| 1 |
/* Intel 80386/80486-specific support for 32-bit ELF |
| 2 |
Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
| 3 |
2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. |
| 4 |
|
| 5 |
This file is part of BFD, the Binary File Descriptor library. |
| 6 |
|
| 7 |
This program is free software; you can redistribute it and/or modify |
| 8 |
it under the terms of the GNU General Public License as published by |
| 9 |
the Free Software Foundation; either version 3 of the License, or |
| 10 |
(at your option) any later version. |
| 11 |
|
| 12 |
This program is distributed in the hope that it will be useful, |
| 13 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 |
GNU General Public License for more details. |
| 16 |
|
| 17 |
You should have received a copy of the GNU General Public License |
| 18 |
along with this program; if not, write to the Free Software |
| 19 |
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| 20 |
MA 02110-1301, USA. */ |
| 21 |
|
| 22 |
#include "sysdep.h" |
| 23 |
#include "bfd.h" |
| 24 |
#include "bfdlink.h" |
| 25 |
#include "libbfd.h" |
| 26 |
#include "elf-bfd.h" |
| 27 |
#include "elf-vxworks.h" |
| 28 |
#include "bfd_stdint.h" |
| 29 |
#include "objalloc.h" |
| 30 |
#include "hashtab.h" |
| 31 |
|
| 32 |
/* 386 uses REL relocations instead of RELA. */ |
| 33 |
#define USE_REL 1 |
| 34 |
|
| 35 |
#include "elf/i386.h" |
| 36 |
|
| 37 |
static reloc_howto_type elf_howto_table[]= |
| 38 |
{ |
| 39 |
HOWTO(R_386_NONE, 0, 0, 0, FALSE, 0, complain_overflow_bitfield, |
| 40 |
bfd_elf_generic_reloc, "R_386_NONE", |
| 41 |
TRUE, 0x00000000, 0x00000000, FALSE), |
| 42 |
HOWTO(R_386_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 43 |
bfd_elf_generic_reloc, "R_386_32", |
| 44 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 45 |
HOWTO(R_386_PC32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, |
| 46 |
bfd_elf_generic_reloc, "R_386_PC32", |
| 47 |
TRUE, 0xffffffff, 0xffffffff, TRUE), |
| 48 |
HOWTO(R_386_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 49 |
bfd_elf_generic_reloc, "R_386_GOT32", |
| 50 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 51 |
HOWTO(R_386_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, |
| 52 |
bfd_elf_generic_reloc, "R_386_PLT32", |
| 53 |
TRUE, 0xffffffff, 0xffffffff, TRUE), |
| 54 |
HOWTO(R_386_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 55 |
bfd_elf_generic_reloc, "R_386_COPY", |
| 56 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 57 |
HOWTO(R_386_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 58 |
bfd_elf_generic_reloc, "R_386_GLOB_DAT", |
| 59 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 60 |
HOWTO(R_386_JUMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 61 |
bfd_elf_generic_reloc, "R_386_JUMP_SLOT", |
| 62 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 63 |
HOWTO(R_386_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 64 |
bfd_elf_generic_reloc, "R_386_RELATIVE", |
| 65 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 66 |
HOWTO(R_386_GOTOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 67 |
bfd_elf_generic_reloc, "R_386_GOTOFF", |
| 68 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 69 |
HOWTO(R_386_GOTPC, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, |
| 70 |
bfd_elf_generic_reloc, "R_386_GOTPC", |
| 71 |
TRUE, 0xffffffff, 0xffffffff, TRUE), |
| 72 |
|
| 73 |
/* We have a gap in the reloc numbers here. |
| 74 |
R_386_standard counts the number up to this point, and |
| 75 |
R_386_ext_offset is the value to subtract from a reloc type of |
| 76 |
R_386_16 thru R_386_PC8 to form an index into this table. */ |
| 77 |
#define R_386_standard (R_386_GOTPC + 1) |
| 78 |
#define R_386_ext_offset (R_386_TLS_TPOFF - R_386_standard) |
| 79 |
|
| 80 |
/* These relocs are a GNU extension. */ |
| 81 |
HOWTO(R_386_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 82 |
bfd_elf_generic_reloc, "R_386_TLS_TPOFF", |
| 83 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 84 |
HOWTO(R_386_TLS_IE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 85 |
bfd_elf_generic_reloc, "R_386_TLS_IE", |
| 86 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 87 |
HOWTO(R_386_TLS_GOTIE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 88 |
bfd_elf_generic_reloc, "R_386_TLS_GOTIE", |
| 89 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 90 |
HOWTO(R_386_TLS_LE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 91 |
bfd_elf_generic_reloc, "R_386_TLS_LE", |
| 92 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 93 |
HOWTO(R_386_TLS_GD, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 94 |
bfd_elf_generic_reloc, "R_386_TLS_GD", |
| 95 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 96 |
HOWTO(R_386_TLS_LDM, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 97 |
bfd_elf_generic_reloc, "R_386_TLS_LDM", |
| 98 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 99 |
HOWTO(R_386_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, |
| 100 |
bfd_elf_generic_reloc, "R_386_16", |
| 101 |
TRUE, 0xffff, 0xffff, FALSE), |
| 102 |
HOWTO(R_386_PC16, 0, 1, 16, TRUE, 0, complain_overflow_bitfield, |
| 103 |
bfd_elf_generic_reloc, "R_386_PC16", |
| 104 |
TRUE, 0xffff, 0xffff, TRUE), |
| 105 |
HOWTO(R_386_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, |
| 106 |
bfd_elf_generic_reloc, "R_386_8", |
| 107 |
TRUE, 0xff, 0xff, FALSE), |
| 108 |
HOWTO(R_386_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, |
| 109 |
bfd_elf_generic_reloc, "R_386_PC8", |
| 110 |
TRUE, 0xff, 0xff, TRUE), |
| 111 |
|
| 112 |
#define R_386_ext (R_386_PC8 + 1 - R_386_ext_offset) |
| 113 |
#define R_386_tls_offset (R_386_TLS_LDO_32 - R_386_ext) |
| 114 |
/* These are common with Solaris TLS implementation. */ |
| 115 |
HOWTO(R_386_TLS_LDO_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 116 |
bfd_elf_generic_reloc, "R_386_TLS_LDO_32", |
| 117 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 118 |
HOWTO(R_386_TLS_IE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 119 |
bfd_elf_generic_reloc, "R_386_TLS_IE_32", |
| 120 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 121 |
HOWTO(R_386_TLS_LE_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 122 |
bfd_elf_generic_reloc, "R_386_TLS_LE_32", |
| 123 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 124 |
HOWTO(R_386_TLS_DTPMOD32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 125 |
bfd_elf_generic_reloc, "R_386_TLS_DTPMOD32", |
| 126 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 127 |
HOWTO(R_386_TLS_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 128 |
bfd_elf_generic_reloc, "R_386_TLS_DTPOFF32", |
| 129 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 130 |
HOWTO(R_386_TLS_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 131 |
bfd_elf_generic_reloc, "R_386_TLS_TPOFF32", |
| 132 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 133 |
EMPTY_HOWTO (38), |
| 134 |
HOWTO(R_386_TLS_GOTDESC, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 135 |
bfd_elf_generic_reloc, "R_386_TLS_GOTDESC", |
| 136 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 137 |
HOWTO(R_386_TLS_DESC_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont, |
| 138 |
bfd_elf_generic_reloc, "R_386_TLS_DESC_CALL", |
| 139 |
FALSE, 0, 0, FALSE), |
| 140 |
HOWTO(R_386_TLS_DESC, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 141 |
bfd_elf_generic_reloc, "R_386_TLS_DESC", |
| 142 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 143 |
HOWTO(R_386_IRELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, |
| 144 |
bfd_elf_generic_reloc, "R_386_IRELATIVE", |
| 145 |
TRUE, 0xffffffff, 0xffffffff, FALSE), |
| 146 |
|
| 147 |
/* Another gap. */ |
| 148 |
#define R_386_irelative (R_386_IRELATIVE + 1 - R_386_tls_offset) |
| 149 |
#define R_386_vt_offset (R_386_GNU_VTINHERIT - R_386_irelative) |
| 150 |
|
| 151 |
/* GNU extension to record C++ vtable hierarchy. */ |
| 152 |
HOWTO (R_386_GNU_VTINHERIT, /* type */ |
| 153 |
0, /* rightshift */ |
| 154 |
2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 155 |
0, /* bitsize */ |
| 156 |
FALSE, /* pc_relative */ |
| 157 |
0, /* bitpos */ |
| 158 |
complain_overflow_dont, /* complain_on_overflow */ |
| 159 |
NULL, /* special_function */ |
| 160 |
"R_386_GNU_VTINHERIT", /* name */ |
| 161 |
FALSE, /* partial_inplace */ |
| 162 |
0, /* src_mask */ |
| 163 |
0, /* dst_mask */ |
| 164 |
FALSE), /* pcrel_offset */ |
| 165 |
|
| 166 |
/* GNU extension to record C++ vtable member usage. */ |
| 167 |
HOWTO (R_386_GNU_VTENTRY, /* type */ |
| 168 |
0, /* rightshift */ |
| 169 |
2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 170 |
0, /* bitsize */ |
| 171 |
FALSE, /* pc_relative */ |
| 172 |
0, /* bitpos */ |
| 173 |
complain_overflow_dont, /* complain_on_overflow */ |
| 174 |
_bfd_elf_rel_vtable_reloc_fn, /* special_function */ |
| 175 |
"R_386_GNU_VTENTRY", /* name */ |
| 176 |
FALSE, /* partial_inplace */ |
| 177 |
0, /* src_mask */ |
| 178 |
0, /* dst_mask */ |
| 179 |
FALSE) /* pcrel_offset */ |
| 180 |
|
| 181 |
#define R_386_vt (R_386_GNU_VTENTRY + 1 - R_386_vt_offset) |
| 182 |
|
| 183 |
}; |
| 184 |
|
| 185 |
#ifdef DEBUG_GEN_RELOC |
| 186 |
#define TRACE(str) \ |
| 187 |
fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str) |
| 188 |
#else |
| 189 |
#define TRACE(str) |
| 190 |
#endif |
| 191 |
|
| 192 |
static reloc_howto_type * |
| 193 |
elf_i386_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| 194 |
bfd_reloc_code_real_type code) |
| 195 |
{ |
| 196 |
switch (code) |
| 197 |
{ |
| 198 |
case BFD_RELOC_NONE: |
| 199 |
TRACE ("BFD_RELOC_NONE"); |
| 200 |
return &elf_howto_table[R_386_NONE]; |
| 201 |
|
| 202 |
case BFD_RELOC_32: |
| 203 |
TRACE ("BFD_RELOC_32"); |
| 204 |
return &elf_howto_table[R_386_32]; |
| 205 |
|
| 206 |
case BFD_RELOC_CTOR: |
| 207 |
TRACE ("BFD_RELOC_CTOR"); |
| 208 |
return &elf_howto_table[R_386_32]; |
| 209 |
|
| 210 |
case BFD_RELOC_32_PCREL: |
| 211 |
TRACE ("BFD_RELOC_PC32"); |
| 212 |
return &elf_howto_table[R_386_PC32]; |
| 213 |
|
| 214 |
case BFD_RELOC_386_GOT32: |
| 215 |
TRACE ("BFD_RELOC_386_GOT32"); |
| 216 |
return &elf_howto_table[R_386_GOT32]; |
| 217 |
|
| 218 |
case BFD_RELOC_386_PLT32: |
| 219 |
TRACE ("BFD_RELOC_386_PLT32"); |
| 220 |
return &elf_howto_table[R_386_PLT32]; |
| 221 |
|
| 222 |
case BFD_RELOC_386_COPY: |
| 223 |
TRACE ("BFD_RELOC_386_COPY"); |
| 224 |
return &elf_howto_table[R_386_COPY]; |
| 225 |
|
| 226 |
case BFD_RELOC_386_GLOB_DAT: |
| 227 |
TRACE ("BFD_RELOC_386_GLOB_DAT"); |
| 228 |
return &elf_howto_table[R_386_GLOB_DAT]; |
| 229 |
|
| 230 |
case BFD_RELOC_386_JUMP_SLOT: |
| 231 |
TRACE ("BFD_RELOC_386_JUMP_SLOT"); |
| 232 |
return &elf_howto_table[R_386_JUMP_SLOT]; |
| 233 |
|
| 234 |
case BFD_RELOC_386_RELATIVE: |
| 235 |
TRACE ("BFD_RELOC_386_RELATIVE"); |
| 236 |
return &elf_howto_table[R_386_RELATIVE]; |
| 237 |
|
| 238 |
case BFD_RELOC_386_GOTOFF: |
| 239 |
TRACE ("BFD_RELOC_386_GOTOFF"); |
| 240 |
return &elf_howto_table[R_386_GOTOFF]; |
| 241 |
|
| 242 |
case BFD_RELOC_386_GOTPC: |
| 243 |
TRACE ("BFD_RELOC_386_GOTPC"); |
| 244 |
return &elf_howto_table[R_386_GOTPC]; |
| 245 |
|
| 246 |
/* These relocs are a GNU extension. */ |
| 247 |
case BFD_RELOC_386_TLS_TPOFF: |
| 248 |
TRACE ("BFD_RELOC_386_TLS_TPOFF"); |
| 249 |
return &elf_howto_table[R_386_TLS_TPOFF - R_386_ext_offset]; |
| 250 |
|
| 251 |
case BFD_RELOC_386_TLS_IE: |
| 252 |
TRACE ("BFD_RELOC_386_TLS_IE"); |
| 253 |
return &elf_howto_table[R_386_TLS_IE - R_386_ext_offset]; |
| 254 |
|
| 255 |
case BFD_RELOC_386_TLS_GOTIE: |
| 256 |
TRACE ("BFD_RELOC_386_TLS_GOTIE"); |
| 257 |
return &elf_howto_table[R_386_TLS_GOTIE - R_386_ext_offset]; |
| 258 |
|
| 259 |
case BFD_RELOC_386_TLS_LE: |
| 260 |
TRACE ("BFD_RELOC_386_TLS_LE"); |
| 261 |
return &elf_howto_table[R_386_TLS_LE - R_386_ext_offset]; |
| 262 |
|
| 263 |
case BFD_RELOC_386_TLS_GD: |
| 264 |
TRACE ("BFD_RELOC_386_TLS_GD"); |
| 265 |
return &elf_howto_table[R_386_TLS_GD - R_386_ext_offset]; |
| 266 |
|
| 267 |
case BFD_RELOC_386_TLS_LDM: |
| 268 |
TRACE ("BFD_RELOC_386_TLS_LDM"); |
| 269 |
return &elf_howto_table[R_386_TLS_LDM - R_386_ext_offset]; |
| 270 |
|
| 271 |
case BFD_RELOC_16: |
| 272 |
TRACE ("BFD_RELOC_16"); |
| 273 |
return &elf_howto_table[R_386_16 - R_386_ext_offset]; |
| 274 |
|
| 275 |
case BFD_RELOC_16_PCREL: |
| 276 |
TRACE ("BFD_RELOC_16_PCREL"); |
| 277 |
return &elf_howto_table[R_386_PC16 - R_386_ext_offset]; |
| 278 |
|
| 279 |
case BFD_RELOC_8: |
| 280 |
TRACE ("BFD_RELOC_8"); |
| 281 |
return &elf_howto_table[R_386_8 - R_386_ext_offset]; |
| 282 |
|
| 283 |
case BFD_RELOC_8_PCREL: |
| 284 |
TRACE ("BFD_RELOC_8_PCREL"); |
| 285 |
return &elf_howto_table[R_386_PC8 - R_386_ext_offset]; |
| 286 |
|
| 287 |
/* Common with Sun TLS implementation. */ |
| 288 |
case BFD_RELOC_386_TLS_LDO_32: |
| 289 |
TRACE ("BFD_RELOC_386_TLS_LDO_32"); |
| 290 |
return &elf_howto_table[R_386_TLS_LDO_32 - R_386_tls_offset]; |
| 291 |
|
| 292 |
case BFD_RELOC_386_TLS_IE_32: |
| 293 |
TRACE ("BFD_RELOC_386_TLS_IE_32"); |
| 294 |
return &elf_howto_table[R_386_TLS_IE_32 - R_386_tls_offset]; |
| 295 |
|
| 296 |
case BFD_RELOC_386_TLS_LE_32: |
| 297 |
TRACE ("BFD_RELOC_386_TLS_LE_32"); |
| 298 |
return &elf_howto_table[R_386_TLS_LE_32 - R_386_tls_offset]; |
| 299 |
|
| 300 |
case BFD_RELOC_386_TLS_DTPMOD32: |
| 301 |
TRACE ("BFD_RELOC_386_TLS_DTPMOD32"); |
| 302 |
return &elf_howto_table[R_386_TLS_DTPMOD32 - R_386_tls_offset]; |
| 303 |
|
| 304 |
case BFD_RELOC_386_TLS_DTPOFF32: |
| 305 |
TRACE ("BFD_RELOC_386_TLS_DTPOFF32"); |
| 306 |
return &elf_howto_table[R_386_TLS_DTPOFF32 - R_386_tls_offset]; |
| 307 |
|
| 308 |
case BFD_RELOC_386_TLS_TPOFF32: |
| 309 |
TRACE ("BFD_RELOC_386_TLS_TPOFF32"); |
| 310 |
return &elf_howto_table[R_386_TLS_TPOFF32 - R_386_tls_offset]; |
| 311 |
|
| 312 |
case BFD_RELOC_386_TLS_GOTDESC: |
| 313 |
TRACE ("BFD_RELOC_386_TLS_GOTDESC"); |
| 314 |
return &elf_howto_table[R_386_TLS_GOTDESC - R_386_tls_offset]; |
| 315 |
|
| 316 |
case BFD_RELOC_386_TLS_DESC_CALL: |
| 317 |
TRACE ("BFD_RELOC_386_TLS_DESC_CALL"); |
| 318 |
return &elf_howto_table[R_386_TLS_DESC_CALL - R_386_tls_offset]; |
| 319 |
|
| 320 |
case BFD_RELOC_386_TLS_DESC: |
| 321 |
TRACE ("BFD_RELOC_386_TLS_DESC"); |
| 322 |
return &elf_howto_table[R_386_TLS_DESC - R_386_tls_offset]; |
| 323 |
|
| 324 |
case BFD_RELOC_386_IRELATIVE: |
| 325 |
TRACE ("BFD_RELOC_386_IRELATIVE"); |
| 326 |
return &elf_howto_table[R_386_IRELATIVE]; |
| 327 |
|
| 328 |
case BFD_RELOC_VTABLE_INHERIT: |
| 329 |
TRACE ("BFD_RELOC_VTABLE_INHERIT"); |
| 330 |
return &elf_howto_table[R_386_GNU_VTINHERIT - R_386_vt_offset]; |
| 331 |
|
| 332 |
case BFD_RELOC_VTABLE_ENTRY: |
| 333 |
TRACE ("BFD_RELOC_VTABLE_ENTRY"); |
| 334 |
return &elf_howto_table[R_386_GNU_VTENTRY - R_386_vt_offset]; |
| 335 |
|
| 336 |
default: |
| 337 |
break; |
| 338 |
} |
| 339 |
|
| 340 |
TRACE ("Unknown"); |
| 341 |
return 0; |
| 342 |
} |
| 343 |
|
| 344 |
static reloc_howto_type * |
| 345 |
elf_i386_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
| 346 |
const char *r_name) |
| 347 |
{ |
| 348 |
unsigned int i; |
| 349 |
|
| 350 |
for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) |
| 351 |
if (elf_howto_table[i].name != NULL |
| 352 |
&& strcasecmp (elf_howto_table[i].name, r_name) == 0) |
| 353 |
return &elf_howto_table[i]; |
| 354 |
|
| 355 |
return NULL; |
| 356 |
} |
| 357 |
|
| 358 |
static reloc_howto_type * |
| 359 |
elf_i386_rtype_to_howto (bfd *abfd, unsigned r_type) |
| 360 |
{ |
| 361 |
unsigned int indx; |
| 362 |
|
| 363 |
