
|
| 457 |
/* Look up a symbol name. */ |
| 458 |
const char * |
| 459 |
bfd_elf_sym_name (bfd *abfd, |
| 460 |
Elf_Internal_Shdr *symtab_hdr, |
| 461 |
Elf_Internal_Sym *isym, |
| 462 |
asection *sym_sec) |
| 463 |
{ |
| 464 |
const char *name; |
| 465 |
unsigned int iname = isym->st_name; |
| 466 |
unsigned int shindex = symtab_hdr->sh_link; |
| 467 |
|
| 468 |
if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION |
| 469 |
/* Check for a bogus st_shndx to avoid crashing. */ |
| 470 |
&& isym->st_shndx < elf_numsections (abfd)) |
| 471 |
{ |
| 472 |
iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name; |
| 473 |
shindex = elf_elfheader (abfd)->e_shstrndx; |
| 474 |
} |
| 475 |
|
| 476 |
name = bfd_elf_string_from_elf_section (abfd, shindex, iname); |
| 477 |
if (name == NULL) |
| 478 |
name = "(null)"; |
| 479 |
else if (sym_sec && *name == '\0') |
| 480 |
name = bfd_section_name (abfd, sym_sec); |
| 481 |
|
| 482 |
return name; |
| 483 |
} |
| 484 |
|
| 485 |
/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP |
| 486 |
sections. The first element is the flags, the rest are section |
| 487 |
pointers. */ |
| 488 |
|
| 489 |
typedef union elf_internal_group { |
| 490 |
Elf_Internal_Shdr *shdr; |
| 491 |
unsigned int flags; |
| 492 |
} Elf_Internal_Group; |
| 493 |
|
| 494 |
/* Return the name of the group signature symbol. Why isn't the |
| 495 |
signature just a string? */ |
| 496 |
|
| 497 |
static const char * |
| 498 |
group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr) |
| 499 |
{ |
| 500 |
Elf_Internal_Shdr *hdr; |
| 501 |
unsigned char esym[sizeof (Elf64_External_Sym)]; |
| 502 |
Elf_External_Sym_Shndx eshndx; |
| 503 |
Elf_Internal_Sym isym; |
| 504 |
|
| 505 |
/* First we need to ensure the symbol table is available. Make sure |
| 506 |
that it is a symbol table section. */ |
| 507 |
if (ghdr->sh_link >= elf_numsections (abfd)) |
| 508 |
return NULL; |
| 509 |
hdr = elf_elfsections (abfd) [ghdr->sh_link]; |
| 510 |
if (hdr->sh_type != SHT_SYMTAB |
| 511 |
|| ! bfd_section_from_shdr (abfd, ghdr->sh_link)) |
| 512 |
return NULL; |
| 513 |
|
| 514 |
/* Go read the symbol. */ |
| 515 |
hdr = &elf_tdata (abfd)->symtab_hdr; |
| 516 |
if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info, |
| 517 |
&isym, esym, &eshndx) == NULL) |
| 518 |
return NULL; |
| 519 |
|
| 520 |
return bfd_elf_sym_name (abfd, hdr, &isym, NULL); |
| 521 |
} |
| 522 |
|
| 523 |
/* Set next_in_group list pointer, and group name for NEWSECT. */ |
| 524 |
|
| 525 |
static bfd_boolean |
| 526 |
setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect) |
| 527 |
{ |
| 528 |
unsigned int num_group = elf_tdata (abfd)->num_group; |
| 529 |
|
| 530 |
/* If num_group is zero, read in all SHT_GROUP sections. The count |
| 531 |
is set to -1 if there are no SHT_GROUP sections. */ |
| 532 |
if (num_group == 0) |
| 533 |
{ |
| 534 |
unsigned int i, shnum; |
| 535 |
|
| 536 |
/* First count the number of groups. If we have a SHT_GROUP |
| 537 |
section with just a flag word (ie. sh_size is 4), ignore it. */ |
| 538 |
shnum = elf_numsections (abfd); |
| 539 |
num_group = 0; |
| 540 |
|
| 541 |
#define IS_VALID_GROUP_SECTION_HEADER(shdr) \ |
| 542 |
( (shdr)->sh_type == SHT_GROUP \ |
| 543 |
&& (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \ |
| 544 |
&& (shdr)->sh_entsize == GRP_ENTRY_SIZE \ |
| 545 |
&& ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0) |
| 546 |
|
| 547 |
for (i = 0; i < shnum; i++) |
| 548 |
{ |
| 549 |
Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; |
| 550 |
|
| 551 |
if (IS_VALID_GROUP_SECTION_HEADER (shdr)) |
| 552 |
num_group += 1; |
| 553 |
} |
| 554 |
|
| 555 |
if (num_group == 0) |
| 556 |
{ |
| 557 |
num_group = (unsigned) -1; |
| 558 |
elf_tdata (abfd)->num_group = num_group; |
| 559 |
} |
| 560 |
else |
| 561 |
{ |
| 562 |
/* We keep a list of elf section headers for group sections, |
| 563 |
so we can find them quickly. */ |
| 564 |
bfd_size_type amt; |
| 565 |
|
| 566 |
elf_tdata (abfd)->num_group = num_group; |
| 567 |
elf_tdata (abfd)->group_sect_ptr |
| 568 |
= bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *)); |
| 569 |
if (elf_tdata (abfd)->group_sect_ptr == NULL) |
| 570 |
return FALSE; |
| 571 |
|
| 572 |
num_group = 0; |
| 573 |
for (i = 0; i < shnum; i++) |
| 574 |
{ |
| 575 |
Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; |
| 576 |
|
| 577 |
if (IS_VALID_GROUP_SECTION_HEADER (shdr)) |
| 578 |
{ |
| 579 |
unsigned char *src; |
| 580 |
Elf_Internal_Group *dest; |
| 581 |
|
| 582 |
/* Add to list of sections. */ |
| 583 |
elf_tdata (abfd)->group_sect_ptr[num_group] = shdr; |
| 584 |
num_group += 1; |
| 585 |
|
| 586 |
/* Read the raw contents. */ |
| 587 |
BFD_ASSERT (sizeof (*dest) >= 4); |
| 588 |
amt = shdr->sh_size * sizeof (*dest) / 4; |
| 589 |
shdr->contents = bfd_alloc2 (abfd, shdr->sh_size, |
| 590 |
sizeof (*dest) / 4); |
| 591 |
/* PR binutils/4110: Handle corrupt group headers. */ |
| 592 |
if (shdr->contents == NULL) |
| 593 |
{ |
| 594 |
_bfd_error_handler |
| 595 |
(_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size); |
| 596 |
bfd_set_error (bfd_error_bad_value); |
| 597 |
return FALSE; |
| 598 |
} |
| 599 |
|
| 600 |
memset (shdr->contents, 0, amt); |
| 601 |
|
| 602 |
if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0 |
| 603 |
|| (bfd_bread (shdr->contents, shdr->sh_size, abfd) |
| 604 |
!= shdr->sh_size)) |
| 605 |
return FALSE; |
| 606 |
|
| 607 |
/* Translate raw contents, a flag word followed by an |
| 608 |
array of elf section indices all in target byte order, |
| 609 |
to the flag word followed by an array of elf section |
| 610 |
pointers. */ |
| 611 |
src = shdr->contents + shdr->sh_size; |
| 612 |
dest = (Elf_Internal_Group *) (shdr->contents + amt); |
| 613 |
while (1) |
| 614 |
{ |
| 615 |
unsigned int idx; |
| 616 |
|
| 617 |
src -= 4; |
| 618 |
--dest; |
| 619 |
idx = H_GET_32 (abfd, src); |
| 620 |
if (src == shdr->contents) |
| 621 |
{ |
| 622 |
dest->flags = idx; |
| 623 |
if (shdr->bfd_section != NULL && (idx & GRP_COMDAT)) |
| 624 |
shdr->bfd_section->flags |
| 625 |
|= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; |
| 626 |
break; |
| 627 |
} |
| 628 |
if (idx >= shnum) |
| 629 |
{ |
| 630 |
((*_bfd_error_handler) |
| 631 |
(_("%B: invalid SHT_GROUP entry"), abfd)); |
| 632 |
idx = 0; |
| 633 |
} |
| 634 |
dest->shdr = elf_elfsections (abfd)[idx]; |
| 635 |
} |
| 636 |
} |
| 637 |
} |
| 638 |
} |
| 639 |
} |
| 640 |
|
| 641 |
if (num_group != (unsigned) -1) |
| 642 |
{ |
| 643 |
unsigned int i; |
| 644 |
|
| 645 |
for (i = 0; i < num_group; i++) |
| 646 |
{ |
| 647 |
Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; |
| 648 |
Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents; |
| 649 |
unsigned int n_elt = shdr->sh_size / 4; |
| 650 |
|
| 651 |
/* Look through this group's sections to see if current |
| 652 |
section is a member. */ |
| 653 |
while (--n_elt != 0) |
| 654 |
if ((++idx)->shdr == hdr) |
| 655 |
{ |
| 656 |
asection *s = NULL; |
| 657 |
|
| 658 |
/* We are a member of this group. Go looking through |
| 659 |
other members to see if any others are linked via |
| 660 |
next_in_group. */ |
| 661 |
idx = (Elf_Internal_Group *) shdr->contents; |
| 662 |
n_elt = shdr->sh_size / 4; |
| 663 |
while (--n_elt != 0) |
| 664 |
if ((s = (++idx)->shdr->bfd_section) != NULL |
| 665 |
&& elf_next_in_group (s) != NULL) |
| 666 |
break; |
| 667 |
if (n_elt != 0) |
| 668 |
{ |
| 669 |
/* Snarf the group name from other member, and |
| 670 |
insert current section in circular list. */ |
| 671 |
elf_group_name (newsect) = elf_group_name (s); |
| 672 |
elf_next_in_group (newsect) = elf_next_in_group (s); |
| 673 |
elf_next_in_group (s) = newsect; |
| 674 |
} |
| 675 |
else |
| 676 |
{ |
| 677 |
const char *gname; |
| 678 |
|
| 679 |
gname = group_signature (abfd, shdr); |
| 680 |
if (gname == NULL) |
| 681 |
return FALSE; |
| 682 |
elf_group_name (newsect) = gname; |
| 683 |
|
| 684 |
/* Start a circular list with one element. */ |
| 685 |
elf_next_in_group (newsect) = newsect; |
| 686 |
} |
| 687 |
|
| 688 |
/* If the group section has been created, point to the |
| 689 |
new member. */ |
| 690 |
if (shdr->bfd_section != NULL) |
| 691 |
elf_next_in_group (shdr->bfd_section) = newsect; |
| 692 |
|
| 693 |
i = num_group - 1; |
| 694 |
break; |
| 695 |
} |
| 696 |
} |
| 697 |
} |
| 698 |
|
| 699 |
if (elf_group_name (newsect) == NULL) |
| 700 |
{ |
| 701 |
(*_bfd_error_handler) (_("%B: no group info for section %A"), |
| 702 |
abfd, newsect); |
| 703 |
} |
| 704 |
return TRUE; |
| 705 |
} |
| 706 |
|
| 707 |
bfd_boolean |
| 708 |
_bfd_elf_setup_sections (bfd *abfd) |
| 709 |
{ |
| 710 |
unsigned int i; |
| 711 |
unsigned int num_group = elf_tdata (abfd)->num_group; |
| 712 |
bfd_boolean result = TRUE; |
| 713 |
asection *s; |
| 714 |
|
| 715 |
/* Process SHF_LINK_ORDER. */ |
| 716 |
for (s = abfd->sections; s != NULL; s = s->next) |
| 717 |
{ |
| 718 |
Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr; |
| 719 |
if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0) |
| 720 |
{ |
| 721 |
unsigned int elfsec = this_hdr->sh_link; |
| 722 |
/* FIXME: The old Intel compiler and old strip/objcopy may |
| 723 |
not set the sh_link or sh_info fields. Hence we could |
| 724 |
get the situation where elfsec is 0. */ |
| 725 |
if (elfsec == 0) |
| 726 |
{ |
| 727 |
const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 728 |
if (bed->link_order_error_handler) |
| 729 |
bed->link_order_error_handler |
| 730 |
(_("%B: warning: sh_link not set for section `%A'"), |
| 731 |
abfd, s); |
| 732 |
} |
| 733 |
else |
| 734 |
{ |
| 735 |
asection *link = NULL; |
| 736 |
|
| 737 |
if (elfsec < elf_numsections (abfd)) |
| 738 |
{ |
| 739 |
this_hdr = elf_elfsections (abfd)[elfsec]; |
| 740 |
link = this_hdr->bfd_section; |
| 741 |
} |
| 742 |
|
| 743 |
/* PR 1991, 2008: |
| 744 |
Some strip/objcopy may leave an incorrect value in |
| 745 |
sh_link. We don't want to proceed. */ |
| 746 |
if (link == NULL) |
| 747 |
{ |
| 748 |
(*_bfd_error_handler) |
| 749 |
(_("%B: sh_link [%d] in section `%A' is incorrect"), |
| 750 |
s->owner, s, elfsec); |
| 751 |
result = FALSE; |
| 752 |
} |
| 753 |
|
| 754 |
elf_linked_to_section (s) = link; |
| 755 |
} |
| 756 |
} |
| 757 |
} |
| 758 |
|
| 759 |
/* Process section groups. */ |
| 760 |
if (num_group == (unsigned) -1) |
| 761 |
return result; |
| 762 |
|
| 763 |
for (i = 0; i < num_group; i++) |
| 764 |
{ |
| 765 |
Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; |
| 766 |
Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents; |
| 767 |
unsigned int n_elt = shdr->sh_size / 4; |
| 768 |
|
| 769 |
while (--n_elt != 0) |
| 770 |
if ((++idx)->shdr->bfd_section) |
| 771 |
elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section; |
| 772 |
else if (idx->shdr->sh_type == SHT_RELA |
| 773 |
|| idx->shdr->sh_type == SHT_REL) |
| 774 |
/* We won't include relocation sections in section groups in |
| 775 |
output object files. We adjust the group section size here |
| 776 |
so that relocatable link will work correctly when |
| 777 |
relocation sections are in section group in input object |
| 778 |
files. */ |
| 779 |
shdr->bfd_section->size -= 4; |
| 780 |
else |
| 781 |
{ |
| 782 |
/* There are some unknown sections in the group. */ |
| 783 |
(*_bfd_error_handler) |
| 784 |
(_("%B: unknown [%d] section `%s' in group [%s]"), |
| 785 |
abfd, |
| 786 |
(unsigned int) idx->shdr->sh_type, |
| 787 |
bfd_elf_string_from_elf_section (abfd, |
| 788 |
(elf_elfheader (abfd) |
| 789 |
->e_shstrndx), |
| 790 |
idx->shdr->sh_name), |
| 791 |
shdr->bfd_section->name); |
| 792 |
result = FALSE; |
| 793 |
} |
| 794 |
} |
| 795 |
return result; |
| 796 |
} |
| 797 |
|
| 798 |
bfd_boolean |
| 799 |
bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec) |
| 800 |
{ |
| 801 |
return elf_next_in_group (sec) != NULL; |
| 802 |
} |
| 803 |
|
| 804 |
/* Make a BFD section from an ELF section. We store a pointer to the |
| 805 |
BFD section in the bfd_section field of the header. */ |
| 806 |
|
| 807 |
bfd_boolean |
| 808 |
_bfd_elf_make_section_from_shdr (bfd *abfd, |
| 809 |
Elf_Internal_Shdr *hdr, |
| 810 |
const char *name, |
| 811 |
int shindex) |
| 812 |
{ |
| 813 |
asection *newsect; |
| 814 |
flagword flags; |
| 815 |
const struct elf_backend_data *bed; |
| 816 |
|
| 817 |
if (hdr->bfd_section != NULL) |
| 818 |
{ |
| 819 |
BFD_ASSERT (strcmp (name, |
| 820 |
bfd_get_section_name (abfd, hdr->bfd_section)) == 0); |
| 821 |
return TRUE; |
| 822 |
} |
| 823 |
|
| 824 |
newsect = bfd_make_section_anyway (abfd, name); |
| 825 |
if (newsect == NULL) |
