Develop and Download Open Source Software

Browse Subversion Repository

Contents of /trunk/bfd/elf32-m68k.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 21 - (show annotations) (download) (as text)
Mon Jul 27 20:34:36 2009 UTC (14 years, 10 months ago) by monamour
File MIME type: text/x-csrc
File size: 138832 byte(s)
Update to HEAD.
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf/m68k.h"
28 #include "opcode/m68k.h"
29
30 static reloc_howto_type *reloc_type_lookup
31 PARAMS ((bfd *, bfd_reloc_code_real_type));
32 static void rtype_to_howto
33 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
34 static struct bfd_hash_entry *elf_m68k_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_m68k_link_hash_table_create
37 PARAMS ((bfd *));
38 static bfd_boolean elf_m68k_check_relocs
39 PARAMS ((bfd *, struct bfd_link_info *, asection *,
40 const Elf_Internal_Rela *));
41 static bfd_boolean elf_m68k_adjust_dynamic_symbol
42 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
43 static bfd_boolean elf_m68k_size_dynamic_sections
44 PARAMS ((bfd *, struct bfd_link_info *));
45 static bfd_boolean elf_m68k_discard_copies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47 static bfd_boolean elf_m68k_relocate_section
48 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
49 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
50 static bfd_boolean elf_m68k_finish_dynamic_symbol
51 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
52 Elf_Internal_Sym *));
53 static bfd_boolean elf_m68k_finish_dynamic_sections
54 PARAMS ((bfd *, struct bfd_link_info *));
55
56 static bfd_boolean elf32_m68k_set_private_flags
57 PARAMS ((bfd *, flagword));
58 static bfd_boolean elf32_m68k_merge_private_bfd_data
59 PARAMS ((bfd *, bfd *));
60 static bfd_boolean elf32_m68k_print_private_bfd_data
61 PARAMS ((bfd *, PTR));
62 static enum elf_reloc_type_class elf32_m68k_reloc_type_class
63 PARAMS ((const Elf_Internal_Rela *));
64
65 static reloc_howto_type howto_table[] = {
66 HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
67 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
68 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
69 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
70 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
71 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
72 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
73 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
74 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
75 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
76 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
77 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
78 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
79 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
80 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
81 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
82 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
83 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
84 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
85 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
86 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
87 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
88 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
89 /* GNU extension to record C++ vtable hierarchy. */
90 HOWTO (R_68K_GNU_VTINHERIT, /* type */
91 0, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 0, /* bitsize */
94 FALSE, /* pc_relative */
95 0, /* bitpos */
96 complain_overflow_dont, /* complain_on_overflow */
97 NULL, /* special_function */
98 "R_68K_GNU_VTINHERIT", /* name */
99 FALSE, /* partial_inplace */
100 0, /* src_mask */
101 0, /* dst_mask */
102 FALSE),
103 /* GNU extension to record C++ vtable member usage. */
104 HOWTO (R_68K_GNU_VTENTRY, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 0, /* bitsize */
108 FALSE, /* pc_relative */
109 0, /* bitpos */
110 complain_overflow_dont, /* complain_on_overflow */
111 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
112 "R_68K_GNU_VTENTRY", /* name */
113 FALSE, /* partial_inplace */
114 0, /* src_mask */