if ((indx = r_type) >= R_386_standard |
| 364 |
&& ((indx = r_type - R_386_ext_offset) - R_386_standard |
| 365 |
>= R_386_ext - R_386_standard) |
| 366 |
&& ((indx = r_type - R_386_tls_offset) - R_386_ext |
| 367 |
>= R_386_irelative - R_386_ext) |
| 368 |
&& ((indx = r_type - R_386_vt_offset) - R_386_irelative |
| 369 |
>= R_386_vt - R_386_irelative)) |
| 370 |
{ |
| 371 |
(*_bfd_error_handler) (_("%B: invalid relocation type %d"), |
| 372 |
abfd, (int) r_type); |
| 373 |
indx = R_386_NONE; |
| 374 |
} |
| 375 |
BFD_ASSERT (elf_howto_table [indx].type == r_type); |
| 376 |
return &elf_howto_table[indx]; |
| 377 |
} |
| 378 |
|
| 379 |
static void |
| 380 |
elf_i386_info_to_howto_rel (bfd *abfd ATTRIBUTE_UNUSED, |
| 381 |
arelent *cache_ptr, |
| 382 |
Elf_Internal_Rela *dst) |
| 383 |
{ |
| 384 |
unsigned int r_type = ELF32_R_TYPE (dst->r_info); |
| 385 |
cache_ptr->howto = elf_i386_rtype_to_howto (abfd, r_type); |
| 386 |
} |
| 387 |
|
| 388 |
/* Return whether a symbol name implies a local label. The UnixWare |
| 389 |
2.1 cc generates temporary symbols that start with .X, so we |
| 390 |
recognize them here. FIXME: do other SVR4 compilers also use .X?. |
| 391 |
If so, we should move the .X recognition into |
| 392 |
_bfd_elf_is_local_label_name. */ |
| 393 |
|
| 394 |
static bfd_boolean |
| 395 |
elf_i386_is_local_label_name (bfd *abfd, const char *name) |
| 396 |
{ |
| 397 |
if (name[0] == '.' && name[1] == 'X') |
| 398 |
return TRUE; |
| 399 |
|
| 400 |
return _bfd_elf_is_local_label_name (abfd, name); |
| 401 |
} |
| 402 |
|
| 403 |
/* Support for core dump NOTE sections. */ |
| 404 |
|
| 405 |
static bfd_boolean |
| 406 |
elf_i386_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
| 407 |
{ |
| 408 |
int offset; |
| 409 |
size_t size; |
| 410 |
|
| 411 |
if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0) |
| 412 |
{ |
| 413 |
int pr_version = bfd_get_32 (abfd, note->descdata); |
| 414 |
|
| 415 |
if (pr_version != 1) |
| 416 |
return FALSE; |
| 417 |
|
| 418 |
/* pr_cursig */ |
| 419 |
elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 20); |
| 420 |
|
| 421 |
/* pr_pid */ |
| 422 |
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); |
| 423 |
|
| 424 |
/* pr_reg */ |
| 425 |
offset = 28; |
| 426 |
size = bfd_get_32 (abfd, note->descdata + 8); |
| 427 |
} |
| 428 |
else |
| 429 |
{ |
| 430 |
switch (note->descsz) |
| 431 |
{ |
| 432 |
default: |
| 433 |
return FALSE; |
| 434 |
|
| 435 |
case 144: /* Linux/i386 */ |
| 436 |
/* pr_cursig */ |
| 437 |
elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); |
| 438 |
|
| 439 |
/* pr_pid */ |
| 440 |
elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); |
| 441 |
|
| 442 |
/* pr_reg */ |
| 443 |
offset = 72; |
| 444 |
size = 68; |
| 445 |
|
| 446 |
break; |
| 447 |
} |
| 448 |
} |
| 449 |
|
| 450 |
/* Make a ".reg/999" section. */ |
| 451 |
return _bfd_elfcore_make_pseudosection (abfd, ".reg", |
| 452 |
size, note->descpos + offset); |
| 453 |
} |
| 454 |
|
| 455 |
static bfd_boolean |
| 456 |
elf_i386_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
| 457 |
{ |
| 458 |
if (note->namesz == 8 && strcmp (note->namedata, "FreeBSD") == 0) |
| 459 |
{ |
| 460 |
int pr_version = bfd_get_32 (abfd, note->descdata); |
| 461 |
|
| 462 |
if (pr_version != 1) |
| 463 |
return FALSE; |
| 464 |
|
| 465 |
elf_tdata (abfd)->core_program |
| 466 |
= _bfd_elfcore_strndup (abfd, note->descdata + 8, 17); |
| 467 |
elf_tdata (abfd)->core_command |
| 468 |
= _bfd_elfcore_strndup (abfd, note->descdata + 25, 81); |
| 469 |
} |
| 470 |
else |
| 471 |
{ |
| 472 |
switch (note->descsz) |
| 473 |
{ |
| 474 |
default: |
| 475 |
return FALSE; |
| 476 |
|
| 477 |
case 124: /* Linux/i386 elf_prpsinfo. */ |
| 478 |
elf_tdata (abfd)->core_program |
| 479 |
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); |
| 480 |
elf_tdata (abfd)->core_command |
| 481 |
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); |
| 482 |
} |
| 483 |
} |
| 484 |
|
| 485 |
/* Note that for some reason, a spurious space is tacked |
| 486 |
onto the end of the args in some (at least one anyway) |
| 487 |
implementations, so strip it off if it exists. */ |
| 488 |
{ |
| 489 |
char *command = elf_tdata (abfd)->core_command; |
| 490 |
int n = strlen (command); |
| 491 |
|
| 492 |
if (0 < n && command[n - 1] == ' ') |
| 493 |
command[n - 1] = '\0'; |
| 494 |
} |
| 495 |
|
| 496 |
return TRUE; |
| 497 |
} |
| 498 |
|
| 499 |
/* Functions for the i386 ELF linker. |
| 500 |
|
| 501 |
In order to gain some understanding of code in this file without |
| 502 |
knowing all the intricate details of the linker, note the |
| 503 |
following: |
| 504 |
|
| 505 |
Functions named elf_i386_* are called by external routines, other |
| 506 |
functions are only called locally. elf_i386_* functions appear |
| 507 |
in this file more or less in the order in which they are called |
| 508 |
from external routines. eg. elf_i386_check_relocs is called |
| 509 |
early in the link process, elf_i386_finish_dynamic_sections is |
| 510 |
one of the last functions. */ |
| 511 |
|
| 512 |
|
| 513 |
/* The name of the dynamic interpreter. This is put in the .interp |
| 514 |
section. */ |
| 515 |
|
| 516 |
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" |
| 517 |
|
| 518 |
/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid |
| 519 |
copying dynamic variables from a shared lib into an app's dynbss |
| 520 |
section, and instead use a dynamic relocation to point into the |
| 521 |
shared lib. */ |
| 522 |
#define ELIMINATE_COPY_RELOCS 1 |
| 523 |
|
| 524 |
/* The size in bytes of an entry in the procedure linkage table. */ |
| 525 |
|
| 526 |
#define PLT_ENTRY_SIZE 16 |
| 527 |
|
| 528 |
/* The first entry in an absolute procedure linkage table looks like |
| 529 |
this. See the SVR4 ABI i386 supplement to see how this works. |
| 530 |
Will be padded to PLT_ENTRY_SIZE with htab->plt0_pad_byte. */ |
| 531 |
|
| 532 |
static const bfd_byte elf_i386_plt0_entry[12] = |
| 533 |
{ |
| 534 |
0xff, 0x35, /* pushl contents of address */ |
| 535 |
0, 0, 0, 0, /* replaced with address of .got + 4. */ |
| 536 |
0xff, 0x25, /* jmp indirect */ |
| 537 |
0, 0, 0, 0 /* replaced with address of .got + 8. */ |
| 538 |
}; |
| 539 |
|
| 540 |
/* Subsequent entries in an absolute procedure linkage table look like |
| 541 |
this. */ |
| 542 |
|
| 543 |
static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] = |
| 544 |
{ |
| 545 |
0xff, 0x25, /* jmp indirect */ |
| 546 |
0, 0, 0, 0, /* replaced with address of this symbol in .got. */ |
| 547 |
0x68, /* pushl immediate */ |
| 548 |
0, 0, 0, 0, /* replaced with offset into relocation table. */ |
| 549 |
0xe9, /* jmp relative */ |
| 550 |
0, 0, 0, 0 /* replaced with offset to start of .plt. */ |
| 551 |
}; |
| 552 |
|
| 553 |
/* The first entry in a PIC procedure linkage table look like this. |
| 554 |
Will be padded to PLT_ENTRY_SIZE with htab->plt0_pad_byte. */ |
| 555 |
|
| 556 |
static const bfd_byte elf_i386_pic_plt0_entry[12] = |
| 557 |
{ |
| 558 |
0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */ |
| 559 |
0xff, 0xa3, 8, 0, 0, 0 /* jmp *8(%ebx) */ |
| 560 |
}; |
| 561 |
|
| 562 |
/* Subsequent entries in a PIC procedure linkage table look like this. */ |
| 563 |
|
| 564 |
static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] = |
| 565 |
{ |
| 566 |
0xff, 0xa3, /* jmp *offset(%ebx) */ |
| 567 |
0, 0, 0, 0, /* replaced with offset of this symbol in .got. */ |
| 568 |
0x68, /* pushl immediate */ |
| 569 |
0, 0, 0, 0, /* replaced with offset into relocation table. */ |
| 570 |
0xe9, /* jmp relative */ |
| 571 |
0, 0, 0, 0 /* replaced with offset to start of .plt. */ |
| 572 |
}; |
| 573 |
|
| 574 |
/* On VxWorks, the .rel.plt.unloaded section has absolute relocations |
| 575 |
for the PLTResolve stub and then for each PLT entry. */ |
| 576 |
#define PLTRESOLVE_RELOCS_SHLIB 0 |
| 577 |
#define PLTRESOLVE_RELOCS 2 |
| 578 |
#define PLT_NON_JUMP_SLOT_RELOCS 2 |
| 579 |
|
| 580 |
/* i386 ELF linker hash entry. */ |
| 581 |
|
| 582 |
struct elf_i386_link_hash_entry |
| 583 |
{ |
| 584 |
struct elf_link_hash_entry elf; |
| 585 |
|
| 586 |
/* Track dynamic relocs copied for this symbol. */ |
| 587 |
struct elf_dyn_relocs *dyn_relocs; |
| 588 |
|
| 589 |
#define GOT_UNKNOWN 0 |
| 590 |
#define GOT_NORMAL 1 |
| 591 |
#define GOT_TLS_GD 2 |
| 592 |
#define GOT_TLS_IE 4 |
| 593 |
#define GOT_TLS_IE_POS 5 |
| 594 |
#define GOT_TLS_IE_NEG 6 |
| 595 |
#define GOT_TLS_IE_BOTH 7 |
| 596 |
#define GOT_TLS_GDESC 8 |
| 597 |
#define GOT_TLS_GD_BOTH_P(type) \ |
| 598 |
((type) == (GOT_TLS_GD | GOT_TLS_GDESC)) |
| 599 |
#define GOT_TLS_GD_P(type) \ |
| 600 |
((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type)) |
| 601 |
#define GOT_TLS_GDESC_P(type) \ |
| 602 |
((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type)) |
| 603 |
#define GOT_TLS_GD_ANY_P(type) \ |
| 604 |
(GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type)) |
| 605 |
unsigned char tls_type; |
| 606 |
|
| 607 |
/* Offset of the GOTPLT entry reserved for the TLS descriptor, |
| 608 |
starting at the end of the jump table. */ |
| 609 |
bfd_vma tlsdesc_got; |
| 610 |
}; |
| 611 |
|
| 612 |
#define elf_i386_hash_entry(ent) ((struct elf_i386_link_hash_entry *)(ent)) |
| 613 |
|
| 614 |
struct elf_i386_obj_tdata |
| 615 |
{ |
| 616 |
struct elf_obj_tdata root; |
| 617 |
|
| 618 |
/* tls_type for each local got entry. */ |
| 619 |
char *local_got_tls_type; |
| 620 |
|
| 621 |
/* GOTPLT entries for TLS descriptors. */ |
| 622 |
bfd_vma *local_tlsdesc_gotent; |
| 623 |
}; |
| 624 |
|
| 625 |
#define elf_i386_tdata(abfd) \ |
| 626 |
((struct elf_i386_obj_tdata *) (abfd)->tdata.any) |
| 627 |
|
| 628 |
#define elf_i386_local_got_tls_type(abfd) \ |
| 629 |
(elf_i386_tdata (abfd)->local_got_tls_type) |
| 630 |
|
| 631 |
#define elf_i386_local_tlsdesc_gotent(abfd) \ |
| 632 |
(elf_i386_tdata (abfd)->local_tlsdesc_gotent) |
| 633 |
|
| 634 |
#define is_i386_elf(bfd) \ |
| 635 |
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \ |
| 636 |
&& elf_tdata (bfd) != NULL \ |
| 637 |
&& elf_object_id (bfd) == I386_ELF_TDATA) |
| 638 |
|
| 639 |
static bfd_boolean |
| 640 |
elf_i386_mkobject (bfd *abfd) |
| 641 |
{ |
| 642 |
return bfd_elf_allocate_object (abfd, sizeof (struct elf_i386_obj_tdata), |
| 643 |
I386_ELF_TDATA); |
| 644 |
} |
| 645 |
|
| 646 |
/* i386 ELF linker hash table. */ |
| 647 |
|
| 648 |
struct elf_i386_link_hash_table |
| 649 |
{ |
| 650 |
struct elf_link_hash_table elf; |
| 651 |
|
| 652 |
/* Short-cuts to get to dynamic linker sections. */ |
| 653 |
asection *sdynbss; |
| 654 |
asection *srelbss; |
| 655 |
|
| 656 |
/* The (unloaded but important) .rel.plt.unloaded section on VxWorks. */ |
| 657 |
asection *srelplt2; |
| 658 |
|
| 659 |
/* True if the target system is VxWorks. */ |
| 660 |
int is_vxworks; |
| 661 |
|
| 662 |
/* Value used to fill the last word of the first plt entry. */ |
| 663 |
bfd_byte plt0_pad_byte; |
| 664 |
|
| 665 |
/* The index of the next unused R_386_TLS_DESC slot in .rel.plt. */ |
| 666 |
bfd_vma next_tls_desc_index; |
| 667 |
|
| 668 |
union { |
| 669 |
bfd_signed_vma refcount; |
| 670 |
bfd_vma offset; |
| 671 |
} tls_ldm_got; |
| 672 |
|
| 673 |
/* The amount of space used by the reserved portion of the sgotplt |
| 674 |
section, plus whatever space is used by the jump slots. */ |
| 675 |
bfd_vma sgotplt_jump_table_size; |
| 676 |
|
| 677 |
/* Small local sym cache. */ |
| 678 |
struct sym_cache sym_cache; |
| 679 |
|
| 680 |
/* _TLS_MODULE_BASE_ symbol. */ |
| 681 |
struct bfd_link_hash_entry *tls_module_base; |
| 682 |
|
| 683 |
/* Used by local STT_GNU_IFUNC symbols. */ |
| 684 |
htab_t loc_hash_table; |
| 685 |
void *loc_hash_memory; |
| 686 |
}; |
| 687 |
|
| 688 |
/* Get the i386 ELF linker hash table from a link_info structure. */ |
| 689 |
|
| 690 |
#define elf_i386_hash_table(p) \ |
| 691 |
((struct elf_i386_link_hash_table *) ((p)->hash)) |
| 692 |
|
| 693 |
#define elf_i386_compute_jump_table_size(htab) \ |
| 694 |
((htab)->next_tls_desc_index * 4) |
| 695 |
|
| 696 |
/* Create an entry in an i386 ELF linker hash table. */ |
| 697 |
|
| 698 |
static struct bfd_hash_entry * |
| 699 |
elf_i386_link_hash_newfunc (struct bfd_hash_entry *entry, |
| 700 |
struct bfd_hash_table *table, |
| 701 |
const char *string) |
| 702 |
{ |
| 703 |
/* Allocate the structure if it has not already been allocated by a |
| 704 |
subclass. */ |
| 705 |
if (entry == NULL) |
| 706 |
{ |
| 707 |
entry = bfd_hash_allocate (table, |
| 708 |
sizeof (struct elf_i386_link_hash_entry)); |
| 709 |
if (entry == NULL) |
| 710 |
return entry; |
| 711 |
} |
| 712 |
|
| 713 |
/* Call the allocation method of the superclass. */ |
| 714 |
entry = _bfd_elf_link_hash_newfunc (entry, table, string); |
| 715 |
if (entry != NULL) |
| 716 |
{ |
| 717 |
struct elf_i386_link_hash_entry *eh; |
| 718 |
|
| 719 |
eh = (struct elf_i386_link_hash_entry *) entry; |
| 720 |
eh->dyn_relocs = NULL; |
| 721 |
eh->tls_type = GOT_UNKNOWN; |
| 722 |
eh->tlsdesc_got = (bfd_vma) -1; |
| 723 |
} |
| 724 |
|
| 725 |
return entry; |
| 726 |
} |
| 727 |
|
| 728 |
/* Compute a hash of a local hash entry. We use elf_link_hash_entry |
| 729 |
for local symbol so that we can handle local STT_GNU_IFUNC symbols |
| 730 |
as global symbol. We reuse indx and dynstr_index for local symbol |
| 731 |
hash since they aren't used by global symbols in this backend. */ |
| 732 |
|
| 733 |
static hashval_t |
| 734 |
elf_i386_local_htab_hash (const void *ptr) |
| 735 |
{ |
| 736 |
struct elf_link_hash_entry *h |
| 737 |
= (struct elf_link_hash_entry *) ptr; |
| 738 |
return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); |
| 739 |
} |
| 740 |
|
| 741 |
/* Compare local hash entries. */ |
| 742 |
|
| 743 |
static int |
| 744 |
elf_i386_local_htab_eq (const void *ptr1, const void *ptr2) |
| 745 |
{ |
| 746 |
struct elf_link_hash_entry *h1 |
| 747 |
= (struct elf_link_hash_entry *) ptr1; |
| 748 |
struct elf_link_hash_entry *h2 |
| 749 |
= (struct elf_link_hash_entry *) ptr2; |
| 750 |
|
| 751 |
return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; |
| 752 |
} |
| 753 |
|
| 754 |
/* Find and/or create a hash entry for local symbol. */ |
| 755 |
|
| 756 |
static struct elf_link_hash_entry * |
| 757 |
elf_i386_get_local_sym_hash (struct elf_i386_link_hash_table *htab, |
| 758 |
bfd *abfd, const Elf_Internal_Rela *rel, |
| 759 |
bfd_boolean create) |
| 760 |
{ |
| 761 |
struct elf_i386_link_hash_entry e, *ret; |
| 762 |
asection *sec = abfd->sections; |
| 763 |
hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, |
| 764 |
ELF32_R_SYM (rel->r_info)); |
| 765 |
void **slot; |
| 766 |
|
| 767 |
e.elf.indx = sec->id; |
| 768 |
e.elf.dynstr_index = ELF32_R_SYM (rel->r_info); |
| 769 |
slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h, |
| 770 |
create ? INSERT : NO_INSERT); |
| 771 |
|
| 772 |
if (!slot) |
| 773 |
return NULL; |
| 774 |
|
| 775 |
if (*slot) |
| 776 |
{ |
| 777 |
ret = (struct elf_i386_link_hash_entry *) *slot; |
| 778 |
return &ret->elf; |
| 779 |
} |
| 780 |
|
| 781 |
ret = (struct elf_i386_link_hash_entry *) |
| 782 |
objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, |
| 783 |
sizeof (struct elf_i386_link_hash_entry)); |
| 784 |
if (ret) |
| 785 |
{ |
| 786 |
memset (ret, 0, sizeof (*ret)); |
| 787 |
ret->elf.indx = sec->id; |
| 788 |
ret->elf.dynstr_index = ELF32_R_SYM (rel->r_info); |
| 789 |
ret->elf.dynindx = -1; |
| 790 |
ret->elf.plt.offset = (bfd_vma) -1; |
| 791 |
ret->elf.got.offset = (bfd_vma) -1; |
| 792 |
*slot = ret; |
| 793 |
} |
| 794 |
return &ret->elf; |