| 826 |
return FALSE; |
| 827 |
|
| 828 |
hdr->bfd_section = newsect; |
| 829 |
elf_section_data (newsect)->this_hdr = *hdr; |
| 830 |
elf_section_data (newsect)->this_idx = shindex; |
| 831 |
|
| 832 |
/* Always use the real type/flags. */ |
| 833 |
elf_section_type (newsect) = hdr->sh_type; |
| 834 |
elf_section_flags (newsect) = hdr->sh_flags; |
| 835 |
|
| 836 |
newsect->filepos = hdr->sh_offset; |
| 837 |
|
| 838 |
if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr) |
| 839 |
|| ! bfd_set_section_size (abfd, newsect, hdr->sh_size) |
| 840 |
|| ! bfd_set_section_alignment (abfd, newsect, |
| 841 |
bfd_log2 (hdr->sh_addralign))) |
| 842 |
return FALSE; |
| 843 |
|
| 844 |
flags = SEC_NO_FLAGS; |
| 845 |
if (hdr->sh_type != SHT_NOBITS) |
| 846 |
flags |= SEC_HAS_CONTENTS; |
| 847 |
if (hdr->sh_type == SHT_GROUP) |
| 848 |
flags |= SEC_GROUP | SEC_EXCLUDE; |
| 849 |
if ((hdr->sh_flags & SHF_ALLOC) != 0) |
| 850 |
{ |
| 851 |
flags |= SEC_ALLOC; |
| 852 |
if (hdr->sh_type != SHT_NOBITS) |
| 853 |
flags |= SEC_LOAD; |
| 854 |
} |
| 855 |
if ((hdr->sh_flags & SHF_WRITE) == 0) |
| 856 |
flags |= SEC_READONLY; |
| 857 |
if ((hdr->sh_flags & SHF_EXECINSTR) != 0) |
| 858 |
flags |= SEC_CODE; |
| 859 |
else if ((flags & SEC_LOAD) != 0) |
| 860 |
flags |= SEC_DATA; |
| 861 |
if ((hdr->sh_flags & SHF_MERGE) != 0) |
| 862 |
{ |
| 863 |
flags |= SEC_MERGE; |
| 864 |
newsect->entsize = hdr->sh_entsize; |
| 865 |
if ((hdr->sh_flags & SHF_STRINGS) != 0) |
| 866 |
flags |= SEC_STRINGS; |
| 867 |
} |
| 868 |
if (hdr->sh_flags & SHF_GROUP) |
| 869 |
if (!setup_group (abfd, hdr, newsect)) |
| 870 |
return FALSE; |
| 871 |
if ((hdr->sh_flags & SHF_TLS) != 0) |
| 872 |
flags |= SEC_THREAD_LOCAL; |
| 873 |
|
| 874 |
if ((flags & SEC_ALLOC) == 0) |
| 875 |
{ |
| 876 |
/* The debugging sections appear to be recognized only by name, |
| 877 |
not any sort of flag. Their SEC_ALLOC bits are cleared. */ |
| 878 |
static const struct |
| 879 |
{ |
| 880 |
const char *name; |
| 881 |
int len; |
| 882 |
} debug_sections [] = |
| 883 |
{ |
| 884 |
{ STRING_COMMA_LEN ("debug") }, /* 'd' */ |
| 885 |
{ NULL, 0 }, /* 'e' */ |
| 886 |
{ NULL, 0 }, /* 'f' */ |
| 887 |
{ STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */ |
| 888 |
{ NULL, 0 }, /* 'h' */ |
| 889 |
{ NULL, 0 }, /* 'i' */ |
| 890 |
{ NULL, 0 }, /* 'j' */ |
| 891 |
{ NULL, 0 }, /* 'k' */ |
| 892 |
{ STRING_COMMA_LEN ("line") }, /* 'l' */ |
| 893 |
{ NULL, 0 }, /* 'm' */ |
| 894 |
{ NULL, 0 }, /* 'n' */ |
| 895 |
{ NULL, 0 }, /* 'o' */ |
| 896 |
{ NULL, 0 }, /* 'p' */ |
| 897 |
{ NULL, 0 }, /* 'q' */ |
| 898 |
{ NULL, 0 }, /* 'r' */ |
| 899 |
{ STRING_COMMA_LEN ("stab") }, /* 's' */ |
| 900 |
{ NULL, 0 }, /* 't' */ |
| 901 |
{ NULL, 0 }, /* 'u' */ |
| 902 |
{ NULL, 0 }, /* 'v' */ |
| 903 |
{ NULL, 0 }, /* 'w' */ |
| 904 |
{ NULL, 0 }, /* 'x' */ |
| 905 |
{ NULL, 0 }, /* 'y' */ |
| 906 |
{ STRING_COMMA_LEN ("zdebug") } /* 'z' */ |
| 907 |
}; |
| 908 |
|
| 909 |
if (name [0] == '.') |
| 910 |
{ |
| 911 |
int i = name [1] - 'd'; |
| 912 |
if (i >= 0 |
| 913 |
&& i < (int) ARRAY_SIZE (debug_sections) |
| 914 |
&& debug_sections [i].name != NULL |
| 915 |
&& strncmp (&name [1], debug_sections [i].name, |
| 916 |
debug_sections [i].len) == 0) |
| 917 |
flags |= SEC_DEBUGGING; |
| 918 |
} |
| 919 |
} |
| 920 |
|
| 921 |
/* As a GNU extension, if the name begins with .gnu.linkonce, we |
| 922 |
only link a single copy of the section. This is used to support |
| 923 |
g++. g++ will emit each template expansion in its own section. |
| 924 |
The symbols will be defined as weak, so that multiple definitions |
| 925 |
are permitted. The GNU linker extension is to actually discard |
| 926 |
all but one of the sections. */ |
| 927 |
if (CONST_STRNEQ (name, ".gnu.linkonce") |
| 928 |
&& elf_next_in_group (newsect) == NULL) |
| 929 |
flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; |
| 930 |
|
| 931 |
bed = get_elf_backend_data (abfd); |
| 932 |
if (bed->elf_backend_section_flags) |
| 933 |
if (! bed->elf_backend_section_flags (&flags, hdr)) |
| 934 |
return FALSE; |
| 935 |
|
| 936 |
if (! bfd_set_section_flags (abfd, newsect, flags)) |
| 937 |
return FALSE; |
| 938 |
|
| 939 |
/* We do not parse the PT_NOTE segments as we are interested even in the |
| 940 |
separate debug info files which may have the segments offsets corrupted. |
| 941 |
PT_NOTEs from the core files are currently not parsed using BFD. */ |
| 942 |
if (hdr->sh_type == SHT_NOTE) |
| 943 |
{ |
| 944 |
bfd_byte *contents; |
| 945 |
|
| 946 |
if (!bfd_malloc_and_get_section (abfd, newsect, &contents)) |
| 947 |
return FALSE; |
| 948 |
|
| 949 |
elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1); |
| 950 |
free (contents); |
| 951 |
} |
| 952 |
|
| 953 |
if ((flags & SEC_ALLOC) != 0) |
| 954 |
{ |
| 955 |
Elf_Internal_Phdr *phdr; |
| 956 |
unsigned int i, nload; |
| 957 |
|
| 958 |
/* Some ELF linkers produce binaries with all the program header |
| 959 |
p_paddr fields zero. If we have such a binary with more than |
| 960 |
one PT_LOAD header, then leave the section lma equal to vma |
| 961 |
so that we don't create sections with overlapping lma. */ |
| 962 |
phdr = elf_tdata (abfd)->phdr; |
| 963 |
for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) |
| 964 |
if (phdr->p_paddr != 0) |
| 965 |
break; |
| 966 |
else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0) |
| 967 |
++nload; |
| 968 |
if (i >= elf_elfheader (abfd)->e_phnum && nload > 1) |
| 969 |
return TRUE; |
| 970 |
|
| 971 |
phdr = elf_tdata (abfd)->phdr; |
| 972 |
for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) |
| 973 |
{ |
| 974 |
/* This section is part of this segment if its file |
| 975 |
offset plus size lies within the segment's memory |
| 976 |
span and, if the section is loaded, the extent of the |
| 977 |
loaded data lies within the extent of the segment. |
| 978 |
|
| 979 |
Note - we used to check the p_paddr field as well, and |
| 980 |
refuse to set the LMA if it was 0. This is wrong |
| 981 |
though, as a perfectly valid initialised segment can |
| 982 |
have a p_paddr of zero. Some architectures, eg ARM, |
| 983 |
place special significance on the address 0 and |
| 984 |
executables need to be able to have a segment which |
| 985 |
covers this address. */ |
| 986 |
if (phdr->p_type == PT_LOAD |
| 987 |
&& (bfd_vma) hdr->sh_offset >= phdr->p_offset |
| 988 |
&& (hdr->sh_offset + hdr->sh_size |
| 989 |
<= phdr->p_offset + phdr->p_memsz) |
| 990 |
&& ((flags & SEC_LOAD) == 0 |
| 991 |
|| (hdr->sh_offset + hdr->sh_size |
| 992 |
<= phdr->p_offset + phdr->p_filesz))) |
| 993 |
{ |
| 994 |
if ((flags & SEC_LOAD) == 0) |
| 995 |
newsect->lma = (phdr->p_paddr |
| 996 |
+ hdr->sh_addr - phdr->p_vaddr); |
| 997 |
else |
| 998 |
/* We used to use the same adjustment for SEC_LOAD |
| 999 |
sections, but that doesn't work if the segment |
| 1000 |
is packed with code from multiple VMAs. |
| 1001 |
Instead we calculate the section LMA based on |
| 1002 |
the segment LMA. It is assumed that the |
| 1003 |
segment will contain sections with contiguous |
| 1004 |
LMAs, even if the VMAs are not. */ |
| 1005 |
newsect->lma = (phdr->p_paddr |
| 1006 |
+ hdr->sh_offset - phdr->p_offset); |
| 1007 |
|
| 1008 |
/* With contiguous segments, we can't tell from file |
| 1009 |
offsets whether a section with zero size should |
| 1010 |
be placed at the end of one segment or the |
| 1011 |
beginning of the next. Decide based on vaddr. */ |
| 1012 |
if (hdr->sh_addr >= phdr->p_vaddr |
| 1013 |
&& (hdr->sh_addr + hdr->sh_size |
| 1014 |
<= phdr->p_vaddr + phdr->p_memsz)) |
| 1015 |
break; |
| 1016 |
} |
| 1017 |
} |
| 1018 |
} |
| 1019 |
|
| 1020 |
return TRUE; |
| 1021 |
} |
| 1022 |
|
| 1023 |
const char *const bfd_elf_section_type_names[] = { |
| 1024 |
"SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB", |
| 1025 |
"SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE", |
| 1026 |
"SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM", |
| 1027 |
}; |
| 1028 |
|
| 1029 |
/* ELF relocs are against symbols. If we are producing relocatable |
| 1030 |
output, and the reloc is against an external symbol, and nothing |
| 1031 |
has given us any additional addend, the resulting reloc will also |
| 1032 |
be against the same symbol. In such a case, we don't want to |
| 1033 |
change anything about the way the reloc is handled, since it will |
| 1034 |
all be done at final link time. Rather than put special case code |
| 1035 |
into bfd_perform_relocation, all the reloc types use this howto |
| 1036 |
function. It just short circuits the reloc if producing |
| 1037 |
relocatable output against an external symbol. */ |
| 1038 |
|
| 1039 |
bfd_reloc_status_type |
| 1040 |
bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
| 1041 |
arelent *reloc_entry, |
| 1042 |
asymbol *symbol, |
| 1043 |
void *data ATTRIBUTE_UNUSED, |
| 1044 |
asection *input_section, |
| 1045 |
bfd *output_bfd, |
| 1046 |
char **error_message ATTRIBUTE_UNUSED) |
| 1047 |
{ |
| 1048 |
if (output_bfd != NULL |
| 1049 |
&& (symbol->flags & BSF_SECTION_SYM) == 0 |
| 1050 |
&& (! reloc_entry->howto->partial_inplace |
| 1051 |
|| reloc_entry->addend == 0)) |
| 1052 |
{ |
| 1053 |
reloc_entry->address += input_section->output_offset; |
| 1054 |
return bfd_reloc_ok; |
| 1055 |
} |
| 1056 |
|
| 1057 |
return bfd_reloc_continue; |
| 1058 |
} |
| 1059 |
|
| 1060 |
/* Copy the program header and other data from one object module to |
| 1061 |
another. */ |
| 1062 |
|
| 1063 |
bfd_boolean |
| 1064 |
_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd) |
| 1065 |
{ |
| 1066 |
if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| 1067 |
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| 1068 |
return TRUE; |
| 1069 |
|
| 1070 |
BFD_ASSERT (!elf_flags_init (obfd) |
| 1071 |
|| (elf_elfheader (obfd)->e_flags |
| 1072 |
== elf_elfheader (ibfd)->e_flags)); |
| 1073 |
|
| 1074 |
elf_gp (obfd) = elf_gp (ibfd); |
| 1075 |
elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; |
| 1076 |
elf_flags_init (obfd) = TRUE; |
| 1077 |
|
| 1078 |
/* Copy object attributes. */ |
| 1079 |
_bfd_elf_copy_obj_attributes (ibfd, obfd); |
| 1080 |
|
| 1081 |
return TRUE; |
| 1082 |
} |
| 1083 |
|
| 1084 |
static const char * |
| 1085 |
get_segment_type (unsigned int p_type) |
| 1086 |
{ |
| 1087 |
const char *pt; |
| 1088 |
switch (p_type) |
| 1089 |
{ |
| 1090 |
case PT_NULL: pt = "NULL"; break; |
| 1091 |
case PT_LOAD: pt = "LOAD"; break; |
| 1092 |
case PT_DYNAMIC: pt = "DYNAMIC"; break; |
| 1093 |
case PT_INTERP: pt = "INTERP"; break; |
| 1094 |
case PT_NOTE: pt = "NOTE"; break; |
| 1095 |
case PT_SHLIB: pt = "SHLIB"; break; |
| 1096 |
case PT_PHDR: pt = "PHDR"; break; |
| 1097 |
case PT_TLS: pt = "TLS"; break; |
| 1098 |
case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break; |
| 1099 |
case PT_GNU_STACK: pt = "STACK"; break; |
| 1100 |
case PT_GNU_RELRO: pt = "RELRO"; break; |
| 1101 |
default: pt = NULL; break; |
| 1102 |
} |
| 1103 |
return pt; |
| 1104 |
} |
| 1105 |
|
| 1106 |
/* Print out the program headers. */ |
| 1107 |
|
| 1108 |
bfd_boolean |
| 1109 |
_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg) |
| 1110 |
{ |
| 1111 |
FILE *f = farg; |
| 1112 |
Elf_Internal_Phdr *p; |
| 1113 |
asection *s; |
| 1114 |
bfd_byte *dynbuf = NULL; |
| 1115 |
|
| 1116 |
p = elf_tdata (abfd)->phdr; |
| 1117 |
if (p != NULL) |
| 1118 |
{ |
| 1119 |
unsigned int i, c; |
| 1120 |
|
| 1121 |
fprintf (f, _("\nProgram Header:\n")); |
| 1122 |
c = elf_elfheader (abfd)->e_phnum; |
| 1123 |
for (i = 0; i < c; i++, p++) |
| 1124 |
{ |
| 1125 |
const char *pt = get_segment_type (p->p_type); |
| 1126 |
char buf[20]; |
| 1127 |
|
| 1128 |
if (pt == NULL) |
| 1129 |
{ |
| 1130 |
sprintf (buf, "0x%lx", p->p_type); |
| 1131 |
pt = buf; |
| 1132 |
} |
| 1133 |
fprintf (f, "%8s off 0x", pt); |
| 1134 |
bfd_fprintf_vma (abfd, f, p->p_offset); |
| 1135 |
fprintf (f, " vaddr 0x"); |
| 1136 |
bfd_fprintf_vma (abfd, f, p->p_vaddr); |
| 1137 |
fprintf (f, " paddr 0x"); |
| 1138 |
bfd_fprintf_vma (abfd, f, p->p_paddr); |
| 1139 |
fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align)); |
| 1140 |
fprintf (f, " filesz 0x"); |
| 1141 |
bfd_fprintf_vma (abfd, f, p->p_filesz); |
| 1142 |
fprintf (f, " memsz 0x"); |
| 1143 |
bfd_fprintf_vma (abfd, f, p->p_memsz); |
| 1144 |
fprintf (f, " flags %c%c%c", |
| 1145 |
(p->p_flags & PF_R) != 0 ? 'r' : '-', |
| 1146 |
(p->p_flags & PF_W) != 0 ? 'w' : '-', |
| 1147 |
(p->p_flags & PF_X) != 0 ? 'x' : '-'); |
| 1148 |
if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0) |
| 1149 |
fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)); |