115 0, /* dst_mask */
116 FALSE),
117
118 /* TLS general dynamic variable reference. */
119 HOWTO (R_68K_TLS_GD32, /* type */
120 0, /* rightshift */
121 2, /* size (0 = byte, 1 = short, 2 = long) */
122 32, /* bitsize */
123 FALSE, /* pc_relative */
124 0, /* bitpos */
125 complain_overflow_bitfield, /* complain_on_overflow */
126 bfd_elf_generic_reloc, /* special_function */
127 "R_68K_TLS_GD32", /* name */
128 FALSE, /* partial_inplace */
129 0, /* src_mask */
130 0xffffffff, /* dst_mask */
131 FALSE), /* pcrel_offset */
132
133 HOWTO (R_68K_TLS_GD16, /* type */
134 0, /* rightshift */
135 1, /* size (0 = byte, 1 = short, 2 = long) */
136 16, /* bitsize */
137 FALSE, /* pc_relative */
138 0, /* bitpos */
139 complain_overflow_signed, /* complain_on_overflow */
140 bfd_elf_generic_reloc, /* special_function */
141 "R_68K_TLS_GD16", /* name */
142 FALSE, /* partial_inplace */
143 0, /* src_mask */
144 0x0000ffff, /* dst_mask */
145 FALSE), /* pcrel_offset */
146
147 HOWTO (R_68K_TLS_GD8, /* type */
148 0, /* rightshift */
149 0, /* size (0 = byte, 1 = short, 2 = long) */
150 8, /* bitsize */
151 FALSE, /* pc_relative */
152 0, /* bitpos */
153 complain_overflow_signed, /* complain_on_overflow */
154 bfd_elf_generic_reloc, /* special_function */
155 "R_68K_TLS_GD8", /* name */
156 FALSE, /* partial_inplace */
157 0, /* src_mask */
158 0x000000ff, /* dst_mask */
159 FALSE), /* pcrel_offset */
160
161 /* TLS local dynamic variable reference. */
162 HOWTO (R_68K_TLS_LDM32, /* type */
163 0, /* rightshift */
164 2, /* size (0 = byte, 1 = short, 2 = long) */
165 32, /* bitsize */
166 FALSE, /* pc_relative */
167 0, /* bitpos */
168 complain_overflow_bitfield, /* complain_on_overflow */
169 bfd_elf_generic_reloc, /* special_function */
170 "R_68K_TLS_LDM32", /* name */
171 FALSE, /* partial_inplace */
172 0, /* src_mask */
173 0xffffffff, /* dst_mask */
174 FALSE), /* pcrel_offset */
175
176 HOWTO (R_68K_TLS_LDM16, /* type */
177 0, /* rightshift */
178 1, /* size (0 = byte, 1 = short, 2 = long) */
179 16, /* bitsize */
180 FALSE, /* pc_relative */
181 0, /* bitpos */
182 complain_overflow_signed, /* complain_on_overflow */
183 bfd_elf_generic_reloc, /* special_function */
184 "R_68K_TLS_LDM16", /* name */
185 FALSE, /* partial_inplace */
186 0, /* src_mask */
187 0x0000ffff, /* dst_mask */
188 FALSE), /* pcrel_offset */
189
190 HOWTO (R_68K_TLS_LDM8, /* type */
191 0, /* rightshift */
192 0, /* size (0 = byte, 1 = short, 2 = long) */
193 8, /* bitsize */
194 FALSE, /* pc_relative */
195 0, /* bitpos */
196 complain_overflow_signed, /* complain_on_overflow */
197 bfd_elf_generic_reloc, /* special_function */
198 "R_68K_TLS_LDM8", /* name */
199 FALSE, /* partial_inplace */
200 0, /* src_mask */
201 0x000000ff, /* dst_mask */
202 FALSE), /* pcrel_offset */
203
204 HOWTO (R_68K_TLS_LDO32, /* type */
205 0, /* rightshift */
206 2, /* size (0 = byte, 1 = short, 2 = long) */
207 32, /* bitsize */
208 FALSE, /* pc_relative */
209 0, /* bitpos */
210 complain_overflow_bitfield, /* complain_on_overflow */
211 bfd_elf_generic_reloc, /* special_function */
212 "R_68K_TLS_LDO32", /* name */
213 FALSE, /* partial_inplace */
214 0, /* src_mask */
215 0xffffffff, /* dst_mask */
216 FALSE), /* pcrel_offset */
217
218 HOWTO (R_68K_TLS_LDO16, /* type */
219 0, /* rightshift */
220 1, /* size (0 = byte, 1 = short, 2 = long) */
221 16, /* bitsize */
222 FALSE, /* pc_relative */
223 0, /* bitpos */
224 complain_overflow_signed, /* complain_on_overflow */
225 bfd_elf_generic_reloc, /* special_function */
226 "R_68K_TLS_LDO16", /* name */
227 FALSE, /* partial_inplace */
228 0, /* src_mask */
229 0x0000ffff, /* dst_mask */
230 FALSE), /* pcrel_offset */
231
232 HOWTO (R_68K_TLS_LDO8, /* type */
233 0, /* rightshift */
234 0, /* size (0 = byte, 1 = short, 2 = long) */
235 8, /* bitsize */
236 FALSE, /* pc_relative */
237 0, /* bitpos */
238 complain_overflow_signed, /* complain_on_overflow */
239 bfd_elf_generic_reloc, /* special_function */
240 "R_68K_TLS_LDO8", /* name */
241 FALSE, /* partial_inplace */
242 0, /* src_mask */
243 0x000000ff, /* dst_mask */
244 FALSE), /* pcrel_offset */
245