| 795 |
} |
| 796 |
|
| 797 |
/* Create an i386 ELF linker hash table. */ |
| 798 |
|
| 799 |
static struct bfd_link_hash_table * |
| 800 |
elf_i386_link_hash_table_create (bfd *abfd) |
| 801 |
{ |
| 802 |
struct elf_i386_link_hash_table *ret; |
| 803 |
bfd_size_type amt = sizeof (struct elf_i386_link_hash_table); |
| 804 |
|
| 805 |
ret = bfd_malloc (amt); |
| 806 |
if (ret == NULL) |
| 807 |
return NULL; |
| 808 |
|
| 809 |
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, |
| 810 |
elf_i386_link_hash_newfunc, |
| 811 |
sizeof (struct elf_i386_link_hash_entry))) |
| 812 |
{ |
| 813 |
free (ret); |
| 814 |
return NULL; |
| 815 |
} |
| 816 |
|
| 817 |
ret->sdynbss = NULL; |
| 818 |
ret->srelbss = NULL; |
| 819 |
ret->tls_ldm_got.refcount = 0; |
| 820 |
ret->next_tls_desc_index = 0; |
| 821 |
ret->sgotplt_jump_table_size = 0; |
| 822 |
ret->sym_cache.abfd = NULL; |
| 823 |
ret->is_vxworks = 0; |
| 824 |
ret->srelplt2 = NULL; |
| 825 |
ret->plt0_pad_byte = 0; |
| 826 |
ret->tls_module_base = NULL; |
| 827 |
|
| 828 |
ret->loc_hash_table = htab_try_create (1024, |
| 829 |
elf_i386_local_htab_hash, |
| 830 |
elf_i386_local_htab_eq, |
| 831 |
NULL); |
| 832 |
ret->loc_hash_memory = objalloc_create (); |
| 833 |
if (!ret->loc_hash_table || !ret->loc_hash_memory) |
| 834 |
{ |
| 835 |
free (ret); |
| 836 |
return NULL; |
| 837 |
} |
| 838 |
|
| 839 |
return &ret->elf.root; |
| 840 |
} |
| 841 |
|
| 842 |
/* Destroy an i386 ELF linker hash table. */ |
| 843 |
|
| 844 |
static void |
| 845 |
elf_i386_link_hash_table_free (struct bfd_link_hash_table *hash) |
| 846 |
{ |
| 847 |
struct elf_i386_link_hash_table *htab |
| 848 |
= (struct elf_i386_link_hash_table *) hash; |
| 849 |
|
| 850 |
if (htab->loc_hash_table) |
| 851 |
htab_delete (htab->loc_hash_table); |
| 852 |
if (htab->loc_hash_memory) |
| 853 |
objalloc_free ((struct objalloc *) htab->loc_hash_memory); |
| 854 |
_bfd_generic_link_hash_table_free (hash); |
| 855 |
} |
| 856 |
|
| 857 |
/* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and |
| 858 |
.rel.bss sections in DYNOBJ, and set up shortcuts to them in our |
| 859 |
hash table. */ |
| 860 |
|
| 861 |
static bfd_boolean |
| 862 |
elf_i386_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) |
| 863 |
{ |
| 864 |
struct elf_i386_link_hash_table *htab; |
| 865 |
|
| 866 |
if (!_bfd_elf_create_dynamic_sections (dynobj, info)) |
| 867 |
return FALSE; |
| 868 |
|
| 869 |
htab = elf_i386_hash_table (info); |
| 870 |
htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss"); |
| 871 |
if (!info->shared) |
| 872 |
htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss"); |
| 873 |
|
| 874 |
if (!htab->sdynbss |
| 875 |
|| (!info->shared && !htab->srelbss)) |
| 876 |
abort (); |
| 877 |
|
| 878 |
if (htab->is_vxworks |
| 879 |
&& !elf_vxworks_create_dynamic_sections (dynobj, info, |
| 880 |
&htab->srelplt2)) |
| 881 |
return FALSE; |
| 882 |
|
| 883 |
return TRUE; |
| 884 |
} |
| 885 |
|
| 886 |
/* Copy the extra info we tack onto an elf_link_hash_entry. */ |
| 887 |
|
| 888 |
static void |
| 889 |
elf_i386_copy_indirect_symbol (struct bfd_link_info *info, |
| 890 |
struct elf_link_hash_entry *dir, |
| 891 |
struct elf_link_hash_entry *ind) |
| 892 |
{ |
| 893 |
struct elf_i386_link_hash_entry *edir, *eind; |
| 894 |
|
| 895 |
edir = (struct elf_i386_link_hash_entry *) dir; |
| 896 |
eind = (struct elf_i386_link_hash_entry *) ind; |
| 897 |
|
| 898 |
if (eind->dyn_relocs != NULL) |
| 899 |
{ |
| 900 |
if (edir->dyn_relocs != NULL) |
| 901 |
{ |
| 902 |
struct elf_dyn_relocs **pp; |
| 903 |
struct elf_dyn_relocs *p; |
| 904 |
|
| 905 |
/* Add reloc counts against the indirect sym to the direct sym |
| 906 |
list. Merge any entries against the same section. */ |
| 907 |
for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) |
| 908 |
{ |
| 909 |
struct elf_dyn_relocs *q; |
| 910 |
|
| 911 |
for (q = edir->dyn_relocs; q != NULL; q = q->next) |
| 912 |
if (q->sec == p->sec) |
| 913 |
{ |
| 914 |
q->pc_count += p->pc_count; |
| 915 |
q->count += p->count; |
| 916 |
*pp = p->next; |
| 917 |
break; |
| 918 |
} |
| 919 |
if (q == NULL) |
| 920 |
pp = &p->next; |
| 921 |
} |
| 922 |
*pp = edir->dyn_relocs; |
| 923 |
} |
| 924 |
|
| 925 |
edir->dyn_relocs = eind->dyn_relocs; |
| 926 |
eind->dyn_relocs = NULL; |
| 927 |
} |
| 928 |
|
| 929 |
if (ind->root.type == bfd_link_hash_indirect |
| 930 |
&& dir->got.refcount <= 0) |
| 931 |
{ |
| 932 |
edir->tls_type = eind->tls_type; |
| 933 |
eind->tls_type = GOT_UNKNOWN; |
| 934 |
} |
| 935 |
|
| 936 |
if (ELIMINATE_COPY_RELOCS |
| 937 |
&& ind->root.type != bfd_link_hash_indirect |
| 938 |
&& dir->dynamic_adjusted) |
| 939 |
{ |
| 940 |
/* If called to transfer flags for a weakdef during processing |
| 941 |
of elf_adjust_dynamic_symbol, don't copy non_got_ref. |
| 942 |
We clear it ourselves for ELIMINATE_COPY_RELOCS. */ |
| 943 |
dir->ref_dynamic |= ind->ref_dynamic; |
| 944 |
dir->ref_regular |= ind->ref_regular; |
| 945 |
dir->ref_regular_nonweak |= ind->ref_regular_nonweak; |
| 946 |
dir->needs_plt |= ind->needs_plt; |
| 947 |
dir->pointer_equality_needed |= ind->pointer_equality_needed; |
| 948 |
} |
| 949 |
else |
| 950 |
_bfd_elf_link_hash_copy_indirect (info, dir, ind); |
| 951 |
} |
| 952 |
|
| 953 |
typedef union |
| 954 |
{ |
| 955 |
unsigned char c[2]; |
| 956 |
uint16_t i; |
| 957 |
} |
| 958 |
i386_opcode16; |
| 959 |
|
| 960 |
/* Return TRUE if the TLS access code sequence support transition |
| 961 |
from R_TYPE. */ |
| 962 |
|
| 963 |
static bfd_boolean |
| 964 |
elf_i386_check_tls_transition (bfd *abfd, asection *sec, |
| 965 |
bfd_byte *contents, |
| 966 |
Elf_Internal_Shdr *symtab_hdr, |
| 967 |
struct elf_link_hash_entry **sym_hashes, |
| 968 |
unsigned int r_type, |
| 969 |
const Elf_Internal_Rela *rel, |
| 970 |
const Elf_Internal_Rela *relend) |
| 971 |
{ |
| 972 |
unsigned int val, type; |
| 973 |
unsigned long r_symndx; |
| 974 |
struct elf_link_hash_entry *h; |
| 975 |
bfd_vma offset; |
| 976 |
|
| 977 |
/* Get the section contents. */ |
| 978 |
if (contents == NULL) |
| 979 |
{ |
| 980 |
if (elf_section_data (sec)->this_hdr.contents != NULL) |
| 981 |
contents = elf_section_data (sec)->this_hdr.contents; |
| 982 |
else |
| 983 |
{ |
| 984 |
/* FIXME: How to better handle error condition? */ |
| 985 |
if (!bfd_malloc_and_get_section (abfd, sec, &contents)) |
| 986 |
return FALSE; |
| 987 |
|
| 988 |
/* Cache the section contents for elf_link_input_bfd. */ |
| 989 |
elf_section_data (sec)->this_hdr.contents = contents; |
| 990 |
} |
| 991 |
} |
| 992 |
|
| 993 |
offset = rel->r_offset; |
| 994 |
switch (r_type) |
| 995 |
{ |
| 996 |
case R_386_TLS_GD: |
| 997 |
case R_386_TLS_LDM: |
| 998 |
if (offset < 2 || (rel + 1) >= relend) |
| 999 |
return FALSE; |
| 1000 |
|
| 1001 |
type = bfd_get_8 (abfd, contents + offset - 2); |
| 1002 |
if (r_type == R_386_TLS_GD) |
| 1003 |
{ |
| 1004 |
/* Check transition from GD access model. Only |
| 1005 |
leal foo@tlsgd(,%reg,1), %eax; call ___tls_get_addr |
| 1006 |
leal foo@tlsgd(%reg), %eax; call ___tls_get_addr; nop |
| 1007 |
can transit to different access model. */ |
| 1008 |
if ((offset + 10) > sec->size || |
| 1009 |
(type != 0x8d && type != 0x04)) |
| 1010 |
return FALSE; |
| 1011 |
|
| 1012 |
val = bfd_get_8 (abfd, contents + offset - 1); |
| 1013 |
if (type == 0x04) |
| 1014 |
{ |
| 1015 |
/* leal foo@tlsgd(,%reg,1), %eax; call ___tls_get_addr */ |
| 1016 |
if (offset < 3) |
| 1017 |
return FALSE; |
| 1018 |
|
| 1019 |
if (bfd_get_8 (abfd, contents + offset - 3) != 0x8d) |
| 1020 |
return FALSE; |
| 1021 |
|
| 1022 |
if ((val & 0xc7) != 0x05 || val == (4 << 3)) |
| 1023 |
return FALSE; |
| 1024 |
} |
| 1025 |
else |
| 1026 |
{ |
| 1027 |
/* leal foo@tlsgd(%reg), %eax; call ___tls_get_addr; nop */ |
| 1028 |
if ((val & 0xf8) != 0x80 || (val & 7) == 4) |
| 1029 |
return FALSE; |
| 1030 |
|
| 1031 |
if (bfd_get_8 (abfd, contents + offset + 9) != 0x90) |
| 1032 |
return FALSE; |
| 1033 |
} |
| 1034 |
} |
| 1035 |
else |
| 1036 |
{ |
| 1037 |
/* Check transition from LD access model. Only |
| 1038 |
leal foo@tlsgd(%reg), %eax; call ___tls_get_addr |
| 1039 |
can transit to different access model. */ |
| 1040 |
if (type != 0x8d || (offset + 9) > sec->size) |
| 1041 |
return FALSE; |
| 1042 |
|
| 1043 |
val = bfd_get_8 (abfd, contents + offset - 1); |
| 1044 |
if ((val & 0xf8) != 0x80 || (val & 7) == 4) |
| 1045 |
return FALSE; |
| 1046 |
} |
| 1047 |
|
| 1048 |
if (bfd_get_8 (abfd, contents + offset + 4) != 0xe8) |
| 1049 |
return FALSE; |
| 1050 |
|
| 1051 |
r_symndx = ELF32_R_SYM (rel[1].r_info); |
| 1052 |
if (r_symndx < symtab_hdr->sh_info) |
| 1053 |
return FALSE; |
| 1054 |
|
| 1055 |
h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| 1056 |
/* Use strncmp to check ___tls_get_addr since ___tls_get_addr |
| 1057 |
may be versioned. */ |
| 1058 |
return (h != NULL |
| 1059 |
&& h->root.root.string != NULL |
| 1060 |
&& (ELF32_R_TYPE (rel[1].r_info) == R_386_PC32 |
| 1061 |
|| ELF32_R_TYPE (rel[1].r_info) == R_386_PLT32) |
| 1062 |
&& (strncmp (h->root.root.string, "___tls_get_addr", |
| 1063 |
15) == 0)); |
| 1064 |
|
| 1065 |
case R_386_TLS_IE: |
| 1066 |
/* Check transition from IE access model: |
| 1067 |
movl foo@indntpoff(%rip), %eax |
| 1068 |
movl foo@indntpoff(%rip), %reg |
| 1069 |
addl foo@indntpoff(%rip), %reg |
| 1070 |
*/ |
| 1071 |
|
| 1072 |
if (offset < 1 || (offset + 4) > sec->size) |
| 1073 |
return FALSE; |
| 1074 |
|
| 1075 |
/* Check "movl foo@tpoff(%rip), %eax" first. */ |
| 1076 |
val = bfd_get_8 (abfd, contents + offset - 1); |
| 1077 |
if (val == 0xa1) |
| 1078 |
return TRUE; |
| 1079 |
|
| 1080 |
if (offset < 2) |
| 1081 |
return FALSE; |
| 1082 |
|
| 1083 |
/* Check movl|addl foo@tpoff(%rip), %reg. */ |
| 1084 |
type = bfd_get_8 (abfd, contents + offset - 2); |
| 1085 |
return ((type == 0x8b || type == 0x03) |
| 1086 |
&& (val & 0xc7) == 0x05); |
| 1087 |
|
| 1088 |
case R_386_TLS_GOTIE: |
| 1089 |
case R_386_TLS_IE_32: |
| 1090 |
/* Check transition from {IE_32,GOTIE} access model: |
| 1091 |
subl foo@{tpoff,gontoff}(%reg1), %reg2 |
| 1092 |
movl foo@{tpoff,gontoff}(%reg1), %reg2 |
| 1093 |
addl foo@{tpoff,gontoff}(%reg1), %reg2 |
| 1094 |
*/ |
| 1095 |
|
| 1096 |
if (offset < 2 || (offset + 4) > sec->size) |
| 1097 |
return FALSE; |
| 1098 |
|
| 1099 |
val = bfd_get_8 (abfd, contents + offset - 1); |
| 1100 |
if ((val & 0xc0) != 0x80 || (val & 7) == 4) |
| 1101 |
return FALSE; |
| 1102 |
|
| 1103 |
type = bfd_get_8 (abfd, contents + offset - 2); |
| 1104 |
return type == 0x8b || type == 0x2b || type == 0x03; |
| 1105 |
|
| 1106 |
case R_386_TLS_GOTDESC: |
| 1107 |
/* Check transition from GDesc access model: |
| 1108 |
leal x@tlsdesc(%ebx), %eax |
| 1109 |
|
| 1110 |
Make sure it's a leal adding ebx to a 32-bit offset |
| 1111 |
into any register, although it's probably almost always |
| 1112 |
going to be eax. */ |
| 1113 |
|
| 1114 |
if (offset < 2 || (offset + 4) > sec->size) |
| 1115 |
return FALSE; |
| 1116 |
|
| 1117 |
if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d) |
| 1118 |
return FALSE; |
| 1119 |
|
| 1120 |
val = bfd_get_8 (abfd, contents + offset - 1); |
| 1121 |
return (val & 0xc7) == 0x83; |
| 1122 |
|
| 1123 |
case R_386_TLS_DESC_CALL: |
| 1124 |
/* Check transition from GDesc access model: |
| 1125 |
call *x@tlsdesc(%rax) |
| 1126 |
*/ |
| 1127 |
if (offset + 2 <= sec->size) |
| 1128 |
{ |
| 1129 |
/* Make sure that it's a call *x@tlsdesc(%rax). */ |
| 1130 |
static i386_opcode16 call = { { 0xff, 0x10 } }; |
| 1131 |
return bfd_get_16 (abfd, contents + offset) == call.i; |
| 1132 |
} |
| 1133 |
|
| 1134 |
return FALSE; |
| 1135 |
|
| 1136 |
default: |
| 1137 |
abort (); |
| 1138 |
} |
| 1139 |
} |
| 1140 |
|
| 1141 |
/* Return TRUE if the TLS access transition is OK or no transition |
| 1142 |
will be performed. Update R_TYPE if there is a transition. */ |
| 1143 |
|
| 1144 |
static bfd_boolean |
| 1145 |
elf_i386_tls_transition (struct bfd_link_info *info, bfd *abfd, |
| 1146 |
asection *sec, bfd_byte *contents, |
| 1147 |
Elf_Internal_Shdr *symtab_hdr, |
| 1148 |
struct elf_link_hash_entry **sym_hashes, |
| 1149 |
unsigned int *r_type, int tls_type, |
| 1150 |
const Elf_Internal_Rela *rel, |
| 1151 |
const Elf_Internal_Rela *relend, |
| 1152 |
struct elf_link_hash_entry *h, |
| 1153 |
unsigned long r_symndx) |
| 1154 |
{ |
| 1155 |
unsigned int from_type = *r_type; |
| 1156 |
unsigned int to_type = from_type; |
| 1157 |
bfd_boolean check = TRUE; |
| 1158 |
|
| 1159 |
switch (from_type) |
| 1160 |
{ |
| 1161 |
case R_386_TLS_GD: |
| 1162 |
case R_386_TLS_GOTDESC: |
| 1163 |
case R_386_TLS_DESC_CALL: |
| 1164 |
case R_386_TLS_IE_32: |
| 1165 |
case R_386_TLS_IE: |
| 1166 |
case R_386_TLS_GOTIE: |
| 1167 |
if (!info->shared) |
| 1168 |
{ |
| 1169 |
if (h == NULL) |
| 1170 |
to_type = R_386_TLS_LE_32; |
| 1171 |
else if (from_type != R_386_TLS_IE |
| 1172 |
&& from_type != R_386_TLS_GOTIE) |
| 1173 |
to_type = R_386_TLS_IE_32; |
| 1174 |
} |
| 1175 |
|
| 1176 |
/* When we are called from elf_i386_relocate_section, CONTENTS |
| 1177 |
isn't NULL and there may be additional transitions based on |
| 1178 |
TLS_TYPE. */ |
| 1179 |
if (contents != NULL) |
| 1180 |
{ |
| 1181 |
unsigned int new_to_type = to_type; |
| 1182 |
|
| 1183 |
if (!info->shared |
| 1184 |
&& h != NULL |
| 1185 |
&& h->dynindx == -1 |
| 1186 |
&& (tls_type & GOT_TLS_IE)) |
| 1187 |
new_to_type = R_386_TLS_LE_32; |
| 1188 |
|
| 1189 |
if (to_type == R_386_TLS_GD |
| 1190 |
|| to_type == R_386_TLS_GOTDESC |
| 1191 |
|| to_type == R_386_TLS_DESC_CALL) |
| 1192 |
{ |
| 1193 |
if (tls_type == GOT_TLS_IE_POS) |
| 1194 |
new_to_type = R_386_TLS_GOTIE; |
| 1195 |
else if (tls_type & GOT_TLS_IE) |
| 1196 |
new_to_type = R_386_TLS_IE_32; |
| 1197 |
} |
| 1198 |
|
| 1199 |
/* We checked the transition before when we were called from |
| 1200 |
elf_i386_check_relocs. We only want to check the new |
| 1201 |
transition which hasn't been checked before. */ |
| 1202 |
check = new_to_type != to_type && from_type == to_type; |
| 1203 |
to_type = new_to_type; |
| 1204 |
} |
| 1205 |
|
| 1206 |
break; |
| 1207 |
|
| 1208 |
case R_386_TLS_LDM: |
| 1209 |
if (!info->shared) |
| 1210 |
to_type = R_386_TLS_LE_32; |
| 1211 |
break; |
| 1212 |
|
| 1213 |
default: |
| 1214 |
return TRUE; |
| 1215 |
} |
| 1216 |
|
| 1217 |
/* Return TRUE if there is no transition. */ |
| 1218 |
if (from_type == to_type) |
| 1219 |
return TRUE; |
| 1220 |
|
| 1221 |
/* Check if the transition can be performed. */ |
| 1222 |
if (check |
| 1223 |
&& ! elf_i386_check_tls_transition (abfd, sec, contents, |
| 1224 |
symtab_hdr, sym_hashes, |
| 1225 |
from_type, rel, relend)) |
| 1226 |
{ |
| 1227 |
reloc_howto_type *from, *to; |
| 1228 |
const char *name; |
| 1229 |
|
| 1230 |
from = elf_i386_rtype_to_howto (abfd, from_type); |
| 1231 |
to = elf_i386_rtype_to_howto (abfd, to_type); |
| 1232 |
|
| 1233 |
if (h) |
| 1234 |
name = h->root.root.string; |
| 1235 |
else |
| 1236 |
{ |
| 1237 |
Elf_Internal_Sym *isym; |
| 1238 |
struct elf_i386_link_hash_table *htab; |
| 1239 |
htab = elf_i386_hash_table (info); |
| 1240 |
isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| 1241 |
abfd, r_symndx); |
| 1242 |
name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL); |
| 1243 |
} |
| 1244 |
|
| 1245 |
(*_bfd_error_handler) |
| 1246 |
(_("%B: TLS transition from %s to %s against `%s' at 0x%lx " |
| 1247 |
"in section `%A' failed"), |
| 1248 |
abfd, sec, from->name, to->name, name, |
| 1249 |
(unsigned long) rel->r_offset); |
| 1250 |
bfd_set_error (bfd_error_bad_value); |
| 1251 |