| 1150 |
fprintf (f, "\n"); |
| 1151 |
} |
| 1152 |
} |
| 1153 |
|
| 1154 |
s = bfd_get_section_by_name (abfd, ".dynamic"); |
| 1155 |
if (s != NULL) |
| 1156 |
{ |
| 1157 |
unsigned int elfsec; |
| 1158 |
unsigned long shlink; |
| 1159 |
bfd_byte *extdyn, *extdynend; |
| 1160 |
size_t extdynsize; |
| 1161 |
void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); |
| 1162 |
|
| 1163 |
fprintf (f, _("\nDynamic Section:\n")); |
| 1164 |
|
| 1165 |
if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) |
| 1166 |
goto error_return; |
| 1167 |
|
| 1168 |
elfsec = _bfd_elf_section_from_bfd_section (abfd, s); |
| 1169 |
if (elfsec == SHN_BAD) |
| 1170 |
goto error_return; |
| 1171 |
shlink = elf_elfsections (abfd)[elfsec]->sh_link; |
| 1172 |
|
| 1173 |
extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; |
| 1174 |
swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; |
| 1175 |
|
| 1176 |
extdyn = dynbuf; |
| 1177 |
extdynend = extdyn + s->size; |
| 1178 |
for (; extdyn < extdynend; extdyn += extdynsize) |
| 1179 |
{ |
| 1180 |
Elf_Internal_Dyn dyn; |
| 1181 |
const char *name = ""; |
| 1182 |
char ab[20]; |
| 1183 |
bfd_boolean stringp; |
| 1184 |
const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 1185 |
|
| 1186 |
(*swap_dyn_in) (abfd, extdyn, &dyn); |
| 1187 |
|
| 1188 |
if (dyn.d_tag == DT_NULL) |
| 1189 |
break; |
| 1190 |
|
| 1191 |
stringp = FALSE; |
| 1192 |
switch (dyn.d_tag) |
| 1193 |
{ |
| 1194 |
default: |
| 1195 |
if (bed->elf_backend_get_target_dtag) |
| 1196 |
name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag); |
| 1197 |
|
| 1198 |
if (!strcmp (name, "")) |
| 1199 |
{ |
| 1200 |
sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag); |
| 1201 |
name = ab; |
| 1202 |
} |
| 1203 |
break; |
| 1204 |
|
| 1205 |
case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break; |
| 1206 |
case DT_PLTRELSZ: name = "PLTRELSZ"; break; |
| 1207 |
case DT_PLTGOT: name = "PLTGOT"; break; |
| 1208 |
case DT_HASH: name = "HASH"; break; |
| 1209 |
case DT_STRTAB: name = "STRTAB"; break; |
| 1210 |
case DT_SYMTAB: name = "SYMTAB"; break; |
| 1211 |
case DT_RELA: name = "RELA"; break; |
| 1212 |
case DT_RELASZ: name = "RELASZ"; break; |
| 1213 |
case DT_RELAENT: name = "RELAENT"; break; |
| 1214 |
case DT_STRSZ: name = "STRSZ"; break; |
| 1215 |
case DT_SYMENT: name = "SYMENT"; break; |
| 1216 |
case DT_INIT: name = "INIT"; break; |
| 1217 |
case DT_FINI: name = "FINI"; break; |
| 1218 |
case DT_SONAME: name = "SONAME"; stringp = TRUE; break; |
| 1219 |
case DT_RPATH: name = "RPATH"; stringp = TRUE; break; |
| 1220 |
case DT_SYMBOLIC: name = "SYMBOLIC"; break; |
| 1221 |
case DT_REL: name = "REL"; break; |
| 1222 |
case DT_RELSZ: name = "RELSZ"; break; |
| 1223 |
case DT_RELENT: name = "RELENT"; break; |
| 1224 |
case DT_PLTREL: name = "PLTREL"; break; |
| 1225 |
case DT_DEBUG: name = "DEBUG"; break; |
| 1226 |
case DT_TEXTREL: name = "TEXTREL"; break; |
| 1227 |
case DT_JMPREL: name = "JMPREL"; break; |
| 1228 |
case DT_BIND_NOW: name = "BIND_NOW"; break; |
| 1229 |
case DT_INIT_ARRAY: name = "INIT_ARRAY"; break; |
| 1230 |
case DT_FINI_ARRAY: name = "FINI_ARRAY"; break; |
| 1231 |
case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break; |
| 1232 |
case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break; |
| 1233 |
case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break; |
| 1234 |
case DT_FLAGS: name = "FLAGS"; break; |
| 1235 |
case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break; |
| 1236 |
case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break; |
| 1237 |
case DT_CHECKSUM: name = "CHECKSUM"; break; |
| 1238 |
case DT_PLTPADSZ: name = "PLTPADSZ"; break; |
| 1239 |
case DT_MOVEENT: name = "MOVEENT"; break; |
| 1240 |
case DT_MOVESZ: name = "MOVESZ"; break; |
| 1241 |
case DT_FEATURE: name = "FEATURE"; break; |
| 1242 |
case DT_POSFLAG_1: name = "POSFLAG_1"; break; |
| 1243 |
case DT_SYMINSZ: name = "SYMINSZ"; break; |
| 1244 |
case DT_SYMINENT: name = "SYMINENT"; break; |
| 1245 |
case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break; |
| 1246 |
case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break; |
| 1247 |
case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break; |
| 1248 |
case DT_PLTPAD: name = "PLTPAD"; break; |
| 1249 |
case DT_MOVETAB: name = "MOVETAB"; break; |
| 1250 |
case DT_SYMINFO: name = "SYMINFO"; break; |
| 1251 |
case DT_RELACOUNT: name = "RELACOUNT"; break; |
| 1252 |
case DT_RELCOUNT: name = "RELCOUNT"; break; |
| 1253 |
case DT_FLAGS_1: name = "FLAGS_1"; break; |
| 1254 |
case DT_VERSYM: name = "VERSYM"; break; |
| 1255 |
case DT_VERDEF: name = "VERDEF"; break; |
| 1256 |
case DT_VERDEFNUM: name = "VERDEFNUM"; break; |
| 1257 |
case DT_VERNEED: name = "VERNEED"; break; |
| 1258 |
case DT_VERNEEDNUM: name = "VERNEEDNUM"; break; |
| 1259 |
case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break; |
| 1260 |
case DT_USED: name = "USED"; break; |
| 1261 |
case DT_FILTER: name = "FILTER"; stringp = TRUE; break; |
| 1262 |
case DT_GNU_HASH: name = "GNU_HASH"; break; |
| 1263 |
} |
| 1264 |
|
| 1265 |
fprintf (f, " %-20s ", name); |
| 1266 |
if (! stringp) |
| 1267 |
{ |
| 1268 |
fprintf (f, "0x"); |
| 1269 |
bfd_fprintf_vma (abfd, f, dyn.d_un.d_val); |
| 1270 |
} |
| 1271 |
else |
| 1272 |
{ |
| 1273 |
const char *string; |
| 1274 |
unsigned int tagv = dyn.d_un.d_val; |
| 1275 |
|
| 1276 |
string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
| 1277 |
if (string == NULL) |
| 1278 |
goto error_return; |
| 1279 |
fprintf (f, "%s", string); |
| 1280 |
} |
| 1281 |
fprintf (f, "\n"); |
| 1282 |
} |
| 1283 |
|
| 1284 |
free (dynbuf); |
| 1285 |
dynbuf = NULL; |
| 1286 |
} |
| 1287 |
|
| 1288 |
if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL) |
| 1289 |
|| (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL)) |
| 1290 |
{ |
| 1291 |
if (! _bfd_elf_slurp_version_tables (abfd, FALSE)) |
| 1292 |
return FALSE; |
| 1293 |
} |
| 1294 |
|
| 1295 |
if (elf_dynverdef (abfd) != 0) |
| 1296 |
{ |
| 1297 |
Elf_Internal_Verdef *t; |
| 1298 |
|
| 1299 |
fprintf (f, _("\nVersion definitions:\n")); |
| 1300 |
for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef) |
| 1301 |
{ |
| 1302 |
fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx, |
| 1303 |
t->vd_flags, t->vd_hash, |
| 1304 |
t->vd_nodename ? t->vd_nodename : "<corrupt>"); |
| 1305 |
if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL) |
| 1306 |
{ |
| 1307 |
Elf_Internal_Verdaux *a; |
| 1308 |
|
| 1309 |
fprintf (f, "\t"); |
| 1310 |
for (a = t->vd_auxptr->vda_nextptr; |
| 1311 |
a != NULL; |
| 1312 |
a = a->vda_nextptr) |
| 1313 |
fprintf (f, "%s ", |
| 1314 |
a->vda_nodename ? a->vda_nodename : "<corrupt>"); |
| 1315 |
fprintf (f, "\n"); |
| 1316 |
} |
| 1317 |
} |
| 1318 |
} |
| 1319 |
|
| 1320 |
if (elf_dynverref (abfd) != 0) |
| 1321 |
{ |
| 1322 |
Elf_Internal_Verneed *t; |
| 1323 |
|
| 1324 |
fprintf (f, _("\nVersion References:\n")); |
| 1325 |
for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref) |
| 1326 |
{ |
| 1327 |
Elf_Internal_Vernaux *a; |
| 1328 |
|
| 1329 |
fprintf (f, _(" required from %s:\n"), |
| 1330 |
t->vn_filename ? t->vn_filename : "<corrupt>"); |
| 1331 |
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| 1332 |
fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash, |
| 1333 |
a->vna_flags, a->vna_other, |
| 1334 |
a->vna_nodename ? a->vna_nodename : "<corrupt>"); |
| 1335 |
} |
| 1336 |
} |
| 1337 |
|
| 1338 |
return TRUE; |
| 1339 |
|
| 1340 |
error_return: |
| 1341 |
if (dynbuf != NULL) |
| 1342 |
free (dynbuf); |
| 1343 |
return FALSE; |
| 1344 |
} |
| 1345 |
|
| 1346 |
/* Display ELF-specific fields of a symbol. */ |
| 1347 |
|
| 1348 |
void |
| 1349 |
bfd_elf_print_symbol (bfd *abfd, |
| 1350 |
void *filep, |
| 1351 |
asymbol *symbol, |
| 1352 |
bfd_print_symbol_type how) |
| 1353 |
{ |
| 1354 |
FILE *file = filep; |
| 1355 |
switch (how) |
| 1356 |
{ |
| 1357 |
case bfd_print_symbol_name: |
| 1358 |
fprintf (file, "%s", symbol->name); |
| 1359 |
break; |
| 1360 |
case bfd_print_symbol_more: |
| 1361 |
fprintf (file, "elf "); |
| 1362 |
bfd_fprintf_vma (abfd, file, symbol->value); |
| 1363 |
fprintf (file, " %lx", (unsigned long) symbol->flags); |
| 1364 |
break; |
| 1365 |
case bfd_print_symbol_all: |
| 1366 |
{ |
| 1367 |
const char *section_name; |
| 1368 |
const char *name = NULL; |
| 1369 |
const struct elf_backend_data *bed; |
| 1370 |
unsigned char st_other; |
| 1371 |
bfd_vma val; |
| 1372 |
|
| 1373 |
section_name = symbol->section ? symbol->section->name : "(*none*)"; |
| 1374 |
|
| 1375 |
bed = get_elf_backend_data (abfd); |
| 1376 |
if (bed->elf_backend_print_symbol_all) |
| 1377 |
name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol); |
| 1378 |
|
| 1379 |
if (name == NULL) |
| 1380 |
{ |
| 1381 |
name = symbol->name; |
| 1382 |
bfd_print_symbol_vandf (abfd, file, symbol); |
| 1383 |
} |
| 1384 |
|
| 1385 |
fprintf (file, " %s\t", section_name); |
| 1386 |
/* Print the "other" value for a symbol. For common symbols, |
| 1387 |
we've already printed the size; now print the alignment. |
| 1388 |
For other symbols, we have no specified alignment, and |
| 1389 |
we've printed the address; now print the size. */ |
| 1390 |
if (symbol->section && bfd_is_com_section (symbol->section)) |
| 1391 |
val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value; |
| 1392 |
else |
| 1393 |
val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size; |
| 1394 |
bfd_fprintf_vma (abfd, file, val); |
| 1395 |
|
| 1396 |
/* If we have version information, print it. */ |
| 1397 |
if (elf_tdata (abfd)->dynversym_section != 0 |
| 1398 |
&& (elf_tdata (abfd)->dynverdef_section != 0 |
| 1399 |
|| elf_tdata (abfd)->dynverref_section != 0)) |
| 1400 |
{ |
| 1401 |
unsigned int vernum; |
| 1402 |
const char *version_string; |
| 1403 |
|
| 1404 |
vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION; |
| 1405 |
|
| 1406 |
if (vernum == 0) |
| 1407 |
version_string = ""; |
| 1408 |
else if (vernum == 1) |
| 1409 |
version_string = "Base"; |
| 1410 |
else if (vernum <= elf_tdata (abfd)->cverdefs) |
| 1411 |
version_string = |
| 1412 |
elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; |
| 1413 |
else |
| 1414 |
{ |
| 1415 |
Elf_Internal_Verneed *t; |
| 1416 |
|
| 1417 |
version_string = ""; |
| 1418 |
for (t = elf_tdata (abfd)->verref; |
| 1419 |
t != NULL; |
| 1420 |
t = t->vn_nextref) |
| 1421 |
{ |
| 1422 |
Elf_Internal_Vernaux *a; |
| 1423 |
|
| 1424 |
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| 1425 |
{ |
| 1426 |
if (a->vna_other == vernum) |
| 1427 |
{ |
| 1428 |
version_string = a->vna_nodename; |
| 1429 |
break; |
| 1430 |
} |
| 1431 |
} |
| 1432 |
} |
| 1433 |
} |
| 1434 |
|
| 1435 |
if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0) |
| 1436 |
fprintf (file, " %-11s", version_string); |
| 1437 |
else |
| 1438 |
{ |
| 1439 |
int i; |
| 1440 |
|
| 1441 |
fprintf (file, " (%s)", version_string); |
| 1442 |
for (i = 10 - strlen (version_string); i > 0; --i) |
| 1443 |
putc (' ', file); |
| 1444 |
} |
| 1445 |
} |
| 1446 |
|
| 1447 |
/* If the st_other field is not zero, print it. */ |
| 1448 |
st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other; |
| 1449 |
|
| 1450 |
switch (st_other) |
| 1451 |
{ |
| 1452 |
case 0: break; |
| 1453 |
case STV_INTERNAL: fprintf (file, " .internal"); break; |
| 1454 |
case STV_HIDDEN: fprintf (file, " .hidden"); break; |
| 1455 |
case STV_PROTECTED: fprintf (file, " .protected"); break; |
| 1456 |
default: |
| 1457 |
/* Some other non-defined flags are also present, so print |
| 1458 |
everything hex. */ |
| 1459 |
fprintf (file, " 0x%02x", (unsigned int) st_other); |
| 1460 |
} |
| 1461 |
|
| 1462 |
fprintf (file, " %s", name); |
| 1463 |
} |
| 1464 |
break; |
| 1465 |
} |
| 1466 |
} |
| 1467 |
|
| 1468 |
/* Allocate an ELF string table--force the first byte to be zero. */ |
| 1469 |
|
| 1470 |
struct bfd_strtab_hash * |
| 1471 |
_bfd_elf_stringtab_init (void) |
| 1472 |
{ |
| 1473 |
struct bfd_strtab_hash *ret; |
| 1474 |
|
| 1475 |
ret = _bfd_stringtab_init (); |
| 1476 |
if (ret != NULL) |
| 1477 |
{ |
| 1478 |
bfd_size_type loc; |
| 1479 |
|
| 1480 |
loc = _bfd_stringtab_add (ret, "", TRUE, FALSE); |
| 1481 |
BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1); |
| 1482 |
if (loc == (bfd_size_type) -1) |
| 1483 |
{ |
| 1484 |
_bfd_stringtab_free (ret); |
| 1485 |
ret = NULL; |
| 1486 |
} |
| 1487 |
} |
| 1488 |
return ret; |
| 1489 |
} |
| 1490 |
|
| 1491 |
/* ELF .o/exec file reading */ |
| 1492 |
|
| 1493 |
/* Create a new bfd section from an ELF section header. */ |
| 1494 |