246 /* TLS initial execution variable reference. */
247 HOWTO (R_68K_TLS_IE32, /* type */
248 0, /* rightshift */
249 2, /* size (0 = byte, 1 = short, 2 = long) */
250 32, /* bitsize */
251 FALSE, /* pc_relative */
252 0, /* bitpos */
253 complain_overflow_bitfield, /* complain_on_overflow */
254 bfd_elf_generic_reloc, /* special_function */
255 "R_68K_TLS_IE32", /* name */
256 FALSE, /* partial_inplace */
257 0, /* src_mask */
258 0xffffffff, /* dst_mask */
259 FALSE), /* pcrel_offset */
260
261 HOWTO (R_68K_TLS_IE16, /* type */
262 0, /* rightshift */
263 1, /* size (0 = byte, 1 = short, 2 = long) */
264 16, /* bitsize */
265 FALSE, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_signed, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_68K_TLS_IE16", /* name */
270 FALSE, /* partial_inplace */
271 0, /* src_mask */
272 0x0000ffff, /* dst_mask */
273 FALSE), /* pcrel_offset */
274
275 HOWTO (R_68K_TLS_IE8, /* type */
276 0, /* rightshift */
277 0, /* size (0 = byte, 1 = short, 2 = long) */
278 8, /* bitsize */
279 FALSE, /* pc_relative */
280 0, /* bitpos */
281 complain_overflow_signed, /* complain_on_overflow */
282 bfd_elf_generic_reloc, /* special_function */
283 "R_68K_TLS_IE8", /* name */
284 FALSE, /* partial_inplace */
285 0, /* src_mask */
286 0x000000ff, /* dst_mask */
287 FALSE), /* pcrel_offset */
288
289 /* TLS local execution variable reference. */
290 HOWTO (R_68K_TLS_LE32, /* type */
291 0, /* rightshift */
292 2, /* size (0 = byte, 1 = short, 2 = long) */
293 32, /* bitsize */
294 FALSE, /* pc_relative */
295 0, /* bitpos */
296 complain_overflow_bitfield, /* complain_on_overflow */
297 bfd_elf_generic_reloc, /* special_function */
298 "R_68K_TLS_LE32", /* name */
299 FALSE, /* partial_inplace */
300 0, /* src_mask */
301 0xffffffff, /* dst_mask */
302 FALSE), /* pcrel_offset */
303
304 HOWTO (R_68K_TLS_LE16, /* type */
305 0, /* rightshift */
306 1, /* size (0 = byte, 1 = short, 2 = long) */
307 16, /* bitsize */
308 FALSE, /* pc_relative */
309 0, /* bitpos */
310 complain_overflow_signed, /* complain_on_overflow */
311 bfd_elf_generic_reloc, /* special_function */
312 "R_68K_TLS_LE16", /* name */
313 FALSE, /* partial_inplace */
314 0, /* src_mask */
315 0x0000ffff, /* dst_mask */
316 FALSE), /* pcrel_offset */
317
318 HOWTO (R_68K_TLS_LE8, /* type */
319 0, /* rightshift */
320 0, /* size (0 = byte, 1 = short, 2 = long) */
321 8, /* bitsize */
322 FALSE, /* pc_relative */
323 0, /* bitpos */
324 complain_overflow_signed, /* complain_on_overflow */
325 bfd_elf_generic_reloc, /* special_function */
326 "R_68K_TLS_LE8", /* name */
327 FALSE, /* partial_inplace */
328 0, /* src_mask */
329 0x000000ff, /* dst_mask */
330 FALSE), /* pcrel_offset */
331
332 /* TLS GD/LD dynamic relocations. */
333 HOWTO (R_68K_TLS_DTPMOD32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_dont, /* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_68K_TLS_DTPMOD32", /* name */
342 FALSE, /* partial_inplace */
343 0, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_68K_TLS_DTPREL32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_dont, /* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_68K_TLS_DTPREL32", /* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 HOWTO (R_68K_TLS_TPREL32, /* type */
362 0, /* rightshift */
363 2, /* size (0 = byte, 1 = short, 2 = long) */
364 32, /* bitsize */
365 FALSE, /* pc_relative */
366 0, /* bitpos */
367 complain_overflow_dont, /* complain_on_overflow */
368 bfd_elf_generic_reloc, /* special_function */
369 "R_68K_TLS_TPREL32", /* name */
370 FALSE, /* partial_inplace */
371 0, /* src_mask */
372 0xffffffff, /* dst_mask */
373 FALSE), /* pcrel_offset */
374 };
375
376 static void
377 rtype_to_howto (abfd, cache_ptr, dst)
378 bfd *abfd ATTRIBUTE_UNUSED;
379 arelent *cache_ptr;
380 Elf_Internal_Rela *dst;
381 {
382 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K_max);
383 cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)];
384 }
385
386 #define elf_info_to_howto rtype_to_howto
387
388 static const struct
389 {
390 bfd_reloc_code_real_type bfd_val;
391 int elf_val;
392 }
393 reloc_map[] =
394 {
395 { BFD_RELOC_NONE, R_68K_NONE },