return FALSE; |
| 1252 |
} |
| 1253 |
|
| 1254 |
*r_type = to_type; |
| 1255 |
return TRUE; |
| 1256 |
} |
| 1257 |
|
| 1258 |
/* Look through the relocs for a section during the first phase, and |
| 1259 |
calculate needed space in the global offset table, procedure linkage |
| 1260 |
table, and dynamic reloc sections. */ |
| 1261 |
|
| 1262 |
static bfd_boolean |
| 1263 |
elf_i386_check_relocs (bfd *abfd, |
| 1264 |
struct bfd_link_info *info, |
| 1265 |
asection *sec, |
| 1266 |
const Elf_Internal_Rela *relocs) |
| 1267 |
{ |
| 1268 |
struct elf_i386_link_hash_table *htab; |
| 1269 |
Elf_Internal_Shdr *symtab_hdr; |
| 1270 |
struct elf_link_hash_entry **sym_hashes; |
| 1271 |
const Elf_Internal_Rela *rel; |
| 1272 |
const Elf_Internal_Rela *rel_end; |
| 1273 |
asection *sreloc; |
| 1274 |
|
| 1275 |
if (info->relocatable) |
| 1276 |
return TRUE; |
| 1277 |
|
| 1278 |
BFD_ASSERT (is_i386_elf (abfd)); |
| 1279 |
|
| 1280 |
htab = elf_i386_hash_table (info); |
| 1281 |
symtab_hdr = &elf_symtab_hdr (abfd); |
| 1282 |
sym_hashes = elf_sym_hashes (abfd); |
| 1283 |
|
| 1284 |
sreloc = NULL; |
| 1285 |
|
| 1286 |
rel_end = relocs + sec->reloc_count; |
| 1287 |
for (rel = relocs; rel < rel_end; rel++) |
| 1288 |
{ |
| 1289 |
unsigned int r_type; |
| 1290 |
unsigned long r_symndx; |
| 1291 |
struct elf_link_hash_entry *h; |
| 1292 |
Elf_Internal_Sym *isym; |
| 1293 |
const char *name; |
| 1294 |
|
| 1295 |
r_symndx = ELF32_R_SYM (rel->r_info); |
| 1296 |
r_type = ELF32_R_TYPE (rel->r_info); |
| 1297 |
|
| 1298 |
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) |
| 1299 |
{ |
| 1300 |
(*_bfd_error_handler) (_("%B: bad symbol index: %d"), |
| 1301 |
abfd, |
| 1302 |
r_symndx); |
| 1303 |
return FALSE; |
| 1304 |
} |
| 1305 |
|
| 1306 |
if (r_symndx < symtab_hdr->sh_info) |
| 1307 |
{ |
| 1308 |
/* A local symbol. */ |
| 1309 |
isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| 1310 |
abfd, r_symndx); |
| 1311 |
if (isym == NULL) |
| 1312 |
return FALSE; |
| 1313 |
|
| 1314 |
/* Check relocation against local STT_GNU_IFUNC symbol. */ |
| 1315 |
if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) |
| 1316 |
{ |
| 1317 |
h = elf_i386_get_local_sym_hash (htab, abfd, rel, |
| 1318 |
TRUE); |
| 1319 |
if (h == NULL) |
| 1320 |
return FALSE; |
| 1321 |
|
| 1322 |
/* Fake a STT_GNU_IFUNC symbol. */ |
| 1323 |
h->type = STT_GNU_IFUNC; |
| 1324 |
h->def_regular = 1; |
| 1325 |
h->ref_regular = 1; |
| 1326 |
h->forced_local = 1; |
| 1327 |
h->root.type = bfd_link_hash_defined; |
| 1328 |
} |
| 1329 |
else |
| 1330 |
h = NULL; |
| 1331 |
} |
| 1332 |
else |
| 1333 |
{ |
| 1334 |
isym = NULL; |
| 1335 |
h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| 1336 |
while (h->root.type == bfd_link_hash_indirect |
| 1337 |
|| h->root.type == bfd_link_hash_warning) |
| 1338 |
h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 1339 |
} |
| 1340 |
|
| 1341 |
if (h != NULL) |
| 1342 |
{ |
| 1343 |
/* Create the ifunc sections for static executables. If we |
| 1344 |
never see an indirect function symbol nor we are building |
| 1345 |
a static executable, those sections will be empty and |
| 1346 |
won't appear in output. */ |
| 1347 |
switch (r_type) |
| 1348 |
{ |
| 1349 |
default: |
| 1350 |
break; |
| 1351 |
|
| 1352 |
case R_386_32: |
| 1353 |
case R_386_PC32: |
| 1354 |
case R_386_PLT32: |
| 1355 |
case R_386_GOT32: |
| 1356 |
case R_386_GOTOFF: |
| 1357 |
if (!_bfd_elf_create_ifunc_sections (abfd, info)) |
| 1358 |
return FALSE; |
| 1359 |
break; |
| 1360 |
} |
| 1361 |
|
| 1362 |
/* Since STT_GNU_IFUNC symbol must go through PLT, we handle |
| 1363 |
it here if it is defined in a non-shared object. */ |
| 1364 |
if (h->type == STT_GNU_IFUNC |
| 1365 |
&& h->def_regular) |
| 1366 |
{ |
| 1367 |
/* It is referenced by a non-shared object. */ |
| 1368 |
h->ref_regular = 1; |
| 1369 |
h->needs_plt = 1; |
| 1370 |
|
| 1371 |
/* STT_GNU_IFUNC symbol must go through PLT. */ |
| 1372 |
h->plt.refcount += 1; |
| 1373 |
|
| 1374 |
/* STT_GNU_IFUNC needs dynamic sections. */ |
| 1375 |
if (htab->elf.dynobj == NULL) |
| 1376 |
htab->elf.dynobj = abfd; |
| 1377 |
|
| 1378 |
switch (r_type) |
| 1379 |
{ |
| 1380 |
default: |
| 1381 |
if (h->root.root.string) |
| 1382 |
name = h->root.root.string; |
| 1383 |
else |
| 1384 |
name = bfd_elf_sym_name (abfd, symtab_hdr, isym, |
| 1385 |
NULL); |
| 1386 |
(*_bfd_error_handler) |
| 1387 |
(_("%B: relocation %s against STT_GNU_IFUNC " |
| 1388 |
"symbol `%s' isn't handled by %s"), abfd, |
| 1389 |
elf_howto_table[r_type].name, |
| 1390 |
name, __FUNCTION__); |
| 1391 |
bfd_set_error (bfd_error_bad_value); |
| 1392 |
return FALSE; |
| 1393 |
|
| 1394 |
case R_386_32: |
| 1395 |
h->non_got_ref = 1; |
| 1396 |
h->pointer_equality_needed = 1; |
| 1397 |
if (info->shared) |
| 1398 |
{ |
| 1399 |
/* We must copy these reloc types into the |
| 1400 |
output file. Create a reloc section in |
| 1401 |
dynobj and make room for this reloc. */ |
| 1402 |
sreloc = _bfd_elf_create_ifunc_dyn_reloc |
| 1403 |
(abfd, info, sec, sreloc, |
| 1404 |
&((struct elf_i386_link_hash_entry *) h)->dyn_relocs); |
| 1405 |
if (sreloc == NULL) |
| 1406 |
return FALSE; |
| 1407 |
} |
| 1408 |
break; |
| 1409 |
|
| 1410 |
case R_386_PC32: |
| 1411 |
h->non_got_ref = 1; |
| 1412 |
break; |
| 1413 |
|
| 1414 |
case R_386_PLT32: |
| 1415 |
break; |
| 1416 |
|
| 1417 |
case R_386_GOT32: |
| 1418 |
case R_386_GOTOFF: |
| 1419 |
h->got.refcount += 1; |
| 1420 |
if (htab->elf.sgot == NULL |
| 1421 |
&& !_bfd_elf_create_got_section (htab->elf.dynobj, |
| 1422 |
info)) |
| 1423 |
return FALSE; |
| 1424 |
break; |
| 1425 |
} |
| 1426 |
|
| 1427 |
continue; |
| 1428 |
} |
| 1429 |
} |
| 1430 |
|
| 1431 |
if (! elf_i386_tls_transition (info, abfd, sec, NULL, |
| 1432 |
symtab_hdr, sym_hashes, |
| 1433 |
&r_type, GOT_UNKNOWN, |
| 1434 |
rel, rel_end, h, r_symndx)) |
| 1435 |
return FALSE; |
| 1436 |
|
| 1437 |
switch (r_type) |
| 1438 |
{ |
| 1439 |
case R_386_TLS_LDM: |
| 1440 |
htab->tls_ldm_got.refcount += 1; |
| 1441 |
goto create_got; |
| 1442 |
|
| 1443 |
case R_386_PLT32: |
| 1444 |
/* This symbol requires a procedure linkage table entry. We |
| 1445 |
actually build the entry in adjust_dynamic_symbol, |
| 1446 |
because this might be a case of linking PIC code which is |
| 1447 |
never referenced by a dynamic object, in which case we |
| 1448 |
don't need to generate a procedure linkage table entry |
| 1449 |
after all. */ |
| 1450 |
|
| 1451 |
/* If this is a local symbol, we resolve it directly without |
| 1452 |
creating a procedure linkage table entry. */ |
| 1453 |
if (h == NULL) |
| 1454 |
continue; |
| 1455 |
|
| 1456 |
h->needs_plt = 1; |
| 1457 |
h->plt.refcount += 1; |
| 1458 |
break; |
| 1459 |
|
| 1460 |
case R_386_TLS_IE_32: |
| 1461 |
case R_386_TLS_IE: |
| 1462 |
case R_386_TLS_GOTIE: |
| 1463 |
if (info->shared) |
| 1464 |
info->flags |= DF_STATIC_TLS; |
| 1465 |
/* Fall through */ |
| 1466 |
|
| 1467 |
case R_386_GOT32: |
| 1468 |
case R_386_TLS_GD: |
| 1469 |
case R_386_TLS_GOTDESC: |
| 1470 |
case R_386_TLS_DESC_CALL: |
| 1471 |
/* This symbol requires a global offset table entry. */ |
| 1472 |
{ |
| 1473 |
int tls_type, old_tls_type; |
| 1474 |
|
| 1475 |
switch (r_type) |
| 1476 |
{ |
| 1477 |
default: |
| 1478 |
case R_386_GOT32: tls_type = GOT_NORMAL; break; |
| 1479 |
case R_386_TLS_GD: tls_type = GOT_TLS_GD; break; |
| 1480 |
case R_386_TLS_GOTDESC: |
| 1481 |
case R_386_TLS_DESC_CALL: |
| 1482 |
tls_type = GOT_TLS_GDESC; break; |
| 1483 |
case R_386_TLS_IE_32: |
| 1484 |
if (ELF32_R_TYPE (rel->r_info) == r_type) |
| 1485 |
tls_type = GOT_TLS_IE_NEG; |
| 1486 |
else |
| 1487 |
/* If this is a GD->IE transition, we may use either of |
| 1488 |
R_386_TLS_TPOFF and R_386_TLS_TPOFF32. */ |
| 1489 |
tls_type = GOT_TLS_IE; |
| 1490 |
break; |
| 1491 |
case R_386_TLS_IE: |
| 1492 |
case R_386_TLS_GOTIE: |
| 1493 |
tls_type = GOT_TLS_IE_POS; break; |
| 1494 |
} |
| 1495 |
|
| 1496 |
if (h != NULL) |
| 1497 |
{ |
| 1498 |
h->got.refcount += 1; |
| 1499 |
old_tls_type = elf_i386_hash_entry(h)->tls_type; |
| 1500 |
} |
| 1501 |
else |
| 1502 |
{ |
| 1503 |
bfd_signed_vma *local_got_refcounts; |
| 1504 |
|
| 1505 |
/* This is a global offset table entry for a local symbol. */ |
| 1506 |
local_got_refcounts = elf_local_got_refcounts (abfd); |
| 1507 |
if (local_got_refcounts == NULL) |
| 1508 |
{ |
| 1509 |
bfd_size_type size; |
| 1510 |
|
| 1511 |
size = symtab_hdr->sh_info; |
| 1512 |
size *= (sizeof (bfd_signed_vma) |
| 1513 |
+ sizeof (bfd_vma) + sizeof(char)); |
| 1514 |
local_got_refcounts = bfd_zalloc (abfd, size); |
| 1515 |
if (local_got_refcounts == NULL) |
| 1516 |
return FALSE; |
| 1517 |
elf_local_got_refcounts (abfd) = local_got_refcounts; |
| 1518 |
elf_i386_local_tlsdesc_gotent (abfd) |
| 1519 |
= (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info); |
| 1520 |
elf_i386_local_got_tls_type (abfd) |
| 1521 |
= (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info); |
| 1522 |
} |
| 1523 |
local_got_refcounts[r_symndx] += 1; |
| 1524 |
old_tls_type = elf_i386_local_got_tls_type (abfd) [r_symndx]; |
| 1525 |
} |
| 1526 |
|
| 1527 |
if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE)) |
| 1528 |
tls_type |= old_tls_type; |
| 1529 |
/* If a TLS symbol is accessed using IE at least once, |
| 1530 |
there is no point to use dynamic model for it. */ |
| 1531 |
else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN |
| 1532 |
&& (! GOT_TLS_GD_ANY_P (old_tls_type) |
| 1533 |
|| (tls_type & GOT_TLS_IE) == 0)) |
| 1534 |
{ |
| 1535 |
if ((old_tls_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (tls_type)) |
| 1536 |
tls_type = old_tls_type; |
| 1537 |
else if (GOT_TLS_GD_ANY_P (old_tls_type) |
| 1538 |
&& GOT_TLS_GD_ANY_P (tls_type)) |
| 1539 |
tls_type |= old_tls_type; |
| 1540 |
else |
| 1541 |
{ |
| 1542 |
if (h) |
| 1543 |
name = h->root.root.string; |
| 1544 |
else |
| 1545 |
name = bfd_elf_sym_name (abfd, symtab_hdr, isym, |
| 1546 |
NULL); |
| 1547 |
(*_bfd_error_handler) |
| 1548 |
(_("%B: `%s' accessed both as normal and " |
| 1549 |
"thread local symbol"), |
| 1550 |
abfd, name); |
| 1551 |
return FALSE; |
| 1552 |
} |
| 1553 |
} |
| 1554 |
|
| 1555 |
if (old_tls_type != tls_type) |
| 1556 |
{ |
| 1557 |
if (h != NULL) |
| 1558 |
elf_i386_hash_entry (h)->tls_type = tls_type; |
| 1559 |
else |
| 1560 |
elf_i386_local_got_tls_type (abfd) [r_symndx] = tls_type; |
| 1561 |
} |
| 1562 |
} |
| 1563 |
/* Fall through */ |
| 1564 |
|
| 1565 |
case R_386_GOTOFF: |
| 1566 |
case R_386_GOTPC: |
| 1567 |
create_got: |
| 1568 |
if (htab->elf.sgot == NULL) |
| 1569 |
{ |
| 1570 |
if (htab->elf.dynobj == NULL) |
| 1571 |
htab->elf.dynobj = abfd; |
| 1572 |
if (!_bfd_elf_create_got_section (htab->elf.dynobj, info)) |
| 1573 |
return FALSE; |
| 1574 |
} |
| 1575 |
if (r_type != R_386_TLS_IE) |
| 1576 |
break; |
| 1577 |
/* Fall through */ |
| 1578 |
|
| 1579 |
case R_386_TLS_LE_32: |
| 1580 |
case R_386_TLS_LE: |
| 1581 |
if (!info->shared) |
| 1582 |
break; |
| 1583 |
info->flags |= DF_STATIC_TLS; |
| 1584 |
/* Fall through */ |
| 1585 |
|
| 1586 |
case R_386_32: |
| 1587 |
case R_386_PC32: |
| 1588 |
if (h != NULL && info->executable) |
| 1589 |
{ |
| 1590 |
/* If this reloc is in a read-only section, we might |
| 1591 |
need a copy reloc. We can't check reliably at this |
| 1592 |
stage whether the section is read-only, as input |
| 1593 |
sections have not yet been mapped to output sections. |
| 1594 |
Tentatively set the flag for now, and correct in |
| 1595 |
adjust_dynamic_symbol. */ |
| 1596 |
h->non_got_ref = 1; |
| 1597 |
|
| 1598 |
/* We may need a .plt entry if the function this reloc |
| 1599 |
refers to is in a shared lib. */ |
| 1600 |
h->plt.refcount += 1; |
| 1601 |
if (r_type != R_386_PC32) |
| 1602 |
h->pointer_equality_needed = 1; |
| 1603 |
} |
| 1604 |
|
| 1605 |
/* If we are creating a shared library, and this is a reloc |
| 1606 |
against a global symbol, or a non PC relative reloc |
| 1607 |
against a local symbol, then we need to copy the reloc |
| 1608 |
into the shared library. However, if we are linking with |
| 1609 |
-Bsymbolic, we do not need to copy a reloc against a |
| 1610 |
global symbol which is defined in an object we are |
| 1611 |
including in the link (i.e., DEF_REGULAR is set). At |
| 1612 |
this point we have not seen all the input files, so it is |
| 1613 |
possible that DEF_REGULAR is not set now but will be set |
| 1614 |
later (it is never cleared). In case of a weak definition, |
| 1615 |
DEF_REGULAR may be cleared later by a strong definition in |
| 1616 |
a shared library. We account for that possibility below by |
| 1617 |
storing information in the relocs_copied field of the hash |
| 1618 |
table entry. A similar situation occurs when creating |
| 1619 |
shared libraries and symbol visibility changes render the |
| 1620 |
symbol local. |
| 1621 |
|
| 1622 |
If on the other hand, we are creating an executable, we |
| 1623 |
may need to keep relocations for symbols satisfied by a |
| 1624 |
dynamic library if we manage to avoid copy relocs for the |
| 1625 |
symbol. */ |
| 1626 |
if ((info->shared |
| 1627 |
&& (sec->flags & SEC_ALLOC) != 0 |
| 1628 |
&& (r_type != R_386_PC32 |
| 1629 |
|| (h != NULL |
| 1630 |
&& (! SYMBOLIC_BIND (info, h) |
| 1631 |
|| h->root.type == bfd_link_hash_defweak |
| 1632 |
|| !h->def_regular)))) |
| 1633 |
|| (ELIMINATE_COPY_RELOCS |
| 1634 |
&& !info->shared |
| 1635 |
&& (sec->flags & SEC_ALLOC) != 0 |
| 1636 |
&& h != NULL |
| 1637 |
&& (h->root.type == bfd_link_hash_defweak |
| 1638 |
|| !h->def_regular))) |
| 1639 |
{ |
| 1640 |
struct elf_dyn_relocs *p; |
| 1641 |
struct elf_dyn_relocs **head; |
| 1642 |
|
| 1643 |
/* We must copy these reloc types into the output file. |
| 1644 |
Create a reloc section in dynobj and make room for |
| 1645 |
this reloc. */ |
| 1646 |
if (sreloc == NULL) |
| 1647 |
{ |
| 1648 |
if (htab->elf.dynobj == NULL) |
| 1649 |
htab->elf.dynobj = abfd; |
| 1650 |
|
| 1651 |
sreloc = _bfd_elf_make_dynamic_reloc_section |
| 1652 |
(sec, htab->elf.dynobj, 2, abfd, /*rela?*/ FALSE); |
| 1653 |
|
| 1654 |
if (sreloc == NULL) |
| 1655 |
return FALSE; |
| 1656 |
} |
| 1657 |
|
| 1658 |
/* If this is a global symbol, we count the number of |
| 1659 |
relocations we need for this symbol. */ |
| 1660 |
if (h != NULL) |
| 1661 |
{ |
| 1662 |
head = &((struct elf_i386_link_hash_entry *) h)->dyn_relocs; |
| 1663 |
} |
| 1664 |
else |
| 1665 |
{ |
| 1666 |
/* Track dynamic relocs needed for local syms too. |
| 1667 |
We really need local syms available to do this |
| 1668 |
easily. Oh well. */ |
| 1669 |
void **vpp; |
| 1670 |
asection *s; |
| 1671 |
Elf_Internal_Sym *isym; |
| 1672 |
|
| 1673 |
isym = bfd_sym_from_r_symndx (&htab->sym_cache, |
| 1674 |
abfd, r_symndx); |
| 1675 |
if (isym == NULL) |
| 1676 |
return FALSE; |
| 1677 |
|
| 1678 |
s = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| 1679 |
if (s == NULL) |
| 1680 |
s = sec; |
| 1681 |
|
| 1682 |
vpp = &elf_section_data (s)->local_dynrel; |
| 1683 |
head = (struct elf_dyn_relocs **)vpp; |
| 1684 |
} |
| 1685 |
|
| 1686 |
p = *head; |
| 1687 |
if (p == NULL || p->sec != sec) |
| 1688 |
{ |
| 1689 |
bfd_size_type amt = sizeof *p; |
| 1690 |
p = bfd_alloc (htab->elf.dynobj, amt); |
| 1691 |
if (p == NULL) |
| 1692 |
return FALSE; |
| 1693 |
p->next = *head; |
| 1694 |
*head = p; |
| 1695 |
p->sec = sec; |
| 1696 |
p->count = 0; |
| 1697 |
p->pc_count = 0; |
| 1698 |
} |
| 1699 |
|
| 1700 |
p->count += 1; |
| 1701 |
if (r_type == R_386_PC32) |
| 1702 |
p->pc_count += 1; |
| 1703 |
} |
| 1704 |