|
| 1495 |
bfd_boolean |
| 1496 |
bfd_section_from_shdr (bfd *abfd, unsigned int shindex) |
| 1497 |
{ |
| 1498 |
Elf_Internal_Shdr *hdr; |
| 1499 |
Elf_Internal_Ehdr *ehdr; |
| 1500 |
const struct elf_backend_data *bed; |
| 1501 |
const char *name; |
| 1502 |
|
| 1503 |
if (shindex >= elf_numsections (abfd)) |
| 1504 |
return FALSE; |
| 1505 |
|
| 1506 |
hdr = elf_elfsections (abfd)[shindex]; |
| 1507 |
ehdr = elf_elfheader (abfd); |
| 1508 |
name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx, |
| 1509 |
hdr->sh_name); |
| 1510 |
if (name == NULL) |
| 1511 |
return FALSE; |
| 1512 |
|
| 1513 |
bed = get_elf_backend_data (abfd); |
| 1514 |
switch (hdr->sh_type) |
| 1515 |
{ |
| 1516 |
case SHT_NULL: |
| 1517 |
/* Inactive section. Throw it away. */ |
| 1518 |
return TRUE; |
| 1519 |
|
| 1520 |
case SHT_PROGBITS: /* Normal section with contents. */ |
| 1521 |
case SHT_NOBITS: /* .bss section. */ |
| 1522 |
case SHT_HASH: /* .hash section. */ |
| 1523 |
case SHT_NOTE: /* .note section. */ |
| 1524 |
case SHT_INIT_ARRAY: /* .init_array section. */ |
| 1525 |
case SHT_FINI_ARRAY: /* .fini_array section. */ |
| 1526 |
case SHT_PREINIT_ARRAY: /* .preinit_array section. */ |
| 1527 |
case SHT_GNU_LIBLIST: /* .gnu.liblist section. */ |
| 1528 |
case SHT_GNU_HASH: /* .gnu.hash section. */ |
| 1529 |
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| 1530 |
|
| 1531 |
case SHT_DYNAMIC: /* Dynamic linking information. */ |
| 1532 |
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
| 1533 |
return FALSE; |
| 1534 |
if (hdr->sh_link > elf_numsections (abfd) |
| 1535 |
|| elf_elfsections (abfd)[hdr->sh_link] == NULL) |
| 1536 |
return FALSE; |
| 1537 |
if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB) |
| 1538 |
{ |
| 1539 |
Elf_Internal_Shdr *dynsymhdr; |
| 1540 |
|
| 1541 |
/* The shared libraries distributed with hpux11 have a bogus |
| 1542 |
sh_link field for the ".dynamic" section. Find the |
| 1543 |
string table for the ".dynsym" section instead. */ |
| 1544 |
if (elf_dynsymtab (abfd) != 0) |
| 1545 |
{ |
| 1546 |
dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)]; |
| 1547 |
hdr->sh_link = dynsymhdr->sh_link; |
| 1548 |
} |
| 1549 |
else |
| 1550 |
{ |
| 1551 |
unsigned int i, num_sec; |
| 1552 |
|
| 1553 |
num_sec = elf_numsections (abfd); |
| 1554 |
for (i = 1; i < num_sec; i++) |
| 1555 |
{ |
| 1556 |
dynsymhdr = elf_elfsections (abfd)[i]; |
| 1557 |
if (dynsymhdr->sh_type == SHT_DYNSYM) |
| 1558 |
{ |
| 1559 |
hdr->sh_link = dynsymhdr->sh_link; |
| 1560 |
break; |
| 1561 |
} |
| 1562 |
} |
| 1563 |
} |
| 1564 |
} |
| 1565 |
break; |
| 1566 |
|
| 1567 |
case SHT_SYMTAB: /* A symbol table */ |
| 1568 |
if (elf_onesymtab (abfd) == shindex) |
| 1569 |
return TRUE; |
| 1570 |
|
| 1571 |
if (hdr->sh_entsize != bed->s->sizeof_sym) |
| 1572 |
return FALSE; |
| 1573 |
if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size) |
| 1574 |
return FALSE; |
| 1575 |
BFD_ASSERT (elf_onesymtab (abfd) == 0); |
| 1576 |
elf_onesymtab (abfd) = shindex; |
| 1577 |
elf_tdata (abfd)->symtab_hdr = *hdr; |
| 1578 |
elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr; |
| 1579 |
abfd->flags |= HAS_SYMS; |
| 1580 |
|
| 1581 |
/* Sometimes a shared object will map in the symbol table. If |
| 1582 |
SHF_ALLOC is set, and this is a shared object, then we also |
| 1583 |
treat this section as a BFD section. We can not base the |
| 1584 |
decision purely on SHF_ALLOC, because that flag is sometimes |
| 1585 |
set in a relocatable object file, which would confuse the |
| 1586 |
linker. */ |
| 1587 |
if ((hdr->sh_flags & SHF_ALLOC) != 0 |
| 1588 |
&& (abfd->flags & DYNAMIC) != 0 |
| 1589 |
&& ! _bfd_elf_make_section_from_shdr (abfd, hdr, name, |
| 1590 |
shindex)) |
| 1591 |
return FALSE; |
| 1592 |
|
| 1593 |
/* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we |
| 1594 |
can't read symbols without that section loaded as well. It |
| 1595 |
is most likely specified by the next section header. */ |
| 1596 |
if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex) |
| 1597 |
{ |
| 1598 |
unsigned int i, num_sec; |
| 1599 |
|
| 1600 |
num_sec = elf_numsections (abfd); |
| 1601 |
for (i = shindex + 1; i < num_sec; i++) |
| 1602 |
{ |
| 1603 |
Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; |
| 1604 |
if (hdr2->sh_type == SHT_SYMTAB_SHNDX |
| 1605 |
&& hdr2->sh_link == shindex) |
| 1606 |
break; |
| 1607 |
} |
| 1608 |
if (i == num_sec) |
| 1609 |
for (i = 1; i < shindex; i++) |
| 1610 |
{ |
| 1611 |
Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; |
| 1612 |
if (hdr2->sh_type == SHT_SYMTAB_SHNDX |
| 1613 |
&& hdr2->sh_link == shindex) |
| 1614 |
break; |
| 1615 |
} |
| 1616 |
if (i != shindex) |
| 1617 |
return bfd_section_from_shdr (abfd, i); |
| 1618 |
} |
| 1619 |
return TRUE; |
| 1620 |
|
| 1621 |
case SHT_DYNSYM: /* A dynamic symbol table */ |
| 1622 |
if (elf_dynsymtab (abfd) == shindex) |
| 1623 |
return TRUE; |
| 1624 |
|
| 1625 |
if (hdr->sh_entsize != bed->s->sizeof_sym) |
| 1626 |
return FALSE; |
| 1627 |
BFD_ASSERT (elf_dynsymtab (abfd) == 0); |
| 1628 |
elf_dynsymtab (abfd) = shindex; |
| 1629 |
elf_tdata (abfd)->dynsymtab_hdr = *hdr; |
| 1630 |
elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr; |
| 1631 |
abfd->flags |= HAS_SYMS; |
| 1632 |
|
| 1633 |
/* Besides being a symbol table, we also treat this as a regular |
| 1634 |
section, so that objcopy can handle it. */ |
| 1635 |
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| 1636 |
|
| 1637 |
case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */ |
| 1638 |
if (elf_symtab_shndx (abfd) == shindex) |
| 1639 |
return TRUE; |
| 1640 |
|
| 1641 |
BFD_ASSERT (elf_symtab_shndx (abfd) == 0); |
| 1642 |
elf_symtab_shndx (abfd) = shindex; |
| 1643 |
elf_tdata (abfd)->symtab_shndx_hdr = *hdr; |
| 1644 |
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr; |
| 1645 |
return TRUE; |
| 1646 |
|
| 1647 |
case SHT_STRTAB: /* A string table */ |
| 1648 |
if (hdr->bfd_section != NULL) |
| 1649 |
return TRUE; |
| 1650 |
if (ehdr->e_shstrndx == shindex) |
| 1651 |
{ |
| 1652 |
elf_tdata (abfd)->shstrtab_hdr = *hdr; |
| 1653 |
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; |
| 1654 |
return TRUE; |
| 1655 |
} |
| 1656 |
if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex) |
| 1657 |
{ |
| 1658 |
symtab_strtab: |
| 1659 |
elf_tdata (abfd)->strtab_hdr = *hdr; |
| 1660 |
elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr; |
| 1661 |
return TRUE; |
| 1662 |
} |
| 1663 |
if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex) |
| 1664 |
{ |
| 1665 |
dynsymtab_strtab: |
| 1666 |
elf_tdata (abfd)->dynstrtab_hdr = *hdr; |
| 1667 |
hdr = &elf_tdata (abfd)->dynstrtab_hdr; |
| 1668 |
elf_elfsections (abfd)[shindex] = hdr; |
| 1669 |
/* We also treat this as a regular section, so that objcopy |
| 1670 |
can handle it. */ |
| 1671 |
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, |
| 1672 |
shindex); |
| 1673 |
} |
| 1674 |
|
| 1675 |
/* If the string table isn't one of the above, then treat it as a |
| 1676 |
regular section. We need to scan all the headers to be sure, |
| 1677 |
just in case this strtab section appeared before the above. */ |
| 1678 |
if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0) |
| 1679 |
{ |
| 1680 |
unsigned int i, num_sec; |
| 1681 |
|
| 1682 |
num_sec = elf_numsections (abfd); |
| 1683 |
for (i = 1; i < num_sec; i++) |
| 1684 |
{ |
| 1685 |
Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; |
| 1686 |
if (hdr2->sh_link == shindex) |
| 1687 |
{ |
| 1688 |
/* Prevent endless recursion on broken objects. */ |
| 1689 |
if (i == shindex) |
| 1690 |
return FALSE; |
| 1691 |
if (! bfd_section_from_shdr (abfd, i)) |
| 1692 |
return FALSE; |
| 1693 |
if (elf_onesymtab (abfd) == i) |
| 1694 |
goto symtab_strtab; |
| 1695 |
if (elf_dynsymtab (abfd) == i) |
| 1696 |
goto dynsymtab_strtab; |
| 1697 |
} |
| 1698 |
} |
| 1699 |
} |
| 1700 |
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| 1701 |
|
| 1702 |
case SHT_REL: |
| 1703 |
case SHT_RELA: |
| 1704 |
/* *These* do a lot of work -- but build no sections! */ |
| 1705 |
{ |
| 1706 |
asection *target_sect; |
| 1707 |
Elf_Internal_Shdr *hdr2; |
| 1708 |
unsigned int num_sec = elf_numsections (abfd); |
| 1709 |
|
| 1710 |
if (hdr->sh_entsize |
| 1711 |
!= (bfd_size_type) (hdr->sh_type == SHT_REL |
| 1712 |
? bed->s->sizeof_rel : bed->s->sizeof_rela)) |
| 1713 |
return FALSE; |
| 1714 |
|
| 1715 |
/* Check for a bogus link to avoid crashing. */ |
| 1716 |
if (hdr->sh_link >= num_sec) |
| 1717 |
{ |
| 1718 |
((*_bfd_error_handler) |
| 1719 |
(_("%B: invalid link %lu for reloc section %s (index %u)"), |
| 1720 |
abfd, hdr->sh_link, name, shindex)); |
| 1721 |
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, |
| 1722 |
shindex); |
| 1723 |
} |
| 1724 |
|
| 1725 |
/* For some incomprehensible reason Oracle distributes |
| 1726 |
libraries for Solaris in which some of the objects have |
| 1727 |
bogus sh_link fields. It would be nice if we could just |
| 1728 |
reject them, but, unfortunately, some people need to use |
| 1729 |
them. We scan through the section headers; if we find only |
| 1730 |
one suitable symbol table, we clobber the sh_link to point |
| 1731 |
to it. I hope this doesn't break anything. |
| 1732 |
|
| 1733 |
Don't do it on executable nor shared library. */ |
| 1734 |
if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 |
| 1735 |
&& elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB |
| 1736 |
&& elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM) |
| 1737 |
{ |
| 1738 |
unsigned int scan; |
| 1739 |
int found; |
| 1740 |
|
| 1741 |
found = 0; |
| 1742 |
for (scan = 1; scan < num_sec; scan++) |
| 1743 |
{ |
| 1744 |
if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB |
| 1745 |
|| elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM) |
| 1746 |
{ |
| 1747 |
if (found != 0) |
| 1748 |
{ |
| 1749 |
found = 0; |
| 1750 |
break; |
| 1751 |
} |
| 1752 |
found = scan; |
| 1753 |
} |
| 1754 |
} |
| 1755 |
if (found != 0) |
| 1756 |
hdr->sh_link = found; |
| 1757 |
} |
| 1758 |
|
| 1759 |
/* Get the symbol table. */ |
| 1760 |
if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB |
| 1761 |
|| elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM) |
| 1762 |
&& ! bfd_section_from_shdr (abfd, hdr->sh_link)) |
| 1763 |
return FALSE; |
| 1764 |
|
| 1765 |
/* If this reloc section does not use the main symbol table we |
| 1766 |
don't treat it as a reloc section. BFD can't adequately |
| 1767 |
represent such a section, so at least for now, we don't |
| 1768 |
try. We just present it as a normal section. We also |
| 1769 |
can't use it as a reloc section if it points to the null |
| 1770 |
section, an invalid section, another reloc section, or its |
| 1771 |
sh_link points to the null section. */ |
| 1772 |
if (hdr->sh_link != elf_onesymtab (abfd) |
| 1773 |
|| hdr->sh_link == SHN_UNDEF |
| 1774 |
|| hdr->sh_info == SHN_UNDEF |
| 1775 |
|| hdr->sh_info >= num_sec |
| 1776 |
|| elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL |
| 1777 |
|| elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA) |
| 1778 |
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, |
| 1779 |
shindex); |
| 1780 |
|
| 1781 |
if (! bfd_section_from_shdr (abfd, hdr->sh_info)) |
| 1782 |
return FALSE; |
| 1783 |
target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info); |
| 1784 |
if (target_sect == NULL) |
| 1785 |
return FALSE; |
| 1786 |
|
| 1787 |
if ((target_sect->flags & SEC_RELOC) == 0 |
| 1788 |
|| target_sect->reloc_count == 0) |
| 1789 |
hdr2 = &elf_section_data (target_sect)->rel_hdr; |
| 1790 |
else |
| 1791 |
{ |
| 1792 |
bfd_size_type amt; |
| 1793 |
BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL); |
| 1794 |
amt = sizeof (*hdr2); |
| 1795 |
hdr2 = bfd_alloc (abfd, amt); |
| 1796 |
if (hdr2 == NULL) |
| 1797 |
return FALSE; |
| 1798 |
elf_section_data (target_sect)->rel_hdr2 = hdr2; |
| 1799 |
} |
| 1800 |
*hdr2 = *hdr; |
| 1801 |
elf_elfsections (abfd)[shindex] = hdr2; |
| 1802 |
target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr); |
| 1803 |
target_sect->flags |= SEC_RELOC; |
| 1804 |
target_sect->relocation = NULL; |
| 1805 |
target_sect->rel_filepos = hdr->sh_offset; |
| 1806 |
/* In the section to which the relocations apply, mark whether |
| 1807 |
its relocations are of the REL or RELA variety. */ |
| 1808 |
if (hdr->sh_size != 0) |
| 1809 |
target_sect->use_rela_p = hdr->sh_type == SHT_RELA; |
| 1810 |
abfd->flags |= HAS_RELOC; |
| 1811 |
return TRUE; |
| 1812 |
} |
| 1813 |
|
| 1814 |
case SHT_GNU_verdef: |
| 1815 |
elf_dynverdef (abfd) = shindex; |