396 { BFD_RELOC_32, R_68K_32 },
397 { BFD_RELOC_16, R_68K_16 },
398 { BFD_RELOC_8, R_68K_8 },
399 { BFD_RELOC_32_PCREL, R_68K_PC32 },
400 { BFD_RELOC_16_PCREL, R_68K_PC16 },
401 { BFD_RELOC_8_PCREL, R_68K_PC8 },
402 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
403 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
404 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
405 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
406 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
407 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
408 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
409 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
410 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
411 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
412 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
413 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
414 { BFD_RELOC_NONE, R_68K_COPY },
415 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
416 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
417 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
418 { BFD_RELOC_CTOR, R_68K_32 },
419 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
420 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
421 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
422 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
423 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
424 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
425 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
426 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
427 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
428 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
429 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
430 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
431 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
432 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
433 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
434 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
435 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
436 };
437
438 static reloc_howto_type *
439 reloc_type_lookup (abfd, code)
440 bfd *abfd ATTRIBUTE_UNUSED;
441 bfd_reloc_code_real_type code;
442 {
443 unsigned int i;
444 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
445 {
446 if (reloc_map[i].bfd_val == code)
447 return &howto_table[reloc_map[i].elf_val];
448 }
449 return 0;
450 }
451
452 static reloc_howto_type *
453 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
454 {
455 unsigned int i;
456
457 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
458 if (howto_table[i].name != NULL
459 && strcasecmp (howto_table[i].name, r_name) == 0)
460 return &howto_table[i];
461
462 return NULL;
463 }
464
465 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
466 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
467 #define ELF_ARCH bfd_arch_m68k
468
469 /* Functions for the m68k ELF linker. */
470
471 /* The name of the dynamic interpreter. This is put in the .interp
472 section. */
473
474 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
475
476 /* Describes one of the various PLT styles. */
477
478 struct elf_m68k_plt_info
479 {
480 /* The size of each PLT entry. */
481 bfd_vma size;
482
483 /* The template for the first PLT entry. */
484 const bfd_byte *plt0_entry;
485
486 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
487 The comments by each member indicate the value that the relocation
488 is against. */
489 struct {
490 unsigned int got4; /* .got + 4 */
491 unsigned int got8; /* .got + 8 */
492 } plt0_relocs;
493
494 /* The template for a symbol's PLT entry. */
495 const bfd_byte *symbol_entry;
496
497 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
498 The comments by each member indicate the value that the relocation
499 is against. */
500 struct {
501 unsigned int got; /* the symbol's .got.plt entry */
502 unsigned int plt; /* .plt */
503 } symbol_relocs;
504
505 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
506 The stub starts with "move.l #relocoffset,%d0". */