break; |
| 1705 |
|
| 1706 |
/* This relocation describes the C++ object vtable hierarchy. |
| 1707 |
Reconstruct it for later use during GC. */ |
| 1708 |
case R_386_GNU_VTINHERIT: |
| 1709 |
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| 1710 |
return FALSE; |
| 1711 |
break; |
| 1712 |
|
| 1713 |
/* This relocation describes which C++ vtable entries are actually |
| 1714 |
used. Record for later use during GC. */ |
| 1715 |
case R_386_GNU_VTENTRY: |
| 1716 |
BFD_ASSERT (h != NULL); |
| 1717 |
if (h != NULL |
| 1718 |
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) |
| 1719 |
return FALSE; |
| 1720 |
break; |
| 1721 |
|
| 1722 |
default: |
| 1723 |
break; |
| 1724 |
} |
| 1725 |
} |
| 1726 |
|
| 1727 |
return TRUE; |
| 1728 |
} |
| 1729 |
|
| 1730 |
/* Return the section that should be marked against GC for a given |
| 1731 |
relocation. */ |
| 1732 |
|
| 1733 |
static asection * |
| 1734 |
elf_i386_gc_mark_hook (asection *sec, |
| 1735 |
struct bfd_link_info *info, |
| 1736 |
Elf_Internal_Rela *rel, |
| 1737 |
struct elf_link_hash_entry *h, |
| 1738 |
Elf_Internal_Sym *sym) |
| 1739 |
{ |
| 1740 |
if (h != NULL) |
| 1741 |
switch (ELF32_R_TYPE (rel->r_info)) |
| 1742 |
{ |
| 1743 |
case R_386_GNU_VTINHERIT: |
| 1744 |
case R_386_GNU_VTENTRY: |
| 1745 |
return NULL; |
| 1746 |
} |
| 1747 |
|
| 1748 |
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| 1749 |
} |
| 1750 |
|
| 1751 |
/* Update the got entry reference counts for the section being removed. */ |
| 1752 |
|
| 1753 |
static bfd_boolean |
| 1754 |
elf_i386_gc_sweep_hook (bfd *abfd, |
| 1755 |
struct bfd_link_info *info, |
| 1756 |
asection *sec, |
| 1757 |
const Elf_Internal_Rela *relocs) |
| 1758 |
{ |
| 1759 |
Elf_Internal_Shdr *symtab_hdr; |
| 1760 |
struct elf_link_hash_entry **sym_hashes; |
| 1761 |
bfd_signed_vma *local_got_refcounts; |
| 1762 |
const Elf_Internal_Rela *rel, *relend; |
| 1763 |
|
| 1764 |
if (info->relocatable) |
| 1765 |
return TRUE; |
| 1766 |
|
| 1767 |
elf_section_data (sec)->local_dynrel = NULL; |
| 1768 |
|
| 1769 |
symtab_hdr = &elf_symtab_hdr (abfd); |
| 1770 |
sym_hashes = elf_sym_hashes (abfd); |
| 1771 |
local_got_refcounts = elf_local_got_refcounts (abfd); |
| 1772 |
|
| 1773 |
relend = relocs + sec->reloc_count; |
| 1774 |
for (rel = relocs; rel < relend; rel++) |
| 1775 |
{ |
| 1776 |
unsigned long r_symndx; |
| 1777 |
unsigned int r_type; |
| 1778 |
struct elf_link_hash_entry *h = NULL; |
| 1779 |
|
| 1780 |
r_symndx = ELF32_R_SYM (rel->r_info); |
| 1781 |
if (r_symndx >= symtab_hdr->sh_info) |
| 1782 |
{ |
| 1783 |
struct elf_i386_link_hash_entry *eh; |
| 1784 |
struct elf_dyn_relocs **pp; |
| 1785 |
struct elf_dyn_relocs *p; |
| 1786 |
|
| 1787 |
h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| 1788 |
while (h->root.type == bfd_link_hash_indirect |
| 1789 |
|| h->root.type == bfd_link_hash_warning) |
| 1790 |
h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 1791 |
eh = (struct elf_i386_link_hash_entry *) h; |
| 1792 |
|
| 1793 |
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) |
| 1794 |
if (p->sec == sec) |
| 1795 |
{ |
| 1796 |
/* Everything must go for SEC. */ |
| 1797 |
*pp = p->next; |
| 1798 |
break; |
| 1799 |
} |
| 1800 |
} |
| 1801 |
|
| 1802 |
r_type = ELF32_R_TYPE (rel->r_info); |
| 1803 |
if (! elf_i386_tls_transition (info, abfd, sec, NULL, |
| 1804 |
symtab_hdr, sym_hashes, |
| 1805 |
&r_type, GOT_UNKNOWN, |
| 1806 |
rel, relend, h, r_symndx)) |
| 1807 |
return FALSE; |
| 1808 |
|
| 1809 |
switch (r_type) |
| 1810 |
{ |
| 1811 |
case R_386_TLS_LDM: |
| 1812 |
if (elf_i386_hash_table (info)->tls_ldm_got.refcount > 0) |
| 1813 |
elf_i386_hash_table (info)->tls_ldm_got.refcount -= 1; |
| 1814 |
break; |
| 1815 |
|
| 1816 |
case R_386_TLS_GD: |
| 1817 |
case R_386_TLS_GOTDESC: |
| 1818 |
case R_386_TLS_DESC_CALL: |
| 1819 |
case R_386_TLS_IE_32: |
| 1820 |
case R_386_TLS_IE: |
| 1821 |
case R_386_TLS_GOTIE: |
| 1822 |
case R_386_GOT32: |
| 1823 |
if (h != NULL) |
| 1824 |
{ |
| 1825 |
if (h->got.refcount > 0) |
| 1826 |
h->got.refcount -= 1; |
| 1827 |
} |
| 1828 |
else if (local_got_refcounts != NULL) |
| 1829 |
{ |
| 1830 |
if (local_got_refcounts[r_symndx] > 0) |
| 1831 |
local_got_refcounts[r_symndx] -= 1; |
| 1832 |
} |
| 1833 |
break; |
| 1834 |
|
| 1835 |
case R_386_32: |
| 1836 |
case R_386_PC32: |
| 1837 |
if (info->shared) |
| 1838 |
break; |
| 1839 |
/* Fall through */ |
| 1840 |
|
| 1841 |
case R_386_PLT32: |
| 1842 |
if (h != NULL) |
| 1843 |
{ |
| 1844 |
if (h->plt.refcount > 0) |
| 1845 |
h->plt.refcount -= 1; |
| 1846 |
} |
| 1847 |
break; |
| 1848 |
|
| 1849 |
default: |
| 1850 |
break; |
| 1851 |
} |
| 1852 |
} |
| 1853 |
|
| 1854 |
return TRUE; |
| 1855 |
} |
| 1856 |
|
| 1857 |
/* Adjust a symbol defined by a dynamic object and referenced by a |
| 1858 |
regular object. The current definition is in some section of the |
| 1859 |
dynamic object, but we're not including those sections. We have to |
| 1860 |
change the definition to something the rest of the link can |
| 1861 |
understand. */ |
| 1862 |
|
| 1863 |
static bfd_boolean |
| 1864 |
elf_i386_adjust_dynamic_symbol (struct bfd_link_info *info, |
| 1865 |
struct elf_link_hash_entry *h) |
| 1866 |
{ |
| 1867 |
struct elf_i386_link_hash_table *htab; |
| 1868 |
asection *s; |
| 1869 |
|
| 1870 |
/* STT_GNU_IFUNC symbol must go through PLT. */ |
| 1871 |
if (h->type == STT_GNU_IFUNC) |
| 1872 |
{ |
| 1873 |
if (h->plt.refcount <= 0) |
| 1874 |
{ |
| 1875 |
h->plt.offset = (bfd_vma) -1; |
| 1876 |
h->needs_plt = 0; |
| 1877 |
} |
| 1878 |
return TRUE; |
| 1879 |
} |
| 1880 |
|
| 1881 |
/* If this is a function, put it in the procedure linkage table. We |
| 1882 |
will fill in the contents of the procedure linkage table later, |
| 1883 |
when we know the address of the .got section. */ |
| 1884 |
if (h->type == STT_FUNC |
| 1885 |
|| h->needs_plt) |
| 1886 |
{ |
| 1887 |
if (h->plt.refcount <= 0 |
| 1888 |
|| SYMBOL_CALLS_LOCAL (info, h) |
| 1889 |
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| 1890 |
&& h->root.type == bfd_link_hash_undefweak)) |
| 1891 |
{ |
| 1892 |
/* This case can occur if we saw a PLT32 reloc in an input |
| 1893 |
file, but the symbol was never referred to by a dynamic |
| 1894 |
object, or if all references were garbage collected. In |
| 1895 |
such a case, we don't actually need to build a procedure |
| 1896 |
linkage table, and we can just do a PC32 reloc instead. */ |
| 1897 |
h->plt.offset = (bfd_vma) -1; |
| 1898 |
h->needs_plt = 0; |
| 1899 |
} |
| 1900 |
|
| 1901 |
return TRUE; |
| 1902 |
} |
| 1903 |
else |
| 1904 |
/* It's possible that we incorrectly decided a .plt reloc was |
| 1905 |
needed for an R_386_PC32 reloc to a non-function sym in |
| 1906 |
check_relocs. We can't decide accurately between function and |
| 1907 |
non-function syms in check-relocs; Objects loaded later in |
| 1908 |
the link may change h->type. So fix it now. */ |
| 1909 |
h->plt.offset = (bfd_vma) -1; |
| 1910 |
|
| 1911 |
/* If this is a weak symbol, and there is a real definition, the |
| 1912 |
processor independent code will have arranged for us to see the |
| 1913 |
real definition first, and we can just use the same value. */ |
| 1914 |
if (h->u.weakdef != NULL) |
| 1915 |
{ |
| 1916 |
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
| 1917 |
|| h->u.weakdef->root.type == bfd_link_hash_defweak); |
| 1918 |
h->root.u.def.section = h->u.weakdef->root.u.def.section; |
| 1919 |
h->root.u.def.value = h->u.weakdef->root.u.def.value; |
| 1920 |
if (ELIMINATE_COPY_RELOCS || info->nocopyreloc) |
| 1921 |
h->non_got_ref = h->u.weakdef->non_got_ref; |
| 1922 |
return TRUE; |
| 1923 |
} |
| 1924 |
|
| 1925 |
/* This is a reference to a symbol defined by a dynamic object which |
| 1926 |
is not a function. */ |
| 1927 |
|
| 1928 |
/* If we are creating a shared library, we must presume that the |
| 1929 |
only references to the symbol are via the global offset table. |
| 1930 |
For such cases we need not do anything here; the relocations will |
| 1931 |
be handled correctly by relocate_section. */ |
| 1932 |
if (info->shared) |
| 1933 |
return TRUE; |
| 1934 |
|
| 1935 |
/* If there are no references to this symbol that do not use the |
| 1936 |
GOT, we don't need to generate a copy reloc. */ |
| 1937 |
if (!h->non_got_ref) |
| 1938 |
return TRUE; |
| 1939 |
|
| 1940 |
/* If -z nocopyreloc was given, we won't generate them either. */ |
| 1941 |
if (info->nocopyreloc) |
| 1942 |
{ |
| 1943 |
h->non_got_ref = 0; |
| 1944 |
return TRUE; |
| 1945 |
} |
| 1946 |
|
| 1947 |
htab = elf_i386_hash_table (info); |
| 1948 |
|
| 1949 |
/* If there aren't any dynamic relocs in read-only sections, then |
| 1950 |
we can keep the dynamic relocs and avoid the copy reloc. This |
| 1951 |
doesn't work on VxWorks, where we can not have dynamic relocations |
| 1952 |
(other than copy and jump slot relocations) in an executable. */ |
| 1953 |
if (ELIMINATE_COPY_RELOCS && !htab->is_vxworks) |
| 1954 |
{ |
| 1955 |
struct elf_i386_link_hash_entry * eh; |
| 1956 |
struct elf_dyn_relocs *p; |
| 1957 |
|
| 1958 |
eh = (struct elf_i386_link_hash_entry *) h; |
| 1959 |
for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| 1960 |
{ |
| 1961 |
s = p->sec->output_section; |
| 1962 |
if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| 1963 |
break; |
| 1964 |
} |
| 1965 |
|
| 1966 |
if (p == NULL) |
| 1967 |
{ |
| 1968 |
h->non_got_ref = 0; |
| 1969 |
return TRUE; |
| 1970 |
} |
| 1971 |
} |
| 1972 |
|
| 1973 |
if (h->size == 0) |
| 1974 |
{ |
| 1975 |
(*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), |
| 1976 |
h->root.root.string); |
| 1977 |
return TRUE; |
| 1978 |
} |
| 1979 |
|
| 1980 |
/* We must allocate the symbol in our .dynbss section, which will |
| 1981 |
become part of the .bss section of the executable. There will be |
| 1982 |
an entry for this symbol in the .dynsym section. The dynamic |
| 1983 |
object will contain position independent code, so all references |
| 1984 |
from the dynamic object to this symbol will go through the global |
| 1985 |
offset table. The dynamic linker will use the .dynsym entry to |
| 1986 |
determine the address it must put in the global offset table, so |
| 1987 |
both the dynamic object and the regular object will refer to the |
| 1988 |
same memory location for the variable. */ |
| 1989 |
|
| 1990 |
/* We must generate a R_386_COPY reloc to tell the dynamic linker to |
| 1991 |
copy the initial value out of the dynamic object and into the |
| 1992 |
runtime process image. */ |
| 1993 |
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) |
| 1994 |
{ |
| 1995 |
htab->srelbss->size += sizeof (Elf32_External_Rel); |
| 1996 |
h->needs_copy = 1; |
| 1997 |
} |
| 1998 |
|
| 1999 |
s = htab->sdynbss; |
| 2000 |
|
| 2001 |
return _bfd_elf_adjust_dynamic_copy (h, s); |
| 2002 |
} |
| 2003 |
|
| 2004 |
/* Allocate space in .plt, .got and associated reloc sections for |
| 2005 |
dynamic relocs. */ |
| 2006 |
|
| 2007 |
static bfd_boolean |
| 2008 |
elf_i386_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
| 2009 |
{ |
| 2010 |
struct bfd_link_info *info; |
| 2011 |
struct elf_i386_link_hash_table *htab; |
| 2012 |
struct elf_i386_link_hash_entry *eh; |
| 2013 |
struct elf_dyn_relocs *p; |
| 2014 |
|
| 2015 |
if (h->root.type == bfd_link_hash_indirect) |
| 2016 |
return TRUE; |
| 2017 |
|
| 2018 |
if (h->root.type == bfd_link_hash_warning) |
| 2019 |
/* When warning symbols are created, they **replace** the "real" |
| 2020 |
entry in the hash table, thus we never get to see the real |
| 2021 |
symbol in a hash traversal. So look at it now. */ |
| 2022 |
h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 2023 |
eh = (struct elf_i386_link_hash_entry *) h; |
| 2024 |
|
| 2025 |
info = (struct bfd_link_info *) inf; |
| 2026 |
htab = elf_i386_hash_table (info); |
| 2027 |
|
| 2028 |
/* Since STT_GNU_IFUNC symbol must go through PLT, we handle it |
| 2029 |
here if it is defined and referenced in a non-shared object. */ |
| 2030 |
if (h->type == STT_GNU_IFUNC |
| 2031 |
&& h->def_regular) |
| 2032 |
return _bfd_elf_allocate_ifunc_dyn_relocs (info, h, |
| 2033 |
&eh->dyn_relocs, |
| 2034 |
PLT_ENTRY_SIZE, 4); |
| 2035 |
else if (htab->elf.dynamic_sections_created |
| 2036 |
&& h->plt.refcount > 0) |
| 2037 |
{ |
| 2038 |
/* Make sure this symbol is output as a dynamic symbol. |
| 2039 |
Undefined weak syms won't yet be marked as dynamic. */ |
| 2040 |
if (h->dynindx == -1 |
| 2041 |
&& !h->forced_local) |
| 2042 |
{ |
| 2043 |
if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| 2044 |
return FALSE; |
| 2045 |
} |
| 2046 |
|
| 2047 |
if (info->shared |
| 2048 |
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) |
| 2049 |
{ |
| 2050 |
asection *s = htab->elf.splt; |
| 2051 |
|
| 2052 |
/* If this is the first .plt entry, make room for the special |
| 2053 |
first entry. */ |
| 2054 |
if (s->size == 0) |
| 2055 |
s->size += PLT_ENTRY_SIZE; |
| 2056 |
|
| 2057 |
h->plt.offset = s->size; |
| 2058 |
|
| 2059 |
/* If this symbol is not defined in a regular file, and we are |
| 2060 |
not generating a shared library, then set the symbol to this |
| 2061 |
location in the .plt. This is required to make function |
| 2062 |
pointers compare as equal between the normal executable and |
| 2063 |
the shared library. */ |
| 2064 |
if (! info->shared |
| 2065 |
&& !h->def_regular) |
| 2066 |
{ |
| 2067 |
h->root.u.def.section = s; |
| 2068 |
h->root.u.def.value = h->plt.offset; |
| 2069 |
} |
| 2070 |
|
| 2071 |
/* Make room for this entry. */ |
| 2072 |
s->size += PLT_ENTRY_SIZE; |
| 2073 |
|
| 2074 |
/* We also need to make an entry in the .got.plt section, which |
| 2075 |
will be placed in the .got section by the linker script. */ |
| 2076 |
htab->elf.sgotplt->size += 4; |
| 2077 |
|
| 2078 |
/* We also need to make an entry in the .rel.plt section. */ |
| 2079 |
htab->elf.srelplt->size += sizeof (Elf32_External_Rel); |
| 2080 |
htab->next_tls_desc_index++; |
| 2081 |
|
| 2082 |
if (htab->is_vxworks && !info->shared) |
| 2083 |
{ |
| 2084 |
/* VxWorks has a second set of relocations for each PLT entry |
| 2085 |
in executables. They go in a separate relocation section, |
| 2086 |
which is processed by the kernel loader. */ |
| 2087 |
|
| 2088 |
/* There are two relocations for the initial PLT entry: an |
| 2089 |
R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 4 and an |
| 2090 |
R_386_32 relocation for _GLOBAL_OFFSET_TABLE_ + 8. */ |
| 2091 |
|
| 2092 |
if (h->plt.offset == PLT_ENTRY_SIZE) |
| 2093 |
htab->srelplt2->size += (sizeof (Elf32_External_Rel) * 2); |
| 2094 |
|
| 2095 |
/* There are two extra relocations for each subsequent PLT entry: |
| 2096 |
an R_386_32 relocation for the GOT entry, and an R_386_32 |
| 2097 |
relocation for the PLT entry. */ |
| 2098 |
|
| 2099 |
htab->srelplt2->size += (sizeof (Elf32_External_Rel) * 2); |
| 2100 |
} |
| 2101 |
} |
| 2102 |
else |
| 2103 |
{ |
| 2104 |
h->plt.offset = (bfd_vma) -1; |
| 2105 |
h->needs_plt = 0; |
| 2106 |
} |
| 2107 |
} |
| 2108 |
else |
| 2109 |
{ |
| 2110 |
h->plt.offset = (bfd_vma) -1; |
| 2111 |
h->needs_plt = 0; |
| 2112 |
} |
| 2113 |
|
| 2114 |
eh->tlsdesc_got = (bfd_vma) -1; |
| 2115 |
|
| 2116 |
/* If R_386_TLS_{IE_32,IE,GOTIE} symbol is now local to the binary, |
| 2117 |
make it a R_386_TLS_LE_32 requiring no TLS entry. */ |
| 2118 |
if (h->got.refcount > 0 |
| 2119 |
&& !info->shared |
| 2120 |
&& h->dynindx == -1 |
| 2121 |
&& (elf_i386_hash_entry(h)->tls_type & GOT_TLS_IE)) |
| 2122 |
h->got.offset = (bfd_vma) -1; |
| 2123 |