| 1816 |
elf_tdata (abfd)->dynverdef_hdr = *hdr; |
| 1817 |
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| 1818 |
|
| 1819 |
case SHT_GNU_versym: |
| 1820 |
if (hdr->sh_entsize != sizeof (Elf_External_Versym)) |
| 1821 |
return FALSE; |
| 1822 |
elf_dynversym (abfd) = shindex; |
| 1823 |
elf_tdata (abfd)->dynversym_hdr = *hdr; |
| 1824 |
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| 1825 |
|
| 1826 |
case SHT_GNU_verneed: |
| 1827 |
elf_dynverref (abfd) = shindex; |
| 1828 |
elf_tdata (abfd)->dynverref_hdr = *hdr; |
| 1829 |
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| 1830 |
|
| 1831 |
case SHT_SHLIB: |
| 1832 |
return TRUE; |
| 1833 |
|
| 1834 |
case SHT_GROUP: |
| 1835 |
if (! IS_VALID_GROUP_SECTION_HEADER (hdr)) |
| 1836 |
return FALSE; |
| 1837 |
if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
| 1838 |
return FALSE; |
| 1839 |
if (hdr->contents != NULL) |
| 1840 |
{ |
| 1841 |
Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents; |
| 1842 |
unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE; |
| 1843 |
asection *s; |
| 1844 |
|
| 1845 |
if (idx->flags & GRP_COMDAT) |
| 1846 |
hdr->bfd_section->flags |
| 1847 |
|= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; |
| 1848 |
|
| 1849 |
/* We try to keep the same section order as it comes in. */ |
| 1850 |
idx += n_elt; |
| 1851 |
while (--n_elt != 0) |
| 1852 |
{ |
| 1853 |
--idx; |
| 1854 |
|
| 1855 |
if (idx->shdr != NULL |
| 1856 |
&& (s = idx->shdr->bfd_section) != NULL |
| 1857 |
&& elf_next_in_group (s) != NULL) |
| 1858 |
{ |
| 1859 |
elf_next_in_group (hdr->bfd_section) = s; |
| 1860 |
break; |
| 1861 |
} |
| 1862 |
} |
| 1863 |
} |
| 1864 |
break; |
| 1865 |
|
| 1866 |
default: |
| 1867 |
/* Possibly an attributes section. */ |
| 1868 |
if (hdr->sh_type == SHT_GNU_ATTRIBUTES |
| 1869 |
|| hdr->sh_type == bed->obj_attrs_section_type) |
| 1870 |
{ |
| 1871 |
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
| 1872 |
return FALSE; |
| 1873 |
_bfd_elf_parse_attributes (abfd, hdr); |
| 1874 |
return TRUE; |
| 1875 |
} |
| 1876 |
|
| 1877 |
/* Check for any processor-specific section types. */ |
| 1878 |
if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex)) |
| 1879 |
return TRUE; |
| 1880 |
|
| 1881 |
if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER) |
| 1882 |
{ |
| 1883 |
if ((hdr->sh_flags & SHF_ALLOC) != 0) |
| 1884 |
/* FIXME: How to properly handle allocated section reserved |
| 1885 |
for applications? */ |
| 1886 |
(*_bfd_error_handler) |
| 1887 |
(_("%B: don't know how to handle allocated, application " |
| 1888 |
"specific section `%s' [0x%8x]"), |
| 1889 |
abfd, name, hdr->sh_type); |
| 1890 |
else |
| 1891 |
/* Allow sections reserved for applications. */ |
| 1892 |
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, |
| 1893 |
shindex); |
| 1894 |
} |
| 1895 |
else if (hdr->sh_type >= SHT_LOPROC |
| 1896 |
&& hdr->sh_type <= SHT_HIPROC) |
| 1897 |
/* FIXME: We should handle this section. */ |
| 1898 |
(*_bfd_error_handler) |
| 1899 |
(_("%B: don't know how to handle processor specific section " |
| 1900 |
"`%s' [0x%8x]"), |
| 1901 |
abfd, name, hdr->sh_type); |
| 1902 |
else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS) |
| 1903 |
{ |
| 1904 |
/* Unrecognised OS-specific sections. */ |
| 1905 |
if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0) |
| 1906 |
/* SHF_OS_NONCONFORMING indicates that special knowledge is |
| 1907 |
required to correctly process the section and the file should |
| 1908 |
be rejected with an error message. */ |
| 1909 |
(*_bfd_error_handler) |
| 1910 |
(_("%B: don't know how to handle OS specific section " |
| 1911 |
"`%s' [0x%8x]"), |
| 1912 |
abfd, name, hdr->sh_type); |
| 1913 |
else |
| 1914 |
/* Otherwise it should be processed. */ |
| 1915 |
return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| 1916 |
} |
| 1917 |
else |
| 1918 |
/* FIXME: We should handle this section. */ |
| 1919 |
(*_bfd_error_handler) |
| 1920 |
(_("%B: don't know how to handle section `%s' [0x%8x]"), |
| 1921 |
abfd, name, hdr->sh_type); |
| 1922 |
|
| 1923 |
return FALSE; |
| 1924 |
} |
| 1925 |
|
| 1926 |
return TRUE; |
| 1927 |
} |
| 1928 |
|
| 1929 |
/* Return the local symbol specified by ABFD, R_SYMNDX. */ |
| 1930 |
|
| 1931 |
Elf_Internal_Sym * |
| 1932 |
bfd_sym_from_r_symndx (struct sym_cache *cache, |
| 1933 |
bfd *abfd, |
| 1934 |
unsigned long r_symndx) |
| 1935 |
{ |
| 1936 |
unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE; |
| 1937 |
|
| 1938 |
if (cache->abfd != abfd || cache->indx[ent] != r_symndx) |
| 1939 |
{ |
| 1940 |
Elf_Internal_Shdr *symtab_hdr; |
| 1941 |
unsigned char esym[sizeof (Elf64_External_Sym)]; |
| 1942 |
Elf_External_Sym_Shndx eshndx; |
| 1943 |
|
| 1944 |
symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| 1945 |
if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx, |
| 1946 |
&cache->sym[ent], esym, &eshndx) == NULL) |
| 1947 |
return NULL; |
| 1948 |
|
| 1949 |
if (cache->abfd != abfd) |
| 1950 |
{ |
| 1951 |
memset (cache->indx, -1, sizeof (cache->indx)); |
| 1952 |
cache->abfd = abfd; |
| 1953 |
} |
| 1954 |
cache->indx[ent] = r_symndx; |
| 1955 |
} |
| 1956 |
|
| 1957 |
return &cache->sym[ent]; |
| 1958 |
} |
| 1959 |
|
| 1960 |
/* Given an ELF section number, retrieve the corresponding BFD |
| 1961 |
section. */ |
| 1962 |
|
| 1963 |
asection * |
| 1964 |
bfd_section_from_elf_index (bfd *abfd, unsigned int index) |
| 1965 |
{ |
| 1966 |
if (index >= elf_numsections (abfd)) |
| 1967 |
return NULL; |
| 1968 |
return elf_elfsections (abfd)[index]->bfd_section; |
| 1969 |
} |
| 1970 |
|
| 1971 |
static const struct bfd_elf_special_section special_sections_b[] = |
| 1972 |
{ |
| 1973 |
{ STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, |
| 1974 |
{ NULL, 0, 0, 0, 0 } |
| 1975 |
}; |
| 1976 |
|
| 1977 |
static const struct bfd_elf_special_section special_sections_c[] = |
| 1978 |
{ |
| 1979 |
{ STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 }, |
| 1980 |
{ NULL, 0, 0, 0, 0 } |
| 1981 |
}; |
| 1982 |
|
| 1983 |
static const struct bfd_elf_special_section special_sections_d[] = |
| 1984 |
{ |
| 1985 |
{ STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, |
| 1986 |
{ STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, |
| 1987 |
{ STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 }, |
| 1988 |
{ STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 }, |
| 1989 |
{ STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 }, |
| 1990 |
{ STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 }, |
| 1991 |
{ STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 }, |
| 1992 |
{ STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC }, |
| 1993 |
{ STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC }, |
| 1994 |
{ STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC }, |
| 1995 |
{ NULL, 0, 0, 0, 0 } |
| 1996 |
}; |
| 1997 |
|
| 1998 |
static const struct bfd_elf_special_section special_sections_f[] = |
| 1999 |
{ |
| 2000 |
{ STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
| 2001 |
{ STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE }, |
| 2002 |
{ NULL, 0, 0, 0, 0 } |
| 2003 |
}; |
| 2004 |
|
| 2005 |
static const struct bfd_elf_special_section special_sections_g[] = |
| 2006 |
{ |
| 2007 |
{ STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, |
| 2008 |
{ STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, |
| 2009 |
{ STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 }, |
| 2010 |
{ STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 }, |
| 2011 |
{ STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 }, |
| 2012 |
{ STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC }, |
| 2013 |
{ STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC }, |
| 2014 |
{ STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC }, |
| 2015 |
{ NULL, 0, 0, 0, 0 } |
| 2016 |
}; |
| 2017 |
|
| 2018 |
static const struct bfd_elf_special_section special_sections_h[] = |
| 2019 |
{ |
| 2020 |
{ STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC }, |
| 2021 |
{ NULL, 0, 0, 0, 0 } |
| 2022 |
}; |
| 2023 |
|
| 2024 |
static const struct bfd_elf_special_section special_sections_i[] = |
| 2025 |
{ |
| 2026 |
{ STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
| 2027 |
{ STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE }, |
| 2028 |
{ STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 }, |
| 2029 |
{ NULL, 0, 0, 0, 0 } |
| 2030 |
}; |
| 2031 |
|
| 2032 |
static const struct bfd_elf_special_section special_sections_l[] = |
| 2033 |
{ |
| 2034 |
{ STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 }, |
| 2035 |
{ NULL, 0, 0, 0, 0 } |
| 2036 |
}; |
| 2037 |
|
| 2038 |
static const struct bfd_elf_special_section special_sections_n[] = |
| 2039 |
{ |
| 2040 |
{ STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 }, |
| 2041 |
{ STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 }, |
| 2042 |
{ NULL, 0, 0, 0, 0 } |
| 2043 |
}; |
| 2044 |
|
| 2045 |
static const struct bfd_elf_special_section special_sections_p[] = |
| 2046 |
{ |
| 2047 |
{ STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE }, |
| 2048 |
{ STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
| 2049 |
{ NULL, 0, 0, 0, 0 } |
| 2050 |
}; |
| 2051 |
|
| 2052 |
static const struct bfd_elf_special_section special_sections_r[] = |
| 2053 |
{ |
| 2054 |
{ STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC }, |
| 2055 |
{ STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC }, |
| 2056 |
{ STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 }, |
| 2057 |
{ STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 }, |
| 2058 |
{ NULL, 0, 0, 0, 0 } |
| 2059 |
}; |
| 2060 |
|
| 2061 |
static const struct bfd_elf_special_section special_sections_s[] = |
| 2062 |
{ |
| 2063 |
{ STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 }, |
| 2064 |
{ STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 }, |
| 2065 |
{ STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 }, |
| 2066 |
/* See struct bfd_elf_special_section declaration for the semantics of |
| 2067 |
this special case where .prefix_length != strlen (.prefix). */ |
| 2068 |
{ ".stabstr", 5, 3, SHT_STRTAB, 0 }, |
| 2069 |
{ NULL, 0, 0, 0, 0 } |
| 2070 |
}; |
| 2071 |
|
| 2072 |
static const struct bfd_elf_special_section special_sections_t[] = |
| 2073 |
{ |
| 2074 |
{ STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
| 2075 |
{ STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, |
| 2076 |
{ STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, |
| 2077 |
{ NULL, 0, 0, 0, 0 } |
| 2078 |
}; |
| 2079 |
|
| 2080 |
static const struct bfd_elf_special_section special_sections_z[] = |
| 2081 |
{ |
| 2082 |
{ STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 }, |
| 2083 |
{ STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 }, |
| 2084 |
{ STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 }, |
| 2085 |
{ STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 }, |
| 2086 |
{ NULL, 0, 0, 0, 0 } |
| 2087 |
}; |
| 2088 |
|
| 2089 |
static const struct bfd_elf_special_section *special_sections[] = |
| 2090 |
{ |
| 2091 |
special_sections_b, /* 'b' */ |
| 2092 |
special_sections_c, /* 'c' */ |
| 2093 |
special_sections_d, /* 'd' */ |
| 2094 |
NULL, /* 'e' */ |
| 2095 |
special_sections_f, /* 'f' */ |
| 2096 |
special_sections_g, /* 'g' */ |
| 2097 |
special_sections_h, /* 'h' */ |
| 2098 |
special_sections_i, /* 'i' */ |
| 2099 |
NULL, /* 'j' */ |
| 2100 |
NULL, /* 'k' */ |
| 2101 |
special_sections_l, /* 'l' */ |
| 2102 |
NULL, /* 'm' */ |
| 2103 |
special_sections_n, /* 'n' */ |
| 2104 |
NULL, /* 'o' */ |
| 2105 |
special_sections_p, /* 'p' */ |
| 2106 |
NULL, /* 'q' */ |
| 2107 |
special_sections_r, /* 'r' */ |
| 2108 |
special_sections_s, /* 's' */ |
| 2109 |
special_sections_t, /* 't' */ |
| 2110 |
NULL, /* 'u' */ |
| 2111 |
NULL, /* 'v' */ |
| 2112 |
NULL, /* 'w' */ |
| 2113 |
NULL, /* 'x' */ |
| 2114 |
NULL, /* 'y' */ |
| 2115 |
special_sections_z /* 'z' */ |
| 2116 |
}; |
| 2117 |
|
| 2118 |
const struct bfd_elf_special_section * |
| 2119 |
_bfd_elf_get_special_section (const char *name, |
| 2120 |
const struct bfd_elf_special_section *spec, |
| 2121 |
unsigned int rela) |
| 2122 |
{ |
| 2123 |
int i; |
| 2124 |
int len; |
| 2125 |
|
| 2126 |
len = strlen (name); |
| 2127 |
|
| 2128 |
for (i = 0; spec[i].prefix != NULL; i++) |
| 2129 |
{ |
| 2130 |
int suffix_len; |
| 2131 |
int prefix_len = spec[i].prefix_length; |
| 2132 |
|
| 2133 |
if (len < prefix_len) |
| 2134 |
continue; |
| 2135 |