507 bfd_vma symbol_resolve_entry;
508 };
509
510 /* The size in bytes of an entry in the procedure linkage table. */
511
512 #define PLT_ENTRY_SIZE 20
513
514 /* The first entry in a procedure linkage table looks like this. See
515 the SVR4 ABI m68k supplement to see how this works. */
516
517 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
518 {
519 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
520 0, 0, 0, 2, /* + (.got + 4) - . */
521 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
522 0, 0, 0, 2, /* + (.got + 8) - . */
523 0, 0, 0, 0 /* pad out to 20 bytes. */
524 };
525
526 /* Subsequent entries in a procedure linkage table look like this. */
527
528 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
529 {
530 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
531 0, 0, 0, 2, /* + (.got.plt entry) - . */
532 0x2f, 0x3c, /* move.l #offset,-(%sp) */
533 0, 0, 0, 0, /* + reloc index */
534 0x60, 0xff, /* bra.l .plt */
535 0, 0, 0, 0 /* + .plt - . */
536 };
537
538 static const struct elf_m68k_plt_info elf_m68k_plt_info = {
539 PLT_ENTRY_SIZE,
540 elf_m68k_plt0_entry, { 4, 12 },
541 elf_m68k_plt_entry, { 4, 16 }, 8
542 };
543
544 #define ISAB_PLT_ENTRY_SIZE 24
545
546 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
547 {
548 0x20, 0x3c, /* move.l #offset,%d0 */
549 0, 0, 0, 0, /* + (.got + 4) - . */
550 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
551 0x20, 0x3c, /* move.l #offset,%d0 */
552 0, 0, 0, 0, /* + (.got + 8) - . */
553 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
554 0x4e, 0xd0, /* jmp (%a0) */
555 0x4e, 0x71 /* nop */
556 };
557
558 /* Subsequent entries in a procedure linkage table look like this. */
559
560 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
561 {
562 0x20, 0x3c, /* move.l #offset,%d0 */
563 0, 0, 0, 0, /* + (.got.plt entry) - . */
564 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
565 0x4e, 0xd0, /* jmp (%a0) */
566 0x2f, 0x3c, /* move.l #offset,-(%sp) */
567 0, 0, 0, 0, /* + reloc index */
568 0x60, 0xff, /* bra.l .plt */
569 0, 0, 0, 0 /* + .plt - . */
570 };
571
572 static const struct elf_m68k_plt_info elf_isab_plt_info = {
573 ISAB_PLT_ENTRY_SIZE,
574 elf_isab_plt0_entry, { 2, 12 },
575 elf_isab_plt_entry, { 2, 20 }, 12
576 };
577
578 #define ISAC_PLT_ENTRY_SIZE 24
579
580 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
581 {
582 0x20, 0x3c, /* move.l #offset,%d0 */
583 0, 0, 0, 0, /* replaced with .got + 4 - . */
584 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
585 0x20, 0x3c, /* move.l #offset,%d0 */
586 0, 0, 0, 0, /* replaced with .got + 8 - . */
587 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
588 0x4e, 0xd0, /* jmp (%a0) */
589 0x4e, 0x71 /* nop */
590 };
591
592 /* Subsequent entries in a procedure linkage table look like this. */
593
594 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
595 {
596 0x20, 0x3c, /* move.l #offset,%d0 */
597 0, 0, 0, 0, /* replaced with (.got entry) - . */
598 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
599 0x4e, 0xd0, /* jmp (%a0) */
600 0x2f, 0x3c, /* move.l #offset,-(%sp) */
601 0, 0, 0, 0, /* replaced with offset into relocation table */
602 0x61, 0xff, /* bsr.l .plt */
603 0, 0, 0, 0 /* replaced with .plt - . */
604 };
605
606 static const struct elf_m68k_plt_info elf_isac_plt_info = {
607 ISAC_PLT_ENTRY_SIZE,
608 elf_isac_plt0_entry, { 2, 12},
609 elf_isac_plt_entry, { 2, 20 }, 12
610 };
611
612 #define CPU32_PLT_ENTRY_SIZE 24
613 /* Procedure linkage table entries for the cpu32 */
614 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
615 {
616 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
617 0, 0, 0, 2, /* + (.got + 4) - . */
618 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
619 0, 0, 0, 2, /* + (.got + 8) - . */
620 0x4e, 0xd1, /* jmp %a1@ */
621 0, 0, 0, 0, /* pad out to 24 bytes. */
622 0, 0
623 };
624
625 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
626 {
627 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
628 0, 0, 0, 2, /* + (.got.plt entry) - . */
629 0x4e, 0xd1, /* jmp %a1@ */
630 0x2f, 0x3c, /* move.l #offset,-(%sp) */
631 0, 0, 0, 0, /* + reloc index */