else if (h->got.refcount > 0) |
| 2124 |
{ |
| 2125 |
asection *s; |
| 2126 |
bfd_boolean dyn; |
| 2127 |
int tls_type = elf_i386_hash_entry(h)->tls_type; |
| 2128 |
|
| 2129 |
/* Make sure this symbol is output as a dynamic symbol. |
| 2130 |
Undefined weak syms won't yet be marked as dynamic. */ |
| 2131 |
if (h->dynindx == -1 |
| 2132 |
&& !h->forced_local) |
| 2133 |
{ |
| 2134 |
if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| 2135 |
return FALSE; |
| 2136 |
} |
| 2137 |
|
| 2138 |
s = htab->elf.sgot; |
| 2139 |
if (GOT_TLS_GDESC_P (tls_type)) |
| 2140 |
{ |
| 2141 |
eh->tlsdesc_got = htab->elf.sgotplt->size |
| 2142 |
- elf_i386_compute_jump_table_size (htab); |
| 2143 |
htab->elf.sgotplt->size += 8; |
| 2144 |
h->got.offset = (bfd_vma) -2; |
| 2145 |
} |
| 2146 |
if (! GOT_TLS_GDESC_P (tls_type) |
| 2147 |
|| GOT_TLS_GD_P (tls_type)) |
| 2148 |
{ |
| 2149 |
h->got.offset = s->size; |
| 2150 |
s->size += 4; |
| 2151 |
/* R_386_TLS_GD needs 2 consecutive GOT slots. */ |
| 2152 |
if (GOT_TLS_GD_P (tls_type) || tls_type == GOT_TLS_IE_BOTH) |
| 2153 |
s->size += 4; |
| 2154 |
} |
| 2155 |
dyn = htab->elf.dynamic_sections_created; |
| 2156 |
/* R_386_TLS_IE_32 needs one dynamic relocation, |
| 2157 |
R_386_TLS_IE resp. R_386_TLS_GOTIE needs one dynamic relocation, |
| 2158 |
(but if both R_386_TLS_IE_32 and R_386_TLS_IE is present, we |
| 2159 |
need two), R_386_TLS_GD needs one if local symbol and two if |
| 2160 |
global. */ |
| 2161 |
if (tls_type == GOT_TLS_IE_BOTH) |
| 2162 |
htab->elf.srelgot->size += 2 * sizeof (Elf32_External_Rel); |
| 2163 |
else if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1) |
| 2164 |
|| (tls_type & GOT_TLS_IE)) |
| 2165 |
htab->elf.srelgot->size += sizeof (Elf32_External_Rel); |
| 2166 |
else if (GOT_TLS_GD_P (tls_type)) |
| 2167 |
htab->elf.srelgot->size += 2 * sizeof (Elf32_External_Rel); |
| 2168 |
else if (! GOT_TLS_GDESC_P (tls_type) |
| 2169 |
&& (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| 2170 |
|| h->root.type != bfd_link_hash_undefweak) |
| 2171 |
&& (info->shared |
| 2172 |
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) |
| 2173 |
htab->elf.srelgot->size += sizeof (Elf32_External_Rel); |
| 2174 |
if (GOT_TLS_GDESC_P (tls_type)) |
| 2175 |
htab->elf.srelplt->size += sizeof (Elf32_External_Rel); |
| 2176 |
} |
| 2177 |
else |
| 2178 |
h->got.offset = (bfd_vma) -1; |
| 2179 |
|
| 2180 |
if (eh->dyn_relocs == NULL) |
| 2181 |
return TRUE; |
| 2182 |
|
| 2183 |
/* In the shared -Bsymbolic case, discard space allocated for |
| 2184 |
dynamic pc-relative relocs against symbols which turn out to be |
| 2185 |
defined in regular objects. For the normal shared case, discard |
| 2186 |
space for pc-relative relocs that have become local due to symbol |
| 2187 |
visibility changes. */ |
| 2188 |
|
| 2189 |
if (info->shared) |
| 2190 |
{ |
| 2191 |
/* The only reloc that uses pc_count is R_386_PC32, which will |
| 2192 |
appear on a call or on something like ".long foo - .". We |
| 2193 |
want calls to protected symbols to resolve directly to the |
| 2194 |
function rather than going via the plt. If people want |
| 2195 |
function pointer comparisons to work as expected then they |
| 2196 |
should avoid writing assembly like ".long foo - .". */ |
| 2197 |
if (SYMBOL_CALLS_LOCAL (info, h)) |
| 2198 |
{ |
| 2199 |
struct elf_dyn_relocs **pp; |
| 2200 |
|
| 2201 |
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) |
| 2202 |
{ |
| 2203 |
p->count -= p->pc_count; |
| 2204 |
p->pc_count = 0; |
| 2205 |
if (p->count == 0) |
| 2206 |
*pp = p->next; |
| 2207 |
else |
| 2208 |
pp = &p->next; |
| 2209 |
} |
| 2210 |
} |
| 2211 |
|
| 2212 |
if (htab->is_vxworks) |
| 2213 |
{ |
| 2214 |
struct elf_dyn_relocs **pp; |
| 2215 |
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) |
| 2216 |
{ |
| 2217 |
if (strcmp (p->sec->output_section->name, ".tls_vars") == 0) |
| 2218 |
*pp = p->next; |
| 2219 |
else |
| 2220 |
pp = &p->next; |
| 2221 |
} |
| 2222 |
} |
| 2223 |
|
| 2224 |
/* Also discard relocs on undefined weak syms with non-default |
| 2225 |
visibility. */ |
| 2226 |
if (eh->dyn_relocs != NULL |
| 2227 |
&& h->root.type == bfd_link_hash_undefweak) |
| 2228 |
{ |
| 2229 |
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) |
| 2230 |
eh->dyn_relocs = NULL; |
| 2231 |
|
| 2232 |
/* Make sure undefined weak symbols are output as a dynamic |
| 2233 |
symbol in PIEs. */ |
| 2234 |
else if (h->dynindx == -1 |
| 2235 |
&& !h->forced_local) |
| 2236 |
{ |
| 2237 |
if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| 2238 |
return FALSE; |
| 2239 |
} |
| 2240 |
} |
| 2241 |
} |
| 2242 |
else if (ELIMINATE_COPY_RELOCS) |
| 2243 |
{ |
| 2244 |
/* For the non-shared case, discard space for relocs against |
| 2245 |
symbols which turn out to need copy relocs or are not |
| 2246 |
dynamic. */ |
| 2247 |
|
| 2248 |
if (!h->non_got_ref |
| 2249 |
&& ((h->def_dynamic |
| 2250 |
&& !h->def_regular) |
| 2251 |
|| (htab->elf.dynamic_sections_created |
| 2252 |
&& (h->root.type == bfd_link_hash_undefweak |
| 2253 |
|| h->root.type == bfd_link_hash_undefined)))) |
| 2254 |
{ |
| 2255 |
/* Make sure this symbol is output as a dynamic symbol. |
| 2256 |
Undefined weak syms won't yet be marked as dynamic. */ |
| 2257 |
if (h->dynindx == -1 |
| 2258 |
&& !h->forced_local) |
| 2259 |
{ |
| 2260 |
if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| 2261 |
return FALSE; |
| 2262 |
} |
| 2263 |
|
| 2264 |
/* If that succeeded, we know we'll be keeping all the |
| 2265 |
relocs. */ |
| 2266 |
if (h->dynindx != -1) |
| 2267 |
goto keep; |
| 2268 |
} |
| 2269 |
|
| 2270 |
eh->dyn_relocs = NULL; |
| 2271 |
|
| 2272 |
keep: ; |
| 2273 |
} |
| 2274 |
|
| 2275 |
/* Finally, allocate space. */ |
| 2276 |
for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| 2277 |
{ |
| 2278 |
asection *sreloc; |
| 2279 |
|
| 2280 |
sreloc = elf_section_data (p->sec)->sreloc; |
| 2281 |
|
| 2282 |
BFD_ASSERT (sreloc != NULL); |
| 2283 |
sreloc->size += p->count * sizeof (Elf32_External_Rel); |
| 2284 |
} |
| 2285 |
|
| 2286 |
return TRUE; |
| 2287 |
} |
| 2288 |
|
| 2289 |
/* Allocate space in .plt, .got and associated reloc sections for |
| 2290 |
local dynamic relocs. */ |
| 2291 |
|
| 2292 |
static bfd_boolean |
| 2293 |
elf_i386_allocate_local_dynrelocs (void **slot, void *inf) |
| 2294 |
{ |
| 2295 |
struct elf_link_hash_entry *h |
| 2296 |
= (struct elf_link_hash_entry *) *slot; |
| 2297 |
|
| 2298 |
if (h->type != STT_GNU_IFUNC |
| 2299 |
|| !h->def_regular |
| 2300 |
|| !h->ref_regular |
| 2301 |
|| !h->forced_local |
| 2302 |
|| h->root.type != bfd_link_hash_defined) |
| 2303 |
abort (); |
| 2304 |
|
| 2305 |
return elf_i386_allocate_dynrelocs (h, inf); |
| 2306 |
} |
| 2307 |
|
| 2308 |
/* Find any dynamic relocs that apply to read-only sections. */ |
| 2309 |
|
| 2310 |
static bfd_boolean |
| 2311 |
elf_i386_readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf) |
| 2312 |
{ |
| 2313 |
struct elf_i386_link_hash_entry *eh; |
| 2314 |
struct elf_dyn_relocs *p; |
| 2315 |
|
| 2316 |
if (h->root.type == bfd_link_hash_warning) |
| 2317 |
h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 2318 |
|
| 2319 |
eh = (struct elf_i386_link_hash_entry *) h; |
| 2320 |
for (p = eh->dyn_relocs; p != NULL; p = p->next) |
| 2321 |
{ |
| 2322 |
asection *s = p->sec->output_section; |
| 2323 |
|
| 2324 |
if (s != NULL && (s->flags & SEC_READONLY) != 0) |
| 2325 |
{ |
| 2326 |
struct bfd_link_info *info = (struct bfd_link_info *) inf; |
| 2327 |
|
| 2328 |
info->flags |= DF_TEXTREL; |
| 2329 |
|
| 2330 |
/* Not an error, just cut short the traversal. */ |
| 2331 |
return FALSE; |
| 2332 |
} |
| 2333 |
} |
| 2334 |
return TRUE; |
| 2335 |
} |
| 2336 |
|
| 2337 |
/* Set the sizes of the dynamic sections. */ |
| 2338 |
|
| 2339 |
static bfd_boolean |
| 2340 |
elf_i386_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
| 2341 |
struct bfd_link_info *info) |
| 2342 |
{ |
| 2343 |
struct elf_i386_link_hash_table *htab; |
| 2344 |
bfd *dynobj; |
| 2345 |
asection *s; |
| 2346 |
bfd_boolean relocs; |
| 2347 |
bfd *ibfd; |
| 2348 |
|
| 2349 |
htab = elf_i386_hash_table (info); |
| 2350 |
dynobj = htab->elf.dynobj; |
| 2351 |
if (dynobj == NULL) |
| 2352 |
abort (); |
| 2353 |
|
| 2354 |
if (htab->elf.dynamic_sections_created) |
| 2355 |
{ |
| 2356 |
/* Set the contents of the .interp section to the interpreter. */ |
| 2357 |
if (info->executable) |
| 2358 |
{ |
| 2359 |
s = bfd_get_section_by_name (dynobj, ".interp"); |
| 2360 |
if (s == NULL) |
| 2361 |
abort (); |
| 2362 |
s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
| 2363 |
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
| 2364 |
} |
| 2365 |
} |
| 2366 |
|
| 2367 |
/* Set up .got offsets for local syms, and space for local dynamic |
| 2368 |
relocs. */ |
| 2369 |
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) |
| 2370 |
{ |
| 2371 |
bfd_signed_vma *local_got; |
| 2372 |
bfd_signed_vma *end_local_got; |
| 2373 |
char *local_tls_type; |
| 2374 |
bfd_vma *local_tlsdesc_gotent; |
| 2375 |
bfd_size_type locsymcount; |
| 2376 |
Elf_Internal_Shdr *symtab_hdr; |
| 2377 |
asection *srel; |
| 2378 |
|
| 2379 |
if (! is_i386_elf (ibfd)) |
| 2380 |
continue; |
| 2381 |
|
| 2382 |
for (s = ibfd->sections; s != NULL; s = s->next) |
| 2383 |
{ |
| 2384 |
struct elf_dyn_relocs *p; |
| 2385 |
|
| 2386 |
for (p = ((struct elf_dyn_relocs *) |
| 2387 |
elf_section_data (s)->local_dynrel); |
| 2388 |
p != NULL; |
| 2389 |
p = p->next) |
| 2390 |
{ |
| 2391 |
if (!bfd_is_abs_section (p->sec) |
| 2392 |
&& bfd_is_abs_section (p->sec->output_section)) |
| 2393 |
{ |
| 2394 |
/* Input section has been discarded, either because |
| 2395 |
it is a copy of a linkonce section or due to |
| 2396 |
linker script /DISCARD/, so we'll be discarding |
| 2397 |
the relocs too. */ |
| 2398 |
} |
| 2399 |
else if (htab->is_vxworks |
| 2400 |
&& strcmp (p->sec->output_section->name, |
| 2401 |
".tls_vars") == 0) |
| 2402 |
{ |
| 2403 |
/* Relocations in vxworks .tls_vars sections are |
| 2404 |
handled specially by the loader. */ |
| 2405 |
} |
| 2406 |
else if (p->count != 0) |
| 2407 |
{ |
| 2408 |
srel = elf_section_data (p->sec)->sreloc; |
| 2409 |
srel->size += p->count * sizeof (Elf32_External_Rel); |
| 2410 |
if ((p->sec->output_section->flags & SEC_READONLY) != 0) |
| 2411 |
info->flags |= DF_TEXTREL; |
| 2412 |
} |
| 2413 |
} |
| 2414 |
} |
| 2415 |
|
| 2416 |
local_got = elf_local_got_refcounts (ibfd); |
| 2417 |
if (!local_got) |
| 2418 |
continue; |
| 2419 |
|
| 2420 |
symtab_hdr = &elf_symtab_hdr (ibfd); |
| 2421 |
locsymcount = symtab_hdr->sh_info; |
| 2422 |
end_local_got = local_got + locsymcount; |
| 2423 |
local_tls_type = elf_i386_local_got_tls_type (ibfd); |
| 2424 |
local_tlsdesc_gotent = elf_i386_local_tlsdesc_gotent (ibfd); |
| 2425 |
s = htab->elf.sgot; |
| 2426 |
srel = htab->elf.srelgot; |
| 2427 |
for (; local_got < end_local_got; |
| 2428 |
++local_got, ++local_tls_type, ++local_tlsdesc_gotent) |
| 2429 |
{ |
| 2430 |
*local_tlsdesc_gotent = (bfd_vma) -1; |
| 2431 |
if (*local_got > 0) |
| 2432 |
{ |
| 2433 |
if (GOT_TLS_GDESC_P (*local_tls_type)) |
| 2434 |
{ |
| 2435 |
*local_tlsdesc_gotent = htab->elf.sgotplt->size |
| 2436 |
- elf_i386_compute_jump_table_size (htab); |
| 2437 |
htab->elf.sgotplt->size += 8; |
| 2438 |
*local_got = (bfd_vma) -2; |
| 2439 |
} |
| 2440 |
if (! GOT_TLS_GDESC_P (*local_tls_type) |
| 2441 |
|| GOT_TLS_GD_P (*local_tls_type)) |
| 2442 |
{ |
| 2443 |
*local_got = s->size; |
| 2444 |
s->size += 4; |
| 2445 |
if (GOT_TLS_GD_P (*local_tls_type) |
| 2446 |
|| *local_tls_type == GOT_TLS_IE_BOTH) |
| 2447 |
s->size += 4; |
| 2448 |
} |
| 2449 |
if (info->shared |
| 2450 |
|| GOT_TLS_GD_ANY_P (*local_tls_type) |
| 2451 |
|| (*local_tls_type & GOT_TLS_IE)) |
| 2452 |
{ |
| 2453 |
if (*local_tls_type == GOT_TLS_IE_BOTH) |
| 2454 |
srel->size += 2 * sizeof (Elf32_External_Rel); |
| 2455 |
else if (GOT_TLS_GD_P (*local_tls_type) |
| 2456 |
|| ! GOT_TLS_GDESC_P (*local_tls_type)) |
| 2457 |
srel->size += sizeof (Elf32_External_Rel); |
| 2458 |
if (GOT_TLS_GDESC_P (*local_tls_type)) |
| 2459 |
htab->elf.srelplt->size += sizeof (Elf32_External_Rel); |
| 2460 |
} |
| 2461 |
} |
| 2462 |
else |
| 2463 |
*local_got = (bfd_vma) -1; |
| 2464 |
} |
| 2465 |
} |
| 2466 |
|
| 2467 |
if (htab->tls_ldm_got.refcount > 0) |
| 2468 |
{ |
| 2469 |
/* Allocate 2 got entries and 1 dynamic reloc for R_386_TLS_LDM |
| 2470 |
relocs. */ |
| 2471 |
htab->tls_ldm_got.offset = htab->elf.sgot->size; |
| 2472 |
htab->elf.sgot->size += 8; |
| 2473 |
htab->elf.srelgot->size += sizeof (Elf32_External_Rel); |
| 2474 |
} |
| 2475 |
else |
| 2476 |
htab->tls_ldm_got.offset = -1; |
| 2477 |
|
| 2478 |
/* Allocate global sym .plt and .got entries, and space for global |
| 2479 |
sym dynamic relocs. */ |
| 2480 |
elf_link_hash_traverse (&htab->elf, elf_i386_allocate_dynrelocs, info); |
| 2481 |
|
| 2482 |
/* Allocate .plt and .got entries, and space for local symbols. */ |
| 2483 |
htab_traverse (htab->loc_hash_table, |
| 2484 |
elf_i386_allocate_local_dynrelocs, |
| 2485 |
info); |
| 2486 |
|
| 2487 |
/* For every jump slot reserved in the sgotplt, reloc_count is |
| 2488 |
incremented. However, when we reserve space for TLS descriptors, |
| 2489 |
it's not incremented, so in order to compute the space reserved |
| 2490 |
for them, it suffices to multiply the reloc count by the jump |
| 2491 |
slot size. */ |
| 2492 |
if (htab->elf.srelplt) |
| 2493 |
htab->sgotplt_jump_table_size = htab->next_tls_desc_index * 4; |
| 2494 |
|
| 2495 |
/* We now have determined the sizes of the various dynamic sections. |
| 2496 |
Allocate memory for them. */ |
| 2497 |
relocs = FALSE; |
| 2498 |
for (s = dynobj->sections; s != NULL; s = s->next) |
| 2499 |
{ |
| 2500 |
bfd_boolean strip_section = TRUE; |
| 2501 |
|
| 2502 |
if ((s->flags & SEC_LINKER_CREATED) == 0) |
| 2503 |
continue; |
| 2504 |
|
| 2505 |
if (s == htab->elf.splt |
| 2506 |
|| s == htab->elf.sgot |
| 2507 |
|| s == htab->elf.sgotplt |
| 2508 |
|| s == htab->elf.iplt |
| 2509 |
|| s == htab->elf.igotplt |
| 2510 |
|| s == htab->sdynbss) |
| 2511 |
{ |
| 2512 |
/* Strip this section if we don't need it; see the |
| 2513 |
comment below. */ |
| 2514 |
/* We'd like to strip these sections if they aren't needed, but if |
| 2515 |
we've exported dynamic symbols from them we must leave them. |
| 2516 |
It's too late to tell BFD to get rid of the symbols. */ |
| 2517 |
|
| 2518 |
if (htab->elf.hplt != NULL) |
| 2519 |
strip_section = FALSE; |
| 2520 |
} |
| 2521 |
else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rel")) |
| 2522 |
{ |
| 2523 |
if (s->size != 0 |
| 2524 |
&& s != htab->elf.srelplt |
| 2525 |
&& s != htab->srelplt2) |
| 2526 |
relocs = TRUE; |
| 2527 |
|
| 2528 |
/* We use the reloc_count field as a counter if we need |
| 2529 |
to copy relocs into the output file. */ |
| 2530 |
s->reloc_count = 0; |
| 2531 |
} |
| 2532 |
else |
| 2533 |
{ |
| 2534 |
/* It's not one of our sections, so don't allocate space. */ |
| 2535 |
continue; |
| 2536 |
} |
| 2537 |
|
| 2538 |
if (s->size == 0) |
| 2539 |
{ |
| 2540 |
/* If we don't need this section, strip it from the |
| 2541 |
output file. This is mostly to handle .rel.bss and |
| 2542 |
.rel.plt. We must create both sections in |
| 2543 |
create_dynamic_sections, because they must be created |
| 2544 |
before the linker maps input sections to output |
| 2545 |
sections. The linker does that before |
| 2546 |
adjust_dynamic_symbol is called, and it is that |
| 2547 |
function which decides whether anything needs to go |