if (memcmp (name, spec[i].prefix, prefix_len) != 0) |
| 2136 |
continue; |
| 2137 |
|
| 2138 |
suffix_len = spec[i].suffix_length; |
| 2139 |
if (suffix_len <= 0) |
| 2140 |
{ |
| 2141 |
if (name[prefix_len] != 0) |
| 2142 |
{ |
| 2143 |
if (suffix_len == 0) |
| 2144 |
continue; |
| 2145 |
if (name[prefix_len] != '.' |
| 2146 |
&& (suffix_len == -2 |
| 2147 |
|| (rela && spec[i].type == SHT_REL))) |
| 2148 |
continue; |
| 2149 |
} |
| 2150 |
} |
| 2151 |
else |
| 2152 |
{ |
| 2153 |
if (len < prefix_len + suffix_len) |
| 2154 |
continue; |
| 2155 |
if (memcmp (name + len - suffix_len, |
| 2156 |
spec[i].prefix + prefix_len, |
| 2157 |
suffix_len) != 0) |
| 2158 |
continue; |
| 2159 |
} |
| 2160 |
return &spec[i]; |
| 2161 |
} |
| 2162 |
|
| 2163 |
return NULL; |
| 2164 |
} |
| 2165 |
|
| 2166 |
const struct bfd_elf_special_section * |
| 2167 |
_bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec) |
| 2168 |
{ |
| 2169 |
int i; |
| 2170 |
const struct bfd_elf_special_section *spec; |
| 2171 |
const struct elf_backend_data *bed; |
| 2172 |
|
| 2173 |
/* See if this is one of the special sections. */ |
| 2174 |
if (sec->name == NULL) |
| 2175 |
return NULL; |
| 2176 |
|
| 2177 |
bed = get_elf_backend_data (abfd); |
| 2178 |
spec = bed->special_sections; |
| 2179 |
if (spec) |
| 2180 |
{ |
| 2181 |
spec = _bfd_elf_get_special_section (sec->name, |
| 2182 |
bed->special_sections, |
| 2183 |
sec->use_rela_p); |
| 2184 |
if (spec != NULL) |
| 2185 |
return spec; |
| 2186 |
} |
| 2187 |
|
| 2188 |
if (sec->name[0] != '.') |
| 2189 |
return NULL; |
| 2190 |
|
| 2191 |
i = sec->name[1] - 'b'; |
| 2192 |
if (i < 0 || i > 'z' - 'b') |
| 2193 |
return NULL; |
| 2194 |
|
| 2195 |
spec = special_sections[i]; |
| 2196 |
|
| 2197 |
if (spec == NULL) |
| 2198 |
return NULL; |
| 2199 |
|
| 2200 |
return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p); |
| 2201 |
} |
| 2202 |
|
| 2203 |
bfd_boolean |
| 2204 |
_bfd_elf_new_section_hook (bfd *abfd, asection *sec) |
| 2205 |
{ |
| 2206 |
struct bfd_elf_section_data *sdata; |
| 2207 |
const struct elf_backend_data *bed; |
| 2208 |
const struct bfd_elf_special_section *ssect; |
| 2209 |
|
| 2210 |
sdata = (struct bfd_elf_section_data *) sec->used_by_bfd; |
| 2211 |
if (sdata == NULL) |
| 2212 |
{ |
| 2213 |
sdata = bfd_zalloc (abfd, sizeof (*sdata)); |
| 2214 |
if (sdata == NULL) |
| 2215 |
return FALSE; |
| 2216 |
sec->used_by_bfd = sdata; |
| 2217 |
} |
| 2218 |
|
| 2219 |
/* Indicate whether or not this section should use RELA relocations. */ |
| 2220 |
bed = get_elf_backend_data (abfd); |
| 2221 |
sec->use_rela_p = bed->default_use_rela_p; |
| 2222 |
|
| 2223 |
/* When we read a file, we don't need to set ELF section type and |
| 2224 |
flags. They will be overridden in _bfd_elf_make_section_from_shdr |
| 2225 |
anyway. We will set ELF section type and flags for all linker |
| 2226 |
created sections. If user specifies BFD section flags, we will |
| 2227 |
set ELF section type and flags based on BFD section flags in |
| 2228 |
elf_fake_sections. */ |
| 2229 |
if ((!sec->flags && abfd->direction != read_direction) |
| 2230 |
|| (sec->flags & SEC_LINKER_CREATED) != 0) |
| 2231 |
{ |
| 2232 |
ssect = (*bed->get_sec_type_attr) (abfd, sec); |
| 2233 |
if (ssect != NULL) |
| 2234 |
{ |
| 2235 |
elf_section_type (sec) = ssect->type; |
| 2236 |
elf_section_flags (sec) = ssect->attr; |
| 2237 |
} |
| 2238 |
} |
| 2239 |
|
| 2240 |
return _bfd_generic_new_section_hook (abfd, sec); |
| 2241 |
} |
| 2242 |
|
| 2243 |
/* Create a new bfd section from an ELF program header. |
| 2244 |
|
| 2245 |
Since program segments have no names, we generate a synthetic name |
| 2246 |
of the form segment<NUM>, where NUM is generally the index in the |
| 2247 |
program header table. For segments that are split (see below) we |
| 2248 |
generate the names segment<NUM>a and segment<NUM>b. |
| 2249 |
|
| 2250 |
Note that some program segments may have a file size that is different than |
| 2251 |
(less than) the memory size. All this means is that at execution the |
| 2252 |
system must allocate the amount of memory specified by the memory size, |
| 2253 |
but only initialize it with the first "file size" bytes read from the |
| 2254 |
file. This would occur for example, with program segments consisting |
| 2255 |
of combined data+bss. |
| 2256 |
|
| 2257 |
To handle the above situation, this routine generates TWO bfd sections |
| 2258 |
for the single program segment. The first has the length specified by |
| 2259 |
the file size of the segment, and the second has the length specified |
| 2260 |
by the difference between the two sizes. In effect, the segment is split |
| 2261 |
into its initialized and uninitialized parts. |
| 2262 |
|
| 2263 |
*/ |
| 2264 |
|
| 2265 |
bfd_boolean |
| 2266 |
_bfd_elf_make_section_from_phdr (bfd *abfd, |
| 2267 |
Elf_Internal_Phdr *hdr, |
| 2268 |
int index, |
| 2269 |
const char *typename) |
| 2270 |
{ |
| 2271 |
asection *newsect; |
| 2272 |
char *name; |
| 2273 |
char namebuf[64]; |
| 2274 |
size_t len; |
| 2275 |
int split; |
| 2276 |
|
| 2277 |
split = ((hdr->p_memsz > 0) |
| 2278 |
&& (hdr->p_filesz > 0) |
| 2279 |
&& (hdr->p_memsz > hdr->p_filesz)); |
| 2280 |
|
| 2281 |
if (hdr->p_filesz > 0) |
| 2282 |
{ |
| 2283 |
sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : ""); |
| 2284 |
len = strlen (namebuf) + 1; |
| 2285 |
name = bfd_alloc (abfd, len); |
| 2286 |
if (!name) |
| 2287 |
return FALSE; |
| 2288 |
memcpy (name, namebuf, len); |
| 2289 |
newsect = bfd_make_section (abfd, name); |
| 2290 |
if (newsect == NULL) |
| 2291 |
return FALSE; |
| 2292 |
newsect->vma = hdr->p_vaddr; |
| 2293 |
newsect->lma = hdr->p_paddr; |
| 2294 |
newsect->size = hdr->p_filesz; |
| 2295 |
newsect->filepos = hdr->p_offset; |
| 2296 |
newsect->flags |= SEC_HAS_CONTENTS; |
| 2297 |
newsect->alignment_power = bfd_log2 (hdr->p_align); |
| 2298 |
if (hdr->p_type == PT_LOAD) |
| 2299 |
{ |
| 2300 |
newsect->flags |= SEC_ALLOC; |
| 2301 |
newsect->flags |= SEC_LOAD; |
| 2302 |
if (hdr->p_flags & PF_X) |
| 2303 |
{ |
| 2304 |
/* FIXME: all we known is that it has execute PERMISSION, |
| 2305 |
may be data. */ |
| 2306 |
newsect->flags |= SEC_CODE; |
| 2307 |
} |
| 2308 |
} |
| 2309 |
if (!(hdr->p_flags & PF_W)) |
| 2310 |
{ |
| 2311 |
newsect->flags |= SEC_READONLY; |
| 2312 |
} |
| 2313 |
} |
| 2314 |
|
| 2315 |
if (hdr->p_memsz > hdr->p_filesz) |
| 2316 |
{ |
| 2317 |
bfd_vma align; |
| 2318 |
|
| 2319 |
sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : ""); |
| 2320 |
len = strlen (namebuf) + 1; |
| 2321 |
name = bfd_alloc (abfd, len); |
| 2322 |
if (!name) |
| 2323 |
return FALSE; |
| 2324 |
memcpy (name, namebuf, len); |
| 2325 |
newsect = bfd_make_section (abfd, name); |
| 2326 |
if (newsect == NULL) |
| 2327 |
return FALSE; |
| 2328 |
newsect->vma = hdr->p_vaddr + hdr->p_filesz; |
| 2329 |
newsect->lma = hdr->p_paddr + hdr->p_filesz; |
| 2330 |
newsect->size = hdr->p_memsz - hdr->p_filesz; |
| 2331 |
newsect->filepos = hdr->p_offset + hdr->p_filesz; |
| 2332 |
align = newsect->vma & -newsect->vma; |
| 2333 |
if (align == 0 || align > hdr->p_align) |
| 2334 |
align = hdr->p_align; |
| 2335 |
newsect->alignment_power = bfd_log2 (align); |
| 2336 |
if (hdr->p_type == PT_LOAD) |
| 2337 |
{ |
| 2338 |
/* Hack for gdb. Segments that have not been modified do |
| 2339 |
not have their contents written to a core file, on the |
| 2340 |
assumption that a debugger can find the contents in the |
| 2341 |
executable. We flag this case by setting the fake |
| 2342 |
section size to zero. Note that "real" bss sections will |
| 2343 |
always have their contents dumped to the core file. */ |
| 2344 |
if (bfd_get_format (abfd) == bfd_core) |
| 2345 |
newsect->size = 0; |
| 2346 |
newsect->flags |= SEC_ALLOC; |
| 2347 |
if (hdr->p_flags & PF_X) |
| 2348 |
newsect->flags |= SEC_CODE; |
| 2349 |
} |
| 2350 |
if (!(hdr->p_flags & PF_W)) |
| 2351 |
newsect->flags |= SEC_READONLY; |
| 2352 |
} |
| 2353 |
|
| 2354 |
return TRUE; |
| 2355 |
} |
| 2356 |
|
| 2357 |
bfd_boolean |
| 2358 |
bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index) |
| 2359 |
{ |
| 2360 |
const struct elf_backend_data *bed; |
| 2361 |
|
| 2362 |
switch (hdr->p_type) |
| 2363 |
{ |
| 2364 |
case PT_NULL: |
| 2365 |
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null"); |
| 2366 |
|
| 2367 |
case PT_LOAD: |
| 2368 |
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load"); |
| 2369 |
|
| 2370 |
case PT_DYNAMIC: |
| 2371 |
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic"); |
| 2372 |
|
| 2373 |
case PT_INTERP: |
| 2374 |
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp"); |
| 2375 |
|
| 2376 |
case PT_NOTE: |
| 2377 |
if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note")) |
| 2378 |
return FALSE; |
| 2379 |
if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz)) |
| 2380 |
return FALSE; |
| 2381 |
return TRUE; |
| 2382 |
|
| 2383 |
case PT_SHLIB: |
| 2384 |
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib"); |
| 2385 |
|
| 2386 |
case PT_PHDR: |
| 2387 |
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr"); |
| 2388 |
|
| 2389 |
case PT_GNU_EH_FRAME: |
| 2390 |
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, |
| 2391 |
"eh_frame_hdr"); |
| 2392 |
|
| 2393 |
case PT_GNU_STACK: |
| 2394 |
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack"); |
| 2395 |
|
| 2396 |
case PT_GNU_RELRO: |
| 2397 |
return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro"); |
| 2398 |
|
| 2399 |
default: |
| 2400 |
/* Check for any processor-specific program segment types. */ |
| 2401 |
bed = get_elf_backend_data (abfd); |
| 2402 |
return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc"); |
| 2403 |
} |
| 2404 |
} |
| 2405 |
|
| 2406 |
/* Initialize REL_HDR, the section-header for new section, containing |
| 2407 |
relocations against ASECT. If USE_RELA_P is TRUE, we use RELA |
| 2408 |
relocations; otherwise, we use REL relocations. */ |
| 2409 |
|
| 2410 |
bfd_boolean |
| 2411 |
_bfd_elf_init_reloc_shdr (bfd *abfd, |
| 2412 |
Elf_Internal_Shdr *rel_hdr, |
| 2413 |
asection *asect, |
| 2414 |
bfd_boolean use_rela_p) |
| 2415 |
{ |
| 2416 |
char *name; |
| 2417 |
const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 2418 |
bfd_size_type amt = sizeof ".rela" + strlen (asect->name); |
| 2419 |
|
| 2420 |
name = bfd_alloc (abfd, amt); |
| 2421 |
if (name == NULL) |
| 2422 |
return FALSE; |
| 2423 |
sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name); |
| 2424 |
rel_hdr->sh_name = |
| 2425 |
(unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name, |
| 2426 |
FALSE); |
| 2427 |
if (rel_hdr->sh_name == (unsigned int) -1) |
| 2428 |
return FALSE; |
| 2429 |
rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; |
| 2430 |
rel_hdr->sh_entsize = (use_rela_p |
| 2431 |
? bed->s->sizeof_rela |
| 2432 |
: bed->s->sizeof_rel); |
| 2433 |
rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; |
| 2434 |
rel_hdr->sh_flags = 0; |
| 2435 |
rel_hdr->sh_addr = 0; |
| 2436 |
rel_hdr->sh_size = 0; |
| 2437 |
rel_hdr->sh_offset = 0; |
| 2438 |
|
| 2439 |
return TRUE; |
| 2440 |
} |
| 2441 |
|
| 2442 |
/* Set up an ELF internal section header for a section. */ |
| 2443 |
|
| 2444 |
static void |
| 2445 |
elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg) |
| 2446 |
{ |
| 2447 |
const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 2448 |
bfd_boolean *failedptr = failedptrarg; |
| 2449 |
Elf_Internal_Shdr *this_hdr; |
| 2450 |
unsigned int sh_type; |
| 2451 |
|
| 2452 |
if (*failedptr) |
| 2453 |
{ |
| 2454 |
/* We already failed; just get out of the bfd_map_over_sections |
| 2455 |
loop. */ |
| 2456 |
return; |
| 2457 |
} |
| 2458 |
|
| 2459 |
this_hdr = &elf_section_data (asect)->this_hdr; |
| 2460 |
|
| 2461 |
this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), |
| 2462 |
asect->name, FALSE); |
| 2463 |
if (this_hdr->sh_name == (unsigned int) -1) |
| 2464 |
{ |
| 2465 |
*failedptr = TRUE; |
| 2466 |
return; |
| 2467 |
} |
| 2468 |
|
| 2469 |
/* Don't clear sh_flags. Assembler may set additional bits. */ |
| 2470 |
|
| 2471 |
if ((asect->flags & SEC_ALLOC) != 0 |
| 2472 |
|| asect->user_set_vma) |
| 2473 |
this_hdr->sh_addr = asect->vma; |
| 2474 |
else |
| 2475 |
this_hdr->sh_addr = 0; |
| 2476 |
|
| 2477 |
this_hdr->sh_offset = 0; |
| 2478 |
this_hdr->sh_size = asect->size; |
| 2479 |
this_hdr->sh_link = 0; |
| 2480 |
this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power; |
| 2481 |
/* The sh_entsize and sh_info fields may have been set already by |
| 2482 |
copy_private_section_data. */ |
| 2483 |
|
| 2484 |
this_hdr->bfd_section = asect; |
| 2485 |
this_hdr->contents = NULL; |
| 2486 |
|
| 2487 |
/* If the section type is unspecified, we set it based on |
| 2488 |
asect->flags. */ |
| 2489 |
if ((asect->flags & SEC_GROUP) != 0) |
| 2490 |
sh_type = SHT_GROUP; |
| 2491 |
else if ((asect->flags & SEC_ALLOC) != 0 |
| 2492 |
&& (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0) |
| 2493 |
|| (asect->flags & SEC_NEVER_LOAD) != 0)) |
| 2494 |
sh_type = SHT_NOBITS; |
| 2495 |
else |
| 2496 |
sh_type = SHT_PROGBITS; |
| 2497 |
|
| 2498 |
if (this_hdr->sh_type == SHT_NULL) |
| 2499 |
this_hdr->sh_type = sh_type; |
| 2500 |
else if (this_hdr->sh_type == SHT_NOBITS |
| 2501 |
&& sh_type == SHT_PROGBITS |
| 2502 |
&& (asect->flags & SEC_ALLOC) != 0) |
| 2503 |
{ |
| 2504 |
/* Warn if we are changing a NOBITS section to PROGBITS, but |
| 2505 |
allow the link to proceed. This can happen when users link |
| 2506 |
non-bss input sections to bss output sections, or emit data |
| 2507 |
to a bss output section via a linker script. */ |
| 2508 |
(*_bfd_error_handler) |
| 2509 |
(_("warning: section `%A' type changed to PROGBITS"), asect); |
| 2510 |
this_hdr->sh_type = sh_type; |
| 2511 |
} |
| 2512 |
|
| 2513 |
switch (this_hdr->sh_type) |
| 2514 |
{ |
| 2515 |
default: |
| 2516 |
break; |
| 2517 |
|
| 2518 |
case SHT_STRTAB: |
| 2519 |
case SHT_INIT_ARRAY: |
| 2520 |
case SHT_FINI_ARRAY: |
| 2521 |
case SHT_PREINIT_ARRAY: |
| 2522 |
case SHT_NOTE: |
| 2523 |
case SHT_NOBITS: |
| 2524 |
case SHT_PROGBITS: |
| 2525 |
break; |
| 2526 |
|
| 2527 |
case SHT_HASH: |
| 2528 |
this_hdr->sh_entsize = bed->s->sizeof_hash_entry; |
| 2529 |
break; |
| 2530 |
|
| 2531 |
case SHT_DYNSYM: |
| 2532 |
this_hdr->sh_entsize = bed->s->sizeof_sym; |
| 2533 |
break; |
| 2534 |
|
| 2535 |
case SHT_DYNAMIC: |
| 2536 |
this_hdr->sh_entsize = bed->s->sizeof_dyn; |
| 2537 |
break; |
| 2538 |
|
| 2539 |
case SHT_RELA: |
| 2540 |
if (get_elf_backend_data (abfd)->may_use_rela_p) |
| 2541 |
this_hdr->sh_entsize = bed->s->sizeof_rela; |
| 2542 |
break; |
| 2543 |
|
| 2544 |
case SHT_REL: |
| 2545 |
if (get_elf_backend_data (abfd)->may_use_rel_p) |
| 2546 |
this_hdr->sh_entsize = bed->s->sizeof_rel; |
| 2547 |
break; |
| 2548 |
|
| 2549 |
case SHT_GNU_versym: |
| 2550 |
this_hdr->sh_entsize = sizeof (Elf_External_Versym); |
| 2551 |
break; |
| 2552 |
|
| 2553 |
case SHT_GNU_verdef: |
| 2554 |
this_hdr->sh_entsize = 0; |
| 2555 |
/* objcopy or strip will copy over sh_info, but may not set |
| 2556 |
cverdefs. The linker will set cverdefs, but sh_info will be |
| 2557 |
zero. */ |
| 2558 |
if (this_hdr->sh_info == 0) |
| 2559 |
this_hdr->sh_info = elf_tdata (abfd)->cverdefs; |
| 2560 |
else |
| 2561 |
BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0 |
| 2562 |
|| this_hdr->sh_info == elf_tdata (abfd)->cverdefs); |
| 2563 |
break; |
| 2564 |
|
| 2565 |
case SHT_GNU_verneed: |
| 2566 |
this_hdr->sh_entsize = 0; |
| 2567 |
/* objcopy or strip will copy over sh_info, but may not set |
| 2568 |
cverrefs. The linker will set cverrefs, but sh_info will be |
| 2569 |
zero. */ |
| 2570 |
if (this_hdr->sh_info == 0) |
| 2571 |
this_hdr->sh_info = elf_tdata (abfd)->cverrefs; |
| 2572 |
else |
| 2573 |
BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0 |
| 2574 |
|| this_hdr->sh_info == elf_tdata (abfd)->cverrefs); |
| 2575 |
break; |
| 2576 |
|
| 2577 |
case SHT_GROUP: |
| 2578 |
this_hdr->sh_entsize = GRP_ENTRY_SIZE; |
| 2579 |
break; |
| 2580 |
|
| 2581 |
case SHT_GNU_HASH: |
| 2582 |
this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4; |
| 2583 |
break; |
| 2584 |
} |
| 2585 |
|
| 2586 |
if ((asect->flags & SEC_ALLOC) != 0) |
| 2587 |
this_hdr->sh_flags |= SHF_ALLOC; |
| 2588 |
if ((asect->flags & SEC_READONLY) == 0) |
| 2589 |
this_hdr->sh_flags |= SHF_WRITE; |
| 2590 |
if ((asect->flags & SEC_CODE) != 0) |
| 2591 |
this_hdr->sh_flags |= SHF_EXECINSTR; |
| 2592 |
if ((asect->flags & SEC_MERGE) != 0) |
| 2593 |
{ |
| 2594 |
this_hdr->sh_flags |= SHF_MERGE; |
| 2595 |
this_hdr->sh_entsize = asect->entsize; |
| 2596 |
if ((asect->flags & SEC_STRINGS) != 0) |
| 2597 |
this_hdr->sh_flags |= SHF_STRINGS; |
| 2598 |
} |
| 2599 |
if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL) |
| 2600 |
this_hdr->sh_flags |= SHF_GROUP; |
| 2601 |
if ((asect->flags & SEC_THREAD_LOCAL) != 0) |
| 2602 |
{ |
| 2603 |
this_hdr->sh_flags |= SHF_TLS; |
| 2604 |
if (asect->size == 0 |
| 2605 |
&& (asect->flags & SEC_HAS_CONTENTS) == 0) |
| 2606 |
{ |
| 2607 |
struct bfd_link_order *o = asect->map_tail.link_order; |
| 2608 |
|
| 2609 |
this_hdr->sh_size = 0; |
| 2610 |
if (o != NULL) |
| 2611 |
{ |
| 2612 |
this_hdr->sh_size = o->offset + o->size; |
| 2613 |
if (this_hdr->sh_size != 0) |
| 2614 |
this_hdr->sh_type = SHT_NOBITS; |
| 2615 |
} |
| 2616 |
} |
| 2617 |
} |
| 2618 |
|
| 2619 |
/* Check for processor-specific section types. */ |
| 2620 |
sh_type = this_hdr->sh_type; |
| 2621 |
if (bed->elf_backend_fake_sections |
| 2622 |
&& !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect)) |
| 2623 |
*failedptr = TRUE; |
| 2624 |
|
| 2625 |
if (sh_type == SHT_NOBITS && asect->size != 0) |
| 2626 |
{ |
| 2627 |
/* Don't change the header type from NOBITS if we are being |
| 2628 |
called for objcopy --only-keep-debug. */ |
| 2629 |
this_hdr->sh_type = sh_type; |
| 2630 |
} |
| 2631 |
|
| 2632 |
/* If the section has relocs, set up a section header for the |
| 2633 |
SHT_REL[A] section. If two relocation sections are required for |
| 2634 |
this section, it is up to the processor-specific back-end to |
| 2635 |
create the other. */ |
| 2636 |
if ((asect->flags & SEC_RELOC) != 0 |
| 2637 |
&& !_bfd_elf_init_reloc_shdr (abfd, |
| 2638 |
&elf_section_data (asect)->rel_hdr, |
| 2639 |
asect, |
| 2640 |
asect->use_rela_p)) |
| 2641 |
*failedptr = TRUE; |
| 2642 |
} |
| 2643 |
|
| 2644 |
/* Fill in the contents of a SHT_GROUP section. Called from |
| 2645 |
_bfd_elf_compute_section_file_positions for gas, objcopy, and |
| 2646 |
when ELF targets use the generic linker, ld. Called for ld -r |
| 2647 |
from bfd_elf_final_link. */ |
| 2648 |
|
| 2649 |
void |
| 2650 |
bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg) |
| 2651 |
{ |
| 2652 |
bfd_boolean *failedptr = failedptrarg; |
| 2653 |
asection *elt, *first; |
| 2654 |
unsigned char *loc; |
| 2655 |
bfd_boolean gas; |
| 2656 |
|
| 2657 |
/* Ignore linker created group section. See elfNN_ia64_object_p in |
| 2658 |
elfxx-ia64.c. */ |
| 2659 |
if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP) |
| 2660 |
|| *failedptr) |
| 2661 |
return; |
| 2662 |
|
| 2663 |
if (elf_section_data (sec)->this_hdr.sh_info == 0) |
| 2664 |
{ |
| 2665 |
unsigned long symindx = 0; |
| 2666 |
|
| 2667 |
/* elf_group_id will have been set up by objcopy and the |
| 2668 |
generic linker. */ |
| 2669 |
if (elf_group_id (sec) != NULL) |
| 2670 |
symindx = elf_group_id (sec)->udata.i; |
| 2671 |
|
| 2672 |
if (symindx == 0) |
| 2673 |
{ |
| 2674 |
/* If called from the assembler, swap_out_syms will have set up |
| 2675 |
elf_section_syms. */ |
| 2676 |
BFD_ASSERT (elf_section_syms (abfd) != NULL); |
| 2677 |
symindx = elf_section_syms (abfd)[sec->index]->udata.i; |
| 2678 |
} |
| 2679 |
elf_section_data (sec)->this_hdr.sh_info = symindx; |
| 2680 |
} |
| 2681 |
else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2) |
| 2682 |
{ |
| 2683 |
/* The ELF backend linker sets sh_info to -2 when the group |
| 2684 |
signature symbol is global, and thus the index can't be |
| 2685 |
set until all local symbols are output. */ |
| 2686 |
asection *igroup = elf_sec_group (elf_next_in_group (sec)); |
| 2687 |
struct bfd_elf_section_data *sec_data = elf_section_data (igroup); |
| 2688 |
unsigned long symndx = sec_data->this_hdr.sh_info; |
| 2689 |
unsigned long extsymoff = 0; |
| 2690 |
struct elf_link_hash_entry *h; |
| 2691 |
|
| 2692 |
if (!elf_bad_symtab (igroup->owner)) |
| 2693 |
{ |
| 2694 |
Elf_Internal_Shdr *symtab_hdr; |
| 2695 |
|
| 2696 |
symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr; |
| 2697 |
extsymoff = symtab_hdr->sh_info; |
| 2698 |
} |
| 2699 |
h = elf_sym_hashes (igroup->owner)[symndx - extsymoff]; |
| 2700 |
while (h->root.type == bfd_link_hash_indirect |
| 2701 |
|| h->root.type == bfd_link_hash_warning) |
| 2702 |
h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 2703 |
|
| 2704 |
elf_section_data (sec)->this_hdr.sh_info = h->indx; |
| 2705 |
} |
| 2706 |
|
| 2707 |
/* The contents won't be allocated for "ld -r" or objcopy. */ |
| 2708 |
gas = TRUE; |
| 2709 |
if (sec->contents == NULL) |
| 2710 |
{ |
| 2711 |
gas = FALSE; |
| 2712 |
sec->contents = bfd_alloc (abfd, sec->size); |
| 2713 |
|
| 2714 |
/* Arrange for the section to be written out. */ |
| 2715 |
elf_section_data (sec)->this_hdr.contents = sec->contents; |
| 2716 |
if (sec->contents == NULL) |
| 2717 |
{ |
| 2718 |
*failedptr = TRUE; |
| 2719 |
return; |
| 2720 |
} |
| 2721 |
} |
| 2722 |
|
| 2723 |
loc = sec->contents + sec->size; |
| 2724 |
|
| 2725 |
/* Get the pointer to the first section in the group that gas |
| 2726 |
squirreled away here. objcopy arranges for this to be set to the |
| 2727 |
start of the input section group. */ |
| 2728 |
first = elt = elf_next_in_group (sec); |
| 2729 |
|
| 2730 |
/* First element is a flag word. Rest of section is elf section |
| 2731 |
indices for all the sections of the group. Write them backwards |
| 2732 |
just to keep the group in the same order as given in .section |
| 2733 |
directives, not that it matters. */ |
| 2734 |
while (elt != NULL) |
| 2735 |
{ |
| 2736 |
asection *s; |
| 2737 |
unsigned int idx; |
| 2738 |
|
| 2739 |
s = elt; |
| 2740 |
if (! elf_discarded_section (s)) |
| 2741 |
{ |
| 2742 |
loc -= 4; |
| 2743 |
if (!gas) |
| 2744 |
s = s->output_section; |
| 2745 |
idx = 0; |
| 2746 |
if (s != NULL) |
| 2747 |
idx = elf_section_data (s)->this_idx; |
| 2748 |
H_PUT_32 (abfd, idx, loc); |
| 2749 |
} |
| 2750 |
elt = elf_next_in_group (elt); |
| 2751 |
if (elt == first) |
| 2752 |
break; |
| 2753 |
} |
| 2754 |
|
| 2755 |
if ((loc -= 4) != sec->contents) |
| 2756 |
abort (); |
| 2757 |
|
| 2758 |
H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc); |
| 2759 |
} |
| 2760 |
|
| 2761 |
/* Assign all ELF section numbers. The dummy first section is handled here |
| 2762 |
too. The link/info pointers for the standard section types are filled |
| 2763 |
in here too, while we're at it. */ |
| 2764 |
|
| 2765 |
static bfd_boolean |
| 2766 |
assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info) |
| 2767 |
{ |
| 2768 |
struct elf_obj_tdata *t = elf_tdata (abfd); |
| 2769 |
asection *sec; |
| 2770 |
unsigned int section_number, secn; |
| 2771 |
Elf_Internal_Shdr **i_shdrp; |
| 2772 |
struct bfd_elf_section_data *d; |
| 2773 |
bfd_boolean need_symtab; |
| 2774 |
|
| 2775 |
section_number = 1; |
| 2776 |
|
| 2777 |
_bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd)); |
| 2778 |
|
| 2779 |
/* SHT_GROUP sections are in relocatable files only. */ |
| 2780 |
if (link_info == NULL || link_info->relocatable) |
| 2781 |
{ |
| 2782 |
/* Put SHT_GROUP sections first. */ |
| 2783 |
for (sec = abfd->sections; sec != NULL; sec = sec->next) |
| 2784 |
{ |
| 2785 |
d = elf_section_data (sec); |
| 2786 |
|
| 2787 |
if (d->this_hdr.sh_type == SHT_GROUP) |
| 2788 |
{ |
| 2789 |
if (sec->flags & SEC_LINKER_CREATED) |
| 2790 |
{ |
| 2791 |
/* Remove the linker created SHT_GROUP sections. */ |
| 2792 |
bfd_section_list_remove (abfd, sec); |
| 2793 |
abfd->section_count--; |
| 2794 |
} |
| 2795 |
else |
| 2796 |
d->this_idx = section_number++; |
| 2797 |
} |
| 2798 |
} |
| 2799 |
} |
| 2800 |
|
| 2801 |
for (sec = abfd->sections; sec; sec = sec->next) |
| 2802 |
{ |
| 2803 |
d = elf_section_data (sec); |
| 2804 |
|
| 2805 |
if (d->this_hdr.sh_type != SHT_GROUP) |
| 2806 |
d->this_idx = section_number++; |
| 2807 |
_bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name); |
| 2808 |
if ((sec->flags & SEC_RELOC) == 0) |
| 2809 |
d->rel_idx = 0; |
| 2810 |
else |
| 2811 |
{ |
| 2812 |
d->rel_idx = section_number++; |
| 2813 |
_bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name); |
| 2814 |
} |
| 2815 |
|
| 2816 |
if (d->rel_hdr2) |
| 2817 |
{ |
| 2818 |
d->rel_idx2 = section_number++; |
| 2819 |
_bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name); |
| 2820 |
} |
| 2821 |
else |
| 2822 |
d->rel_idx2 = 0; |
| 2823 |
} |
| 2824 |
|
| 2825 |
t->shstrtab_section = section_number++; |
| 2826 |
_bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name); |
| 2827 |
elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section; |
| 2828 |
|
| 2829 |
need_symtab = (bfd_get_symcount (abfd) > 0 |
| 2830 |