| 2548 |
into these sections. */ |
| 2549 |
if (strip_section) |
| 2550 |
s->flags |= SEC_EXCLUDE; |
| 2551 |
continue; |
| 2552 |
} |
| 2553 |
|
| 2554 |
if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| 2555 |
continue; |
| 2556 |
|
| 2557 |
/* Allocate memory for the section contents. We use bfd_zalloc |
| 2558 |
here in case unused entries are not reclaimed before the |
| 2559 |
section's contents are written out. This should not happen, |
| 2560 |
but this way if it does, we get a R_386_NONE reloc instead |
| 2561 |
of garbage. */ |
| 2562 |
s->contents = bfd_zalloc (dynobj, s->size); |
| 2563 |
if (s->contents == NULL) |
| 2564 |
return FALSE; |
| 2565 |
} |
| 2566 |
|
| 2567 |
if (htab->elf.dynamic_sections_created) |
| 2568 |
{ |
| 2569 |
/* Add some entries to the .dynamic section. We fill in the |
| 2570 |
values later, in elf_i386_finish_dynamic_sections, but we |
| 2571 |
must add the entries now so that we get the correct size for |
| 2572 |
the .dynamic section. The DT_DEBUG entry is filled in by the |
| 2573 |
dynamic linker and used by the debugger. */ |
| 2574 |
#define add_dynamic_entry(TAG, VAL) \ |
| 2575 |
_bfd_elf_add_dynamic_entry (info, TAG, VAL) |
| 2576 |
|
| 2577 |
if (info->executable) |
| 2578 |
{ |
| 2579 |
if (!add_dynamic_entry (DT_DEBUG, 0)) |
| 2580 |
return FALSE; |
| 2581 |
} |
| 2582 |
|
| 2583 |
if (htab->elf.splt->size != 0) |
| 2584 |
{ |
| 2585 |
if (!add_dynamic_entry (DT_PLTGOT, 0) |
| 2586 |
|| !add_dynamic_entry (DT_PLTRELSZ, 0) |
| 2587 |
|| !add_dynamic_entry (DT_PLTREL, DT_REL) |
| 2588 |
|| !add_dynamic_entry (DT_JMPREL, 0)) |
| 2589 |
return FALSE; |
| 2590 |
} |
| 2591 |
|
| 2592 |
if (relocs) |
| 2593 |
{ |
| 2594 |
if (!add_dynamic_entry (DT_REL, 0) |
| 2595 |
|| !add_dynamic_entry (DT_RELSZ, 0) |
| 2596 |
|| !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel))) |
| 2597 |
return FALSE; |
| 2598 |
|
| 2599 |
/* If any dynamic relocs apply to a read-only section, |
| 2600 |
then we need a DT_TEXTREL entry. */ |
| 2601 |
if ((info->flags & DF_TEXTREL) == 0) |
| 2602 |
elf_link_hash_traverse (&htab->elf, |
| 2603 |
elf_i386_readonly_dynrelocs, info); |
| 2604 |
|
| 2605 |
if ((info->flags & DF_TEXTREL) != 0) |
| 2606 |
{ |
| 2607 |
if (!add_dynamic_entry (DT_TEXTREL, 0)) |
| 2608 |
return FALSE; |
| 2609 |
} |
| 2610 |
} |
| 2611 |
if (htab->is_vxworks |
| 2612 |
&& !elf_vxworks_add_dynamic_entries (output_bfd, info)) |
| 2613 |
return FALSE; |
| 2614 |
} |
| 2615 |
#undef add_dynamic_entry |
| 2616 |
|
| 2617 |
return TRUE; |
| 2618 |
} |
| 2619 |
|
| 2620 |
static bfd_boolean |
| 2621 |
elf_i386_always_size_sections (bfd *output_bfd, |
| 2622 |
struct bfd_link_info *info) |
| 2623 |
{ |
| 2624 |
asection *tls_sec = elf_hash_table (info)->tls_sec; |
| 2625 |
|
| 2626 |
if (tls_sec) |
| 2627 |
{ |
| 2628 |
struct elf_link_hash_entry *tlsbase; |
| 2629 |
|
| 2630 |
tlsbase = elf_link_hash_lookup (elf_hash_table (info), |
| 2631 |
"_TLS_MODULE_BASE_", |
| 2632 |
FALSE, FALSE, FALSE); |
| 2633 |
|
| 2634 |
if (tlsbase && tlsbase->type == STT_TLS) |
| 2635 |
{ |
| 2636 |
struct bfd_link_hash_entry *bh = NULL; |
| 2637 |
const struct elf_backend_data *bed |
| 2638 |
= get_elf_backend_data (output_bfd); |
| 2639 |
|
| 2640 |
if (!(_bfd_generic_link_add_one_symbol |
| 2641 |
(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, |
| 2642 |
tls_sec, 0, NULL, FALSE, |
| 2643 |
bed->collect, &bh))) |
| 2644 |
return FALSE; |
| 2645 |
|
| 2646 |
elf_i386_hash_table (info)->tls_module_base = bh; |
| 2647 |
|
| 2648 |
tlsbase = (struct elf_link_hash_entry *)bh; |
| 2649 |
tlsbase->def_regular = 1; |
| 2650 |
tlsbase->other = STV_HIDDEN; |
| 2651 |
(*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); |
| 2652 |
} |
| 2653 |
} |
| 2654 |
|
| 2655 |
return TRUE; |
| 2656 |
} |
| 2657 |
|
| 2658 |
/* Set the correct type for an x86 ELF section. We do this by the |
| 2659 |
section name, which is a hack, but ought to work. */ |
| 2660 |
|
| 2661 |
static bfd_boolean |
| 2662 |
elf_i386_fake_sections (bfd *abfd ATTRIBUTE_UNUSED, |
| 2663 |
Elf_Internal_Shdr *hdr, |
| 2664 |
asection *sec) |
| 2665 |
{ |
| 2666 |
register const char *name; |
| 2667 |
|
| 2668 |
name = bfd_get_section_name (abfd, sec); |
| 2669 |
|
| 2670 |
/* This is an ugly, but unfortunately necessary hack that is |
| 2671 |
needed when producing EFI binaries on x86. It tells |
| 2672 |
elf.c:elf_fake_sections() not to consider ".reloc" as a section |
| 2673 |
containing ELF relocation info. We need this hack in order to |
| 2674 |
be able to generate ELF binaries that can be translated into |
| 2675 |
EFI applications (which are essentially COFF objects). Those |
| 2676 |
files contain a COFF ".reloc" section inside an ELFNN object, |
| 2677 |
which would normally cause BFD to segfault because it would |
| 2678 |
attempt to interpret this section as containing relocation |
| 2679 |
entries for section "oc". With this hack enabled, ".reloc" |
| 2680 |
will be treated as a normal data section, which will avoid the |
| 2681 |
segfault. However, you won't be able to create an ELFNN binary |
| 2682 |
with a section named "oc" that needs relocations, but that's |
| 2683 |
the kind of ugly side-effects you get when detecting section |
| 2684 |
types based on their names... In practice, this limitation is |
| 2685 |
unlikely to bite. */ |
| 2686 |
if (strcmp (name, ".reloc") == 0) |
| 2687 |
hdr->sh_type = SHT_PROGBITS; |
| 2688 |
|
| 2689 |
return TRUE; |
| 2690 |
} |
| 2691 |
|
| 2692 |
/* _TLS_MODULE_BASE_ needs to be treated especially when linking |
| 2693 |
executables. Rather than setting it to the beginning of the TLS |
| 2694 |
section, we have to set it to the end. This function may be called |
| 2695 |
multiple times, it is idempotent. */ |
| 2696 |
|
| 2697 |
static void |
| 2698 |
elf_i386_set_tls_module_base (struct bfd_link_info *info) |
| 2699 |
{ |
| 2700 |
struct bfd_link_hash_entry *base; |
| 2701 |
|
| 2702 |
if (!info->executable) |
| 2703 |
return; |
| 2704 |
|
| 2705 |
base = elf_i386_hash_table (info)->tls_module_base; |
| 2706 |
|
| 2707 |
if (!base) |
| 2708 |
return; |
| 2709 |
|
| 2710 |
base->u.def.value = elf_hash_table (info)->tls_size; |
| 2711 |
} |
| 2712 |
|
| 2713 |
/* Return the base VMA address which should be subtracted from real addresses |
| 2714 |
when resolving @dtpoff relocation. |
| 2715 |
This is PT_TLS segment p_vaddr. */ |
| 2716 |
|
| 2717 |
static bfd_vma |
| 2718 |
elf_i386_dtpoff_base (struct bfd_link_info *info) |
| 2719 |
{ |
| 2720 |
/* If tls_sec is NULL, we should have signalled an error already. */ |
| 2721 |
if (elf_hash_table (info)->tls_sec == NULL) |
| 2722 |
return 0; |
| 2723 |
return elf_hash_table (info)->tls_sec->vma; |
| 2724 |
} |
| 2725 |
|
| 2726 |
/* Return the relocation value for @tpoff relocation |
| 2727 |
if STT_TLS virtual address is ADDRESS. */ |
| 2728 |
|
| 2729 |
static bfd_vma |
| 2730 |
elf_i386_tpoff (struct bfd_link_info *info, bfd_vma address) |
| 2731 |
{ |
| 2732 |
struct elf_link_hash_table *htab = elf_hash_table (info); |
| 2733 |
|
| 2734 |
/* If tls_sec is NULL, we should have signalled an error already. */ |
| 2735 |
if (htab->tls_sec == NULL) |
| 2736 |
return 0; |
| 2737 |
return htab->tls_size + htab->tls_sec->vma - address; |
| 2738 |
} |
| 2739 |
|
| 2740 |
/* Relocate an i386 ELF section. */ |
| 2741 |
|
| 2742 |
static bfd_boolean |
| 2743 |
elf_i386_relocate_section (bfd *output_bfd, |
| 2744 |
struct bfd_link_info *info, |
| 2745 |
bfd *input_bfd, |
| 2746 |
asection *input_section, |
| 2747 |
bfd_byte *contents, |
| 2748 |
Elf_Internal_Rela *relocs, |
| 2749 |
Elf_Internal_Sym *local_syms, |
| 2750 |
asection **local_sections) |
| 2751 |
{ |
| 2752 |
struct elf_i386_link_hash_table *htab; |
| 2753 |
Elf_Internal_Shdr *symtab_hdr; |
| 2754 |
struct elf_link_hash_entry **sym_hashes; |
| 2755 |
bfd_vma *local_got_offsets; |
| 2756 |
bfd_vma *local_tlsdesc_gotents; |
| 2757 |
Elf_Internal_Rela *rel; |
| 2758 |
Elf_Internal_Rela *relend; |
| 2759 |
bfd_boolean is_vxworks_tls; |
| 2760 |
|
| 2761 |
BFD_ASSERT (is_i386_elf (input_bfd)); |
| 2762 |
|
| 2763 |
htab = elf_i386_hash_table (info); |
| 2764 |
symtab_hdr = &elf_symtab_hdr (input_bfd); |
| 2765 |
sym_hashes = elf_sym_hashes (input_bfd); |
| 2766 |
local_got_offsets = elf_local_got_offsets (input_bfd); |
| 2767 |
local_tlsdesc_gotents = elf_i386_local_tlsdesc_gotent (input_bfd); |
| 2768 |
/* We have to handle relocations in vxworks .tls_vars sections |
| 2769 |
specially, because the dynamic loader is 'weird'. */ |
| 2770 |
is_vxworks_tls = (htab->is_vxworks && info->shared |
| 2771 |
&& !strcmp (input_section->output_section->name, |
| 2772 |
".tls_vars")); |
| 2773 |
|
| 2774 |
elf_i386_set_tls_module_base (info); |
| 2775 |
|
| 2776 |
rel = relocs; |
| 2777 |
relend = relocs + input_section->reloc_count; |
| 2778 |
for (; rel < relend; rel++) |
| 2779 |
{ |
| 2780 |
unsigned int r_type; |
| 2781 |
reloc_howto_type *howto; |
| 2782 |
unsigned long r_symndx; |
| 2783 |
struct elf_link_hash_entry *h; |
| 2784 |
Elf_Internal_Sym *sym; |
| 2785 |
asection *sec; |
| 2786 |
bfd_vma off, offplt; |
| 2787 |
bfd_vma relocation; |
| 2788 |
bfd_boolean unresolved_reloc; |
| 2789 |
bfd_reloc_status_type r; |
| 2790 |
unsigned int indx; |
| 2791 |
int tls_type; |
| 2792 |
|
| 2793 |
r_type = ELF32_R_TYPE (rel->r_info); |
| 2794 |
if (r_type == R_386_GNU_VTINHERIT |
| 2795 |
|| r_type == R_386_GNU_VTENTRY) |
| 2796 |
continue; |
| 2797 |
|
| 2798 |
if ((indx = r_type) >= R_386_standard |
| 2799 |
&& ((indx = r_type - R_386_ext_offset) - R_386_standard |
| 2800 |
>= R_386_ext - R_386_standard) |
| 2801 |
&& ((indx = r_type - R_386_tls_offset) - R_386_ext |
| 2802 |
>= R_386_irelative - R_386_ext)) |
| 2803 |
{ |
| 2804 |
(*_bfd_error_handler) |
| 2805 |
(_("%B: unrecognized relocation (0x%x) in section `%A'"), |
| 2806 |
input_bfd, input_section, r_type); |
| 2807 |
bfd_set_error (bfd_error_bad_value); |
| 2808 |
return FALSE; |
| 2809 |
} |
| 2810 |
howto = elf_howto_table + indx; |
| 2811 |
|
| 2812 |
r_symndx = ELF32_R_SYM (rel->r_info); |
| 2813 |
h = NULL; |
| 2814 |
sym = NULL; |
| 2815 |
sec = NULL; |
| 2816 |
unresolved_reloc = FALSE; |
| 2817 |
if (r_symndx < symtab_hdr->sh_info) |
| 2818 |
{ |
| 2819 |
sym = local_syms + r_symndx; |
| 2820 |
sec = local_sections[r_symndx]; |
| 2821 |
relocation = (sec->output_section->vma |
| 2822 |
+ sec->output_offset |
| 2823 |
+ sym->st_value); |
| 2824 |
|
| 2825 |
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION |
| 2826 |
&& ((sec->flags & SEC_MERGE) != 0 |
| 2827 |
|| (info->relocatable |
| 2828 |
&& sec->output_offset != 0))) |
| 2829 |
{ |
| 2830 |
bfd_vma addend; |
| 2831 |
bfd_byte *where = contents + rel->r_offset; |
| 2832 |
|
| 2833 |
switch (howto->size) |
| 2834 |
{ |
| 2835 |
case 0: |
| 2836 |
addend = bfd_get_8 (input_bfd, where); |
| 2837 |
if (howto->pc_relative) |
| 2838 |
{ |
| 2839 |
addend = (addend ^ 0x80) - 0x80; |
| 2840 |
addend += 1; |
| 2841 |
} |
| 2842 |
break; |
| 2843 |
case 1: |
| 2844 |
addend = bfd_get_16 (input_bfd, where); |
| 2845 |
if (howto->pc_relative) |
| 2846 |
{ |
| 2847 |
addend = (addend ^ 0x8000) - 0x8000; |
| 2848 |
addend += 2; |
| 2849 |
} |
| 2850 |
break; |
| 2851 |
case 2: |
| 2852 |
addend = bfd_get_32 (input_bfd, where); |
| 2853 |
if (howto->pc_relative) |
| 2854 |
{ |
| 2855 |
addend = (addend ^ 0x80000000) - 0x80000000; |
| 2856 |
addend += 4; |
| 2857 |
} |
| 2858 |
break; |
| 2859 |
default: |
| 2860 |
abort (); |
| 2861 |
} |
| 2862 |
|
| 2863 |
if (info->relocatable) |
| 2864 |
addend += sec->output_offset; |
| 2865 |
else |
| 2866 |
{ |
| 2867 |
asection *msec = sec; |
| 2868 |
addend = _bfd_elf_rel_local_sym (output_bfd, sym, &msec, |
| 2869 |
addend); |
| 2870 |
addend -= relocation; |
| 2871 |
addend += msec->output_section->vma + msec->output_offset; |
| 2872 |
} |
| 2873 |
|
| 2874 |
switch (howto->size) |
| 2875 |
{ |
| 2876 |
case 0: |
| 2877 |
/* FIXME: overflow checks. */ |
| 2878 |
if (howto->pc_relative) |
| 2879 |
addend -= 1; |
| 2880 |
bfd_put_8 (input_bfd, addend, where); |
| 2881 |
break; |
| 2882 |
case 1: |
| 2883 |
if (howto->pc_relative) |
| 2884 |
addend -= 2; |
| 2885 |
bfd_put_16 (input_bfd, addend, where); |
| 2886 |
break; |
| 2887 |
case 2: |
| 2888 |
if (howto->pc_relative) |
| 2889 |
addend -= 4; |
| 2890 |
bfd_put_32 (input_bfd, addend, where); |
| 2891 |
break; |
| 2892 |
} |
| 2893 |
} |
| 2894 |
else if (!info->relocatable |
| 2895 |
&& ELF32_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) |
| 2896 |
{ |
| 2897 |
/* Relocate against local STT_GNU_IFUNC symbol. */ |
| 2898 |
h = elf_i386_get_local_sym_hash (htab, input_bfd, |
| 2899 |
rel, FALSE); |
| 2900 |
if (h == NULL) |
| 2901 |
abort (); |
| 2902 |
|
| 2903 |
/* Set STT_GNU_IFUNC symbol value. */ |
| 2904 |
h->root.u.def.value = sym->st_value; |
| 2905 |
h->root.u.def.section = sec; |
| 2906 |
} |
| 2907 |
} |
| 2908 |
else |
| 2909 |
{ |
| 2910 |
bfd_boolean warned; |
| 2911 |
|
| 2912 |
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| 2913 |
r_symndx, symtab_hdr, sym_hashes, |
| 2914 |
h, sec, relocation, |
| 2915 |
unresolved_reloc, warned); |
| 2916 |
} |
| 2917 |
|
| 2918 |
if (sec != NULL && elf_discarded_section (sec)) |
| 2919 |
{ |
| 2920 |
/* For relocs against symbols from removed linkonce sections, |
| 2921 |
or sections discarded by a linker script, we just want the |
| 2922 |
section contents zeroed. Avoid any special processing. */ |
| 2923 |
_bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); |
| 2924 |
rel->r_info = 0; |
| 2925 |
rel->r_addend = 0; |
| 2926 |
continue; |
| 2927 |
} |
| 2928 |
|
| 2929 |
if (info->relocatable) |
| 2930 |
continue; |
| 2931 |
|
| 2932 |
/* Since STT_GNU_IFUNC symbol must go through PLT, we handle |
| 2933 |
it here if it is defined in a non-shared object. */ |
| 2934 |
if (h != NULL |
| 2935 |
&& h->type == STT_GNU_IFUNC |
| 2936 |
&& h->def_regular) |
| 2937 |
{ |
| 2938 |
asection *plt, *gotplt, *base_got; |
| 2939 |
bfd_vma plt_index; |
| 2940 |
const char *name; |
| 2941 |
|
| 2942 |
if ((input_section->flags & SEC_ALLOC) == 0 |
| 2943 |
|| h->plt.offset == (bfd_vma) -1) |
| 2944 |
abort (); |
| 2945 |
|
| 2946 |
/* STT_GNU_IFUNC symbol must go through PLT. */ |
| 2947 |
if (htab->elf.splt != NULL) |
| 2948 |
{ |
| 2949 |
plt = htab->elf.splt; |
| 2950 |
gotplt = htab->elf.sgotplt; |
| 2951 |
} |
| 2952 |
else |
| 2953 |
{ |
| 2954 |
plt = htab->elf.iplt; |
| 2955 |
gotplt = htab->elf.igotplt; |
| 2956 |
} |
| 2957 |
|
| 2958 |
relocation = (plt->output_section->vma |
| 2959 |
+ plt->output_offset + h->plt.offset); |
| 2960 |
|
| 2961 |
switch (r_type) |
| 2962 |
{ |
| 2963 |
default: |
| 2964 |
if (h->root.root.string) |
| 2965 |
name = h->root.root.string; |
| 2966 |
else |
| 2967 |
name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, |
| 2968 |
NULL); |
| 2969 |
(*_bfd_error_handler) |
| 2970 |
(_("%B: relocation %s against STT_GNU_IFUNC " |
| 2971 |
"symbol `%s' isn't handled by %s"), input_bfd, |
| 2972 |
elf_howto_table[r_type].name, |
| 2973 |
name, __FUNCTION__); |
| 2974 |
bfd_set_error (bfd_error_bad_value); |
| 2975 |
return FALSE; |
| 2976 |
|
| 2977 |
case R_386_32: |
| 2978 |
/* Generate dynamic relcoation only when there is a |
| 2979 |
non-GOF reference in a shared object. */ |
| 2980 |
if (info->shared && h->non_got_ref) |
| 2981 |
{ |
| 2982 |
Elf_Internal_Rela outrel; |
| 2983 |
bfd_byte *loc; |
| 2984 |
asection *sreloc; |
| 2985 |
bfd_vma offset; |
| 2986 |
|
| 2987 |
/* Need a dynamic relocation to get the real function |