|| (link_info == NULL |
| 2831 |
&& ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC)) |
| 2832 |
== HAS_RELOC))); |
| 2833 |
if (need_symtab) |
| 2834 |
{ |
| 2835 |
t->symtab_section = section_number++; |
| 2836 |
_bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name); |
| 2837 |
if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF)) |
| 2838 |
{ |
| 2839 |
t->symtab_shndx_section = section_number++; |
| 2840 |
t->symtab_shndx_hdr.sh_name |
| 2841 |
= (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), |
| 2842 |
".symtab_shndx", FALSE); |
| 2843 |
if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1) |
| 2844 |
return FALSE; |
| 2845 |
} |
| 2846 |
t->strtab_section = section_number++; |
| 2847 |
_bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name); |
| 2848 |
} |
| 2849 |
|
| 2850 |
_bfd_elf_strtab_finalize (elf_shstrtab (abfd)); |
| 2851 |
t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd)); |
| 2852 |
|
| 2853 |
elf_numsections (abfd) = section_number; |
| 2854 |
elf_elfheader (abfd)->e_shnum = section_number; |
| 2855 |
|
| 2856 |
/* Set up the list of section header pointers, in agreement with the |
| 2857 |
indices. */ |
| 2858 |
i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *)); |
| 2859 |
if (i_shdrp == NULL) |
| 2860 |
return FALSE; |
| 2861 |
|
| 2862 |
i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr)); |
| 2863 |
if (i_shdrp[0] == NULL) |
| 2864 |
{ |
| 2865 |
bfd_release (abfd, i_shdrp); |
| 2866 |
return FALSE; |
| 2867 |
} |
| 2868 |
|
| 2869 |
elf_elfsections (abfd) = i_shdrp; |
| 2870 |
|
| 2871 |
i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr; |
| 2872 |
if (need_symtab) |
| 2873 |
{ |
| 2874 |
i_shdrp[t->symtab_section] = &t->symtab_hdr; |
| 2875 |
if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)) |
| 2876 |
{ |
| 2877 |
i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr; |
| 2878 |
t->symtab_shndx_hdr.sh_link = t->symtab_section; |
| 2879 |
} |
| 2880 |
i_shdrp[t->strtab_section] = &t->strtab_hdr; |
| 2881 |
t->symtab_hdr.sh_link = t->strtab_section; |
| 2882 |
} |
| 2883 |
|
| 2884 |
for (sec = abfd->sections; sec; sec = sec->next) |
| 2885 |
{ |
| 2886 |
struct bfd_elf_section_data *d = elf_section_data (sec); |
| 2887 |
asection *s; |
| 2888 |
const char *name; |
| 2889 |
|
| 2890 |
i_shdrp[d->this_idx] = &d->this_hdr; |
| 2891 |
if (d->rel_idx != 0) |
| 2892 |
i_shdrp[d->rel_idx] = &d->rel_hdr; |
| 2893 |
if (d->rel_idx2 != 0) |
| 2894 |
i_shdrp[d->rel_idx2] = d->rel_hdr2; |
| 2895 |
|
| 2896 |
/* Fill in the sh_link and sh_info fields while we're at it. */ |
| 2897 |
|
| 2898 |
/* sh_link of a reloc section is the section index of the symbol |
| 2899 |
table. sh_info is the section index of the section to which |
| 2900 |
the relocation entries apply. */ |
| 2901 |
if (d->rel_idx != 0) |
| 2902 |
{ |
| 2903 |
d->rel_hdr.sh_link = t->symtab_section; |
| 2904 |
d->rel_hdr.sh_info = d->this_idx; |
| 2905 |
} |
| 2906 |
if (d->rel_idx2 != 0) |
| 2907 |
{ |
| 2908 |
d->rel_hdr2->sh_link = t->symtab_section; |
| 2909 |
d->rel_hdr2->sh_info = d->this_idx; |
| 2910 |
} |
| 2911 |
|
| 2912 |
/* We need to set up sh_link for SHF_LINK_ORDER. */ |
| 2913 |
if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0) |
| 2914 |
{ |
| 2915 |
s = elf_linked_to_section (sec); |
| 2916 |
if (s) |
| 2917 |
{ |
| 2918 |
/* elf_linked_to_section points to the input section. */ |
| 2919 |
if (link_info != NULL) |
| 2920 |
{ |
| 2921 |
/* Check discarded linkonce section. */ |
| 2922 |
if (elf_discarded_section (s)) |
| 2923 |
{ |
| 2924 |
asection *kept; |
| 2925 |
(*_bfd_error_handler) |
| 2926 |
(_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"), |
| 2927 |
abfd, d->this_hdr.bfd_section, |
| 2928 |
s, s->owner); |
| 2929 |
/* Point to the kept section if it has the same |
| 2930 |
size as the discarded one. */ |
| 2931 |
kept = _bfd_elf_check_kept_section (s, link_info); |
| 2932 |
if (kept == NULL) |
| 2933 |
{ |
| 2934 |
bfd_set_error (bfd_error_bad_value); |
| 2935 |
return FALSE; |
| 2936 |
} |
| 2937 |
s = kept; |
| 2938 |
} |
| 2939 |
|
| 2940 |
s = s->output_section; |
| 2941 |
BFD_ASSERT (s != NULL); |
| 2942 |
} |
| 2943 |
else |
| 2944 |
{ |
| 2945 |
/* Handle objcopy. */ |
| 2946 |
if (s->output_section == NULL) |
| 2947 |
{ |
| 2948 |
(*_bfd_error_handler) |
| 2949 |
(_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"), |
| 2950 |
abfd, d->this_hdr.bfd_section, s, s->owner); |
| 2951 |
bfd_set_error (bfd_error_bad_value); |
| 2952 |
return FALSE; |
| 2953 |
} |
| 2954 |
s = s->output_section; |
| 2955 |
} |
| 2956 |
d->this_hdr.sh_link = elf_section_data (s)->this_idx; |
| 2957 |
} |
| 2958 |
else |
| 2959 |
{ |
| 2960 |
/* PR 290: |
| 2961 |
The Intel C compiler generates SHT_IA_64_UNWIND with |
| 2962 |
SHF_LINK_ORDER. But it doesn't set the sh_link or |
| 2963 |
sh_info fields. Hence we could get the situation |
| 2964 |
where s is NULL. */ |
| 2965 |
const struct elf_backend_data *bed |
| 2966 |
= get_elf_backend_data (abfd); |
| 2967 |
if (bed->link_order_error_handler) |
| 2968 |
bed->link_order_error_handler |
| 2969 |
(_("%B: warning: sh_link not set for section `%A'"), |
| 2970 |
abfd, sec); |
| 2971 |
} |
| 2972 |
} |
| 2973 |
|
| 2974 |
switch (d->this_hdr.sh_type) |
| 2975 |
{ |
| 2976 |
case SHT_REL: |
| 2977 |
case SHT_RELA: |
| 2978 |
/* A reloc section which we are treating as a normal BFD |
| 2979 |
section. sh_link is the section index of the symbol |
| 2980 |
table. sh_info is the section index of the section to |
| 2981 |
which the relocation entries apply. We assume that an |
| 2982 |
allocated reloc section uses the dynamic symbol table. |
| 2983 |
FIXME: How can we be sure? */ |
| 2984 |
s = bfd_get_section_by_name (abfd, ".dynsym"); |
| 2985 |
if (s != NULL) |
| 2986 |
d->this_hdr.sh_link = elf_section_data (s)->this_idx; |
| 2987 |
|
| 2988 |
/* We look up the section the relocs apply to by name. */ |
| 2989 |
name = sec->name; |
| 2990 |
if (d->this_hdr.sh_type == SHT_REL) |
| 2991 |
name += 4; |
| 2992 |
else |
| 2993 |
name += 5; |
| 2994 |
s = bfd_get_section_by_name (abfd, name); |
| 2995 |
if (s != NULL) |
| 2996 |
d->this_hdr.sh_info = elf_section_data (s)->this_idx; |
| 2997 |
break; |
| 2998 |
|
| 2999 |
case SHT_STRTAB: |
| 3000 |
/* We assume that a section named .stab*str is a stabs |
| 3001 |
string section. We look for a section with the same name |
| 3002 |
but without the trailing ``str'', and set its sh_link |
| 3003 |
field to point to this section. */ |
| 3004 |
if (CONST_STRNEQ (sec->name, ".stab") |
| 3005 |
&& strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) |
| 3006 |
{ |
| 3007 |
size_t len; |
| 3008 |
char *alc; |
| 3009 |
|
| 3010 |
len = strlen (sec->name); |
| 3011 |
alc = bfd_malloc (len - 2); |
| 3012 |
if (alc == NULL) |
| 3013 |
return FALSE; |
| 3014 |
memcpy (alc, sec->name, len - 3); |
| 3015 |
alc[len - 3] = '\0'; |
| 3016 |
s = bfd_get_section_by_name (abfd, alc); |
| 3017 |
free (alc); |
| 3018 |
if (s != NULL) |
| 3019 |
{ |
| 3020 |
elf_section_data (s)->this_hdr.sh_link = d->this_idx; |
| 3021 |
|
| 3022 |
/* This is a .stab section. */ |
| 3023 |
if (elf_section_data (s)->this_hdr.sh_entsize == 0) |
| 3024 |
elf_section_data (s)->this_hdr.sh_entsize |
| 3025 |
= 4 + 2 * bfd_get_arch_size (abfd) / 8; |
| 3026 |
} |
| 3027 |
} |
| 3028 |
break; |
| 3029 |
|
| 3030 |
case SHT_DYNAMIC: |
| 3031 |
case SHT_DYNSYM: |
| 3032 |
case SHT_GNU_verneed: |
| 3033 |
case SHT_GNU_verdef: |
| 3034 |
/* sh_link is the section header index of the string table |
| 3035 |
used for the dynamic entries, or the symbol table, or the |
| 3036 |
version strings. */ |
| 3037 |
s = bfd_get_section_by_name (abfd, ".dynstr"); |
| 3038 |
if (s != NULL) |
| 3039 |
d->this_hdr.sh_link = elf_section_data (s)->this_idx; |
| 3040 |
break; |
| 3041 |
|
| 3042 |
case SHT_GNU_LIBLIST: |
| 3043 |
/* sh_link is the section header index of the prelink library |
| 3044 |
list used for the dynamic entries, or the symbol table, or |
| 3045 |
the version strings. */ |
| 3046 |
s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC) |
| 3047 |
? ".dynstr" : ".gnu.libstr"); |
| 3048 |
if (s != NULL) |
| 3049 |
d->this_hdr.sh_link = elf_section_data (s)->this_idx; |
| 3050 |
break; |
| 3051 |
|
| 3052 |
case SHT_HASH: |
| 3053 |
case SHT_GNU_HASH: |
| 3054 |
case SHT_GNU_versym: |
| 3055 |
/* sh_link is the section header index of the symbol table |
| 3056 |
this hash table or version table is for. */ |
| 3057 |
s = bfd_get_section_by_name (abfd, ".dynsym"); |
| 3058 |
if (s != NULL) |
| 3059 |
d->this_hdr.sh_link = elf_section_data (s)->this_idx; |
| 3060 |
break; |
| 3061 |
|
| 3062 |
case SHT_GROUP: |
| 3063 |
d->this_hdr.sh_link = t->symtab_section; |
| 3064 |
} |
| 3065 |
} |
| 3066 |
|
| 3067 |
for (secn = 1; secn < section_number; ++secn) |
| 3068 |
if (i_shdrp[secn] == NULL) |
| 3069 |
i_shdrp[secn] = i_shdrp[0]; |
| 3070 |
else |
| 3071 |
i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd), |
| 3072 |
i_shdrp[secn]->sh_name); |
| 3073 |
return TRUE; |
| 3074 |
} |
| 3075 |
|
| 3076 |
/* Map symbol from it's internal number to the external number, moving |
| 3077 |
all local symbols to be at the head of the list. */ |
| 3078 |
|
| 3079 |
static bfd_boolean |
| 3080 |
sym_is_global (bfd *abfd, asymbol *sym) |
| 3081 |
{ |
| 3082 |
/* If the backend has a special mapping, use it. */ |
| 3083 |
const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| 3084 |
if (bed->elf_backend_sym_is_global) |
| 3085 |
return (*bed->elf_backend_sym_is_global) (abfd, sym); |
| 3086 |
|
| 3087 |
return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 |
| 3088 |
|| bfd_is_und_section (bfd_get_section (sym)) |
| 3089 |
|| bfd_is_com_section (bfd_get_section (sym))); |
| 3090 |
} |
| 3091 |
|
| 3092 |
/* Don't output section symbols for sections that are not going to be |
| 3093 |
output. */ |
| 3094 |
|
| 3095 |
static bfd_boolean |
| 3096 |
ignore_section_sym (bfd *abfd, asymbol *sym) |
| 3097 |
{ |
| 3098 |
return ((sym->flags & BSF_SECTION_SYM) != 0 |
| 3099 |
&& !(sym->section->owner == abfd |
| 3100 |
|| (sym->section->output_section->owner == abfd |
| 3101 |
&& sym->section->output_offset == 0))); |
| 3102 |
} |
| 3103 |
|
| 3104 |
static bfd_boolean |
| 3105 |
elf_map_symbols (bfd *abfd) |
| 3106 |
{ |
| 3107 |
unsigned int symcount = bfd_get_symcount (abfd); |
| 3108 |
asymbol **syms = bfd_get_outsymbols (abfd); |
| 3109 |
asymbol **sect_syms; |
| 3110 |
unsigned int num_locals = 0; |
| 3111 |
unsigned int num_globals = 0; |
| 3112 |
unsigned int num_locals2 = 0; |
| 3113 |
unsigned int num_globals2 = 0; |
| 3114 |
int max_index = 0; |
| 3115 |
unsigned int idx; |
| 3116 |
asection *asect; |
| 3117 |
asymbol **new_syms; |
| 3118 |
|
| 3119 |
#ifdef DEBUG |
| 3120 |
fprintf (stderr, "elf_map_symbols\n"); |
| 3121 |
fflush (stderr); |
| 3122 |
#endif |
| 3123 |
|
| 3124 |
for (asect = abfd->sections; asect; asect = asect->next) |
| 3125 |
{ |
| 3126 |
if (max_index < asect->index) |
| 3127 |
max_index = asect->index; |
| 3128 |
} |
| 3129 |
|
| 3130 |
max_index++; |
| 3131 |
sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *)); |
| 3132 |
if (sect_syms == NULL) |
| 3133 |
return FALSE; |
| 3134 |
elf_section_syms (abfd) = sect_syms; |
| 3135 |
elf_num_section_syms (abfd) = max_index; |
| 3136 |
|
| 3137 |
/* Init sect_syms entries for any section symbols we have already |
| 3138 |
decided to output. */ |
| 3139 |
for (idx = 0; idx < symcount; idx++) |
| 3140 |
{ |
| 3141 |
asymbol *sym = syms[idx]; |
| 3142 |
|
| 3143 |
if ((sym->flags & BSF_SECTION_SYM) != 0 |
| 3144 |
&& sym->value == 0 |
| 3145 |
&& !ignore_section_sym (abfd, sym)) |
| 3146 |
{ |
| 3147 |
asection *sec = sym->section; |
| 3148 |
|
| 3149 |
if (sec->owner != abfd) |
| 3150 |
sec = sec->output_section; |
| 3151 |
|
| 3152 |
sect_syms[sec->index] = syms[idx]; |
| 3153 |
} |
| 3154 |
} |
| 3155 |
|
| 3156 |
/* Classify all of the symbols. */ |
| 3157 |
for (idx = 0; idx < symcount; idx++) |
| 3158 |
{ |
| 3159 |
if (ignore_section_sym (abfd, syms[idx])) |
| 3160 |
continue; |
| 3161 |
if (!sym_is_global (abfd, syms[idx])) |
| 3162 |
num_locals++; |
| 3163 |
else |
| 3164 |
num_globals++; |
| 3165 |
} |
| 3166 |
|
| 3167 |
/* We will be adding a section symbol for each normal BFD section. Most |
| 3168 |
sections will already have a section symbol in outsymbols, but |
| 3169 |
eg. SHT_GROUP sections will not, and we need the section symbol mapped |
| 3170 |
at least in that case. */ |
| 3171 |
for (asect = abfd->sections; asect; asect = asect->next) |
| 3172 |
{ |
| 3173 |
if (sect_syms[asect-> |