| 2988 |
adddress. */ |
| 2989 |
offset = _bfd_elf_section_offset (output_bfd, |
| 2990 |
info, |
| 2991 |
input_section, |
| 2992 |
rel->r_offset); |
| 2993 |
if (offset == (bfd_vma) -1 |
| 2994 |
|| offset == (bfd_vma) -2) |
| 2995 |
abort (); |
| 2996 |
|
| 2997 |
outrel.r_offset = (input_section->output_section->vma |
| 2998 |
+ input_section->output_offset |
| 2999 |
+ offset); |
| 3000 |
|
| 3001 |
if (h->dynindx == -1 |
| 3002 |
|| h->forced_local |
| 3003 |
|| info->executable) |
| 3004 |
{ |
| 3005 |
/* This symbol is resolved locally. */ |
| 3006 |
outrel.r_info = ELF32_R_INFO (0, R_386_IRELATIVE); |
| 3007 |
bfd_put_32 (output_bfd, |
| 3008 |
(h->root.u.def.value |
| 3009 |
+ h->root.u.def.section->output_section->vma |
| 3010 |
+ h->root.u.def.section->output_offset), |
| 3011 |
contents + offset); |
| 3012 |
} |
| 3013 |
else |
| 3014 |
outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); |
| 3015 |
|
| 3016 |
sreloc = htab->elf.irelifunc; |
| 3017 |
loc = sreloc->contents; |
| 3018 |
loc += (sreloc->reloc_count++ |
| 3019 |
* sizeof (Elf32_External_Rel)); |
| 3020 |
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| 3021 |
|
| 3022 |
/* If this reloc is against an external symbol, we |
| 3023 |
do not want to fiddle with the addend. Otherwise, |
| 3024 |
we need to include the symbol value so that it |
| 3025 |
becomes an addend for the dynamic reloc. For an |
| 3026 |
internal symbol, we have updated addend. */ |
| 3027 |
continue; |
| 3028 |
} |
| 3029 |
|
| 3030 |
case R_386_PC32: |
| 3031 |
case R_386_PLT32: |
| 3032 |
goto do_relocation; |
| 3033 |
|
| 3034 |
case R_386_GOT32: |
| 3035 |
base_got = htab->elf.sgot; |
| 3036 |
off = h->got.offset; |
| 3037 |
|
| 3038 |
if (base_got == NULL) |
| 3039 |
abort (); |
| 3040 |
|
| 3041 |
if (off == (bfd_vma) -1) |
| 3042 |
{ |
| 3043 |
/* We can't use h->got.offset here to save state, or |
| 3044 |
even just remember the offset, as finish_dynamic_symbol |
| 3045 |
would use that as offset into .got. */ |
| 3046 |
|
| 3047 |
if (htab->elf.splt != NULL) |
| 3048 |
{ |
| 3049 |
plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1; |
| 3050 |
off = (plt_index + 3) * 4; |
| 3051 |
base_got = htab->elf.sgotplt; |
| 3052 |
} |
| 3053 |
else |
| 3054 |
{ |
| 3055 |
plt_index = h->plt.offset / PLT_ENTRY_SIZE; |
| 3056 |
off = plt_index * 4; |
| 3057 |
base_got = htab->elf.igotplt; |
| 3058 |
} |
| 3059 |
|
| 3060 |
if (h->dynindx == -1 |
| 3061 |
|| h->forced_local |
| 3062 |
|| info->symbolic) |
| 3063 |
{ |
| 3064 |
/* This references the local defitionion. We must |
| 3065 |
initialize this entry in the global offset table. |
| 3066 |
Since the offset must always be a multiple of 8, |
| 3067 |
we use the least significant bit to record |
| 3068 |
whether we have initialized it already. |
| 3069 |
|
| 3070 |
When doing a dynamic link, we create a .rela.got |
| 3071 |
relocation entry to initialize the value. This |
| 3072 |
is done in the finish_dynamic_symbol routine. */ |
| 3073 |
if ((off & 1) != 0) |
| 3074 |
off &= ~1; |
| 3075 |
else |
| 3076 |
{ |
| 3077 |
bfd_put_32 (output_bfd, relocation, |
| 3078 |
base_got->contents + off); |
| 3079 |
h->got.offset |= 1; |
| 3080 |
} |
| 3081 |
} |
| 3082 |
|
| 3083 |
relocation = off; |
| 3084 |
|
| 3085 |
/* Adjust for static executables. */ |
| 3086 |
if (htab->elf.splt == NULL) |
| 3087 |
relocation += gotplt->output_offset; |
| 3088 |
} |
| 3089 |
else |
| 3090 |
{ |
| 3091 |
relocation = (base_got->output_section->vma |
| 3092 |
+ base_got->output_offset + off |
| 3093 |
- gotplt->output_section->vma |
| 3094 |
- gotplt->output_offset); |
| 3095 |
/* Adjust for static executables. */ |
| 3096 |
if (htab->elf.splt == NULL) |
| 3097 |
relocation += gotplt->output_offset; |
| 3098 |
} |
| 3099 |
|
| 3100 |
goto do_relocation; |
| 3101 |
|
| 3102 |
case R_386_GOTOFF: |
| 3103 |
relocation -= (gotplt->output_section->vma |
| 3104 |
+ gotplt->output_offset); |
| 3105 |
goto do_relocation; |
| 3106 |
} |
| 3107 |
} |
| 3108 |
|
| 3109 |
switch (r_type) |
| 3110 |
{ |
| 3111 |
case R_386_GOT32: |
| 3112 |
/* Relocation is to the entry for this symbol in the global |
| 3113 |
offset table. */ |
| 3114 |
if (htab->elf.sgot == NULL) |
| 3115 |
abort (); |
| 3116 |
|
| 3117 |
if (h != NULL) |
| 3118 |
{ |
| 3119 |
bfd_boolean dyn; |
| 3120 |
|
| 3121 |
off = h->got.offset; |
| 3122 |
dyn = htab->elf.dynamic_sections_created; |
| 3123 |
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) |
| 3124 |
|| (info->shared |
| 3125 |
&& SYMBOL_REFERENCES_LOCAL (info, h)) |
| 3126 |
|| (ELF_ST_VISIBILITY (h->other) |
| 3127 |
&& h->root.type == bfd_link_hash_undefweak)) |
| 3128 |
{ |
| 3129 |
/* This is actually a static link, or it is a |
| 3130 |
-Bsymbolic link and the symbol is defined |
| 3131 |
locally, or the symbol was forced to be local |
| 3132 |
because of a version file. We must initialize |
| 3133 |
this entry in the global offset table. Since the |
| 3134 |
offset must always be a multiple of 4, we use the |
| 3135 |
least significant bit to record whether we have |
| 3136 |
initialized it already. |
| 3137 |
|
| 3138 |
When doing a dynamic link, we create a .rel.got |
| 3139 |
relocation entry to initialize the value. This |
| 3140 |
is done in the finish_dynamic_symbol routine. */ |
| 3141 |
if ((off & 1) != 0) |
| 3142 |
off &= ~1; |
| 3143 |
else |
| 3144 |
{ |
| 3145 |
bfd_put_32 (output_bfd, relocation, |
| 3146 |
htab->elf.sgot->contents + off); |
| 3147 |
h->got.offset |= 1; |
| 3148 |
} |
| 3149 |
} |
| 3150 |
else |
| 3151 |
unresolved_reloc = FALSE; |
| 3152 |
} |
| 3153 |
else |
| 3154 |
{ |
| 3155 |
if (local_got_offsets == NULL) |
| 3156 |
abort (); |
| 3157 |
|
| 3158 |
off = local_got_offsets[r_symndx]; |
| 3159 |
|
| 3160 |
/* The offset must always be a multiple of 4. We use |
| 3161 |
the least significant bit to record whether we have |
| 3162 |
already generated the necessary reloc. */ |
| 3163 |
if ((off & 1) != 0) |
| 3164 |
off &= ~1; |
| 3165 |
else |
| 3166 |
{ |
| 3167 |
bfd_put_32 (output_bfd, relocation, |
| 3168 |
htab->elf.sgot->contents + off); |
| 3169 |
|
| 3170 |
if (info->shared) |
| 3171 |
{ |
| 3172 |
asection *s; |
| 3173 |
Elf_Internal_Rela outrel; |
| 3174 |
bfd_byte *loc; |
| 3175 |
|
| 3176 |
s = htab->elf.srelgot; |
| 3177 |
if (s == NULL) |
| 3178 |
abort (); |
| 3179 |
|
| 3180 |
outrel.r_offset = (htab->elf.sgot->output_section->vma |
| 3181 |
+ htab->elf.sgot->output_offset |
| 3182 |
+ off); |
| 3183 |
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); |
| 3184 |
loc = s->contents; |
| 3185 |
loc += s->reloc_count++ * sizeof (Elf32_External_Rel); |
| 3186 |
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| 3187 |
} |
| 3188 |
|
| 3189 |
local_got_offsets[r_symndx] |= 1; |
| 3190 |
} |
| 3191 |
} |
| 3192 |
|
| 3193 |
if (off >= (bfd_vma) -2) |
| 3194 |
abort (); |
| 3195 |
|
| 3196 |
relocation = htab->elf.sgot->output_section->vma |
| 3197 |
+ htab->elf.sgot->output_offset + off |
| 3198 |
- htab->elf.sgotplt->output_section->vma |
| 3199 |
- htab->elf.sgotplt->output_offset; |
| 3200 |
break; |
| 3201 |
|
| 3202 |
case R_386_GOTOFF: |
| 3203 |
/* Relocation is relative to the start of the global offset |
| 3204 |
table. */ |
| 3205 |
|
| 3206 |
/* Check to make sure it isn't a protected function symbol |
| 3207 |
for shared library since it may not be local when used |
| 3208 |
as function address. We also need to make sure that a |
| 3209 |
symbol is defined locally. */ |
| 3210 |
if (info->shared && h) |
| 3211 |
{ |
| 3212 |
if (!h->def_regular) |
| 3213 |
{ |
| 3214 |
const char *v; |
| 3215 |
|
| 3216 |
switch (ELF_ST_VISIBILITY (h->other)) |
| 3217 |
{ |
| 3218 |
case STV_HIDDEN: |
| 3219 |
v = _("hidden symbol"); |
| 3220 |
break; |
| 3221 |
case STV_INTERNAL: |
| 3222 |
v = _("internal symbol"); |
| 3223 |
break; |
| 3224 |
case STV_PROTECTED: |
| 3225 |
v = _("protected symbol"); |
| 3226 |
break; |
| 3227 |
default: |
| 3228 |
v = _("symbol"); |
| 3229 |
break; |
| 3230 |
} |
| 3231 |
|
| 3232 |
(*_bfd_error_handler) |
| 3233 |
(_("%B: relocation R_386_GOTOFF against undefined %s `%s' can not be used when making a shared object"), |
| 3234 |
input_bfd, v, h->root.root.string); |
| 3235 |
bfd_set_error (bfd_error_bad_value); |
| 3236 |
return FALSE; |
| 3237 |
} |
| 3238 |
else if (!info->executable |
| 3239 |
&& h->type == STT_FUNC |
| 3240 |
&& ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) |
| 3241 |
{ |
| 3242 |
(*_bfd_error_handler) |
| 3243 |
(_("%B: relocation R_386_GOTOFF against protected function `%s' can not be used when making a shared object"), |
| 3244 |
input_bfd, h->root.root.string); |
| 3245 |
bfd_set_error (bfd_error_bad_value); |
| 3246 |
return FALSE; |
| 3247 |
} |
| 3248 |
} |
| 3249 |
|
| 3250 |
/* Note that sgot is not involved in this |
| 3251 |
calculation. We always want the start of .got.plt. If we |
| 3252 |
defined _GLOBAL_OFFSET_TABLE_ in a different way, as is |
| 3253 |
permitted by the ABI, we might have to change this |
| 3254 |
calculation. */ |
| 3255 |
relocation -= htab->elf.sgotplt->output_section->vma |
| 3256 |
+ htab->elf.sgotplt->output_offset; |
| 3257 |
break; |
| 3258 |
|
| 3259 |
case R_386_GOTPC: |
| 3260 |
/* Use global offset table as symbol value. */ |
| 3261 |
relocation = htab->elf.sgotplt->output_section->vma |
| 3262 |
+ htab->elf.sgotplt->output_offset; |
| 3263 |
unresolved_reloc = FALSE; |
| 3264 |
break; |
| 3265 |
|
| 3266 |
case R_386_PLT32: |
| 3267 |
/* Relocation is to the entry for this symbol in the |
| 3268 |
procedure linkage table. */ |
| 3269 |
|
| 3270 |
/* Resolve a PLT32 reloc against a local symbol directly, |
| 3271 |
without using the procedure linkage table. */ |
| 3272 |
if (h == NULL) |
| 3273 |
break; |
| 3274 |
|
| 3275 |
if (h->plt.offset == (bfd_vma) -1 |
| 3276 |
|| htab->elf.splt == NULL) |
| 3277 |
{ |
| 3278 |
/* We didn't make a PLT entry for this symbol. This |
| 3279 |
happens when statically linking PIC code, or when |
| 3280 |
using -Bsymbolic. */ |
| 3281 |
break; |
| 3282 |
} |
| 3283 |
|
| 3284 |
relocation = (htab->elf.splt->output_section->vma |
| 3285 |
+ htab->elf.splt->output_offset |
| 3286 |
+ h->plt.offset); |
| 3287 |
unresolved_reloc = FALSE; |
| 3288 |
break; |
| 3289 |
|
| 3290 |
case R_386_32: |
| 3291 |
case R_386_PC32: |
| 3292 |
if ((input_section->flags & SEC_ALLOC) == 0 |
| 3293 |
|| is_vxworks_tls) |
| 3294 |
break; |
| 3295 |
|
| 3296 |
if ((info->shared |
| 3297 |
&& (h == NULL |
| 3298 |
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT |
| 3299 |
|| h->root.type != bfd_link_hash_undefweak) |
| 3300 |
&& (r_type != R_386_PC32 |
| 3301 |
|| !SYMBOL_CALLS_LOCAL (info, h))) |
| 3302 |
|| (ELIMINATE_COPY_RELOCS |
| 3303 |
&& !info->shared |
| 3304 |
&& h != NULL |
| 3305 |
&& h->dynindx != -1 |
| 3306 |
&& !h->non_got_ref |
| 3307 |
&& ((h->def_dynamic |
| 3308 |
&& !h->def_regular) |
| 3309 |
|| h->root.type == bfd_link_hash_undefweak |
| 3310 |
|| h->root.type == bfd_link_hash_undefined))) |
| 3311 |
{ |
| 3312 |
Elf_Internal_Rela outrel; |
| 3313 |
bfd_byte *loc; |
| 3314 |
bfd_boolean skip, relocate; |
| 3315 |
asection *sreloc; |
| 3316 |
|
| 3317 |
/* When generating a shared object, these relocations |
| 3318 |
are copied into the output file to be resolved at run |
| 3319 |
time. */ |
| 3320 |
|
| 3321 |
skip = FALSE; |
| 3322 |
relocate = FALSE; |
| 3323 |
|
| 3324 |
outrel.r_offset = |
| 3325 |
_bfd_elf_section_offset (output_bfd, info, input_section, |
| 3326 |
rel->r_offset); |
| 3327 |
if (outrel.r_offset == (bfd_vma) -1) |
| 3328 |
skip = TRUE; |
| 3329 |
else if (outrel.r_offset == (bfd_vma) -2) |
| 3330 |
skip = TRUE, relocate = TRUE; |
| 3331 |
outrel.r_offset += (input_section->output_section->vma |
| 3332 |
+ input_section->output_offset); |
| 3333 |
|
| 3334 |
if (skip) |
| 3335 |
memset (&outrel, 0, sizeof outrel); |
| 3336 |
else if (h != NULL |
| 3337 |
&& h->dynindx != -1 |
| 3338 |
&& (r_type == R_386_PC32 |
| 3339 |
|| !info->shared |
| 3340 |
|| !SYMBOLIC_BIND (info, h) |
| 3341 |
|| !h->def_regular)) |
| 3342 |
outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); |
| 3343 |
else |
| 3344 |
{ |
| 3345 |
/* This symbol is local, or marked to become local. */ |
| 3346 |
relocate = TRUE; |
| 3347 |
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); |
| 3348 |
} |
| 3349 |
|
| 3350 |
sreloc = elf_section_data (input_section)->sreloc; |
| 3351 |
|
| 3352 |
BFD_ASSERT (sreloc != NULL && sreloc->contents != NULL); |
| 3353 |
|
| 3354 |
loc = sreloc->contents; |
| 3355 |
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel); |
| 3356 |
|
| 3357 |
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| 3358 |
|
| 3359 |
/* If this reloc is against an external symbol, we do |
| 3360 |
not want to fiddle with the addend. Otherwise, we |
| 3361 |
need to include the symbol value so that it becomes |
| 3362 |
an addend for the dynamic reloc. */ |
| 3363 |
if (! relocate) |
| 3364 |
continue; |
| 3365 |
} |
| 3366 |
break; |
| 3367 |
|
| 3368 |
case R_386_TLS_IE: |
| 3369 |
if (info->shared) |
| 3370 |
{ |
| 3371 |
Elf_Internal_Rela outrel; |
| 3372 |
bfd_byte *loc; |
| 3373 |
asection *sreloc; |
| 3374 |
|
| 3375 |
outrel.r_offset = rel->r_offset |
| 3376 |
+ input_section->output_section->vma |
| 3377 |
+ input_section->output_offset; |
| 3378 |
outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE); |
| 3379 |
sreloc = elf_section_data (input_section)->sreloc; |
| 3380 |
if (sreloc == NULL) |
| 3381 |
abort (); |
| 3382 |
loc = sreloc->contents; |
| 3383 |
loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rel); |
| 3384 |
bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc); |
| 3385 |
} |
| 3386 |
/* Fall through */ |
| 3387 |
|
| 3388 |
case R_386_TLS_GD: |
| 3389 |
case R_386_TLS_GOTDESC: |
| 3390 |
case R_386_TLS_DESC_CALL: |
| 3391 |
case R_386_TLS_IE_32: |
| 3392 |
case R_386_TLS_GOTIE: |
| 3393 |
tls_type = GOT_UNKNOWN; |
| 3394 |
if (h == NULL && local_got_offsets) |
| 3395 |
tls_type = elf_i386_local_got_tls_type (input_bfd) [r_symndx]; |
| 3396 |
else if (h != NULL) |
| 3397 |
tls_type = elf_i386_hash_entry(h)->tls_type; |
| 3398 |
if (tls_type == GOT_TLS_IE) |
| 3399 |
tls_type = GOT_TLS_IE_NEG; |
| 3400 |
|
| 3401 |
if (! elf_i386_tls_transition (info, input_bfd, |
| 3402 |
input_section, contents, |
| 3403 |
symtab_hdr, sym_hashes, |
| 3404 |
&r_type, tls_type, rel, |
| 3405 |
relend, h, r_symndx)) |
| 3406 |
return FALSE; |
| 3407 |
|
| 3408 |
if (r_type == R_386_TLS_LE_32) |
| 3409 |
{ |
| 3410 |
BFD_ASSERT (! unresolved_reloc); |
| 3411 |
if (ELF32_R_TYPE (rel->r_info) == R_386_TLS_GD) |
| 3412 |
{ |
| 3413 |
unsigned int type; |
| 3414 |
bfd_vma roff; |
| 3415 |
|
| 3416 |
/* GD->LE transition. */ |
| 3417 |
type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2); |
| 3418 |
if (type == 0x04) |
| 3419 |
{ |
| 3420 |
/* leal foo(,%reg,1), %eax; call ___tls_get_addr |
| 3421 |
Change it into: |
| 3422 |
movl %gs:0, %eax; subl $foo@tpoff, %eax |
| 3423 |
(6 byte form of subl). */ |
| 3424 |
memcpy (contents + rel->r_offset - 3, |
| 3425 |
"\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12); |
| 3426 |
roff = rel->r_offset + 5; |
| 3427 |
} |
| 3428 |
else |
| 3429 |
{ |
| 3430 |
/* leal foo(%reg), %eax; call ___tls_get_addr; nop |
| 3431 |
Change it into: |
| 3432 |
movl %gs:0, %eax; subl $foo@tpoff, %eax |
| 3433 |
(6 byte form of subl). */ |
| 3434 |
memcpy (contents + rel->r_offset - 2, |
| 3435 |
"\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12); |
| 3436 |
roff = rel->r_offset + 6; | |