632 0x60, 0xff, /* bra.l .plt */
633 0, 0, 0, 0, /* + .plt - . */
634 0, 0
635 };
636
637 static const struct elf_m68k_plt_info elf_cpu32_plt_info = {
638 CPU32_PLT_ENTRY_SIZE,
639 elf_cpu32_plt0_entry, { 4, 12 },
640 elf_cpu32_plt_entry, { 4, 18 }, 10
641 };
642
643 /* The m68k linker needs to keep track of the number of relocs that it
644 decides to copy in check_relocs for each symbol. This is so that it
645 can discard PC relative relocs if it doesn't need them when linking
646 with -Bsymbolic. We store the information in a field extending the
647 regular ELF linker hash table. */
648
649 /* This structure keeps track of the number of PC relative relocs we have
650 copied for a given symbol. */
651
652 struct elf_m68k_pcrel_relocs_copied
653 {
654 /* Next section. */
655 struct elf_m68k_pcrel_relocs_copied *next;
656 /* A section in dynobj. */
657 asection *section;
658 /* Number of relocs copied in this section. */
659 bfd_size_type count;
660 };
661
662 /* Forward declaration. */
663 struct elf_m68k_got_entry;
664
665 /* m68k ELF linker hash entry. */
666
667 struct elf_m68k_link_hash_entry
668 {
669 struct elf_link_hash_entry root;
670
671 /* Number of PC relative relocs copied for this symbol. */
672 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
673
674 /* Key to got_entries. */
675 unsigned long got_entry_key;
676
677 /* List of GOT entries for this symbol. This list is build during
678 offset finalization and is used within elf_m68k_finish_dynamic_symbol
679 to traverse all GOT entries for a particular symbol.
680
681 ??? We could've used root.got.glist field instead, but having
682 a separate field is cleaner. */
683 struct elf_m68k_got_entry *glist;
684 };
685
686 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
687
688 /* Key part of GOT entry in hashtable. */
689 struct elf_m68k_got_entry_key
690 {
691 /* BFD in which this symbol was defined. NULL for global symbols. */
692 const bfd *bfd;
693
694 /* Symbol index. Either local symbol index or h->got_entry_key. */
695 unsigned long symndx;
696
697 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
698 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
699
700 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
701 matters. That is, we distinguish between, say, R_68K_GOT16O
702 and R_68K_GOT32O when allocating offsets, but they are considered to be
703 the same when searching got->entries. */
704 enum elf_m68k_reloc_type type;
705 };
706
707 /* Size of the GOT offset suitable for relocation. */
708 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
709
710 /* Entry of the GOT. */
711 struct elf_m68k_got_entry
712 {
713 /* GOT entries are put into a got->entries hashtable. This is the key. */
714 struct elf_m68k_got_entry_key key_;
715
716 /* GOT entry data. We need s1 before offset finalization and s2 after. */
717 union
718 {
719 struct
720 {
721 /* Number of times this entry is referenced. It is used to
722 filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook. */
723 bfd_vma refcount;
724 } s1;
725
726 struct
727 {
728 /* Offset from the start of .got section. To calculate offset relative
729 to GOT pointer one should substract got->offset from this value. */
730 bfd_vma offset;
731
732 /* Pointer to the next GOT entry for this global symbol.
733 Symbols have at most one entry in one GOT, but might
734 have entries in more than one GOT.
735 Root of this list is h->glist.
736 NULL for local symbols. */
737 struct elf_m68k_got_entry *next;
738 } s2;
739 } u;
740 };
741
742 /* Return representative type for relocation R_TYPE.
743 This is used to avoid enumerating many relocations in comparisons,
744 switches etc. */
745
746 static enum elf_m68k_reloc_type
747 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
748 {
749 switch (r_type)
750 {
751 /* In most cases R_68K_GOTx relocations require the very same
752 handling as R_68K_GOT32O relocation. In cases when we need
753 to distinguish between the two, we use explicitly compare against
754 r_type. */
755 case R_68K_GOT32:
756 case R_68K_GOT16:
757 case R_68K_GOT8:
758 case R_68K_GOT32O:
759 case R_68K_GOT16O:
760 case R_68K_GOT8O:
761 return R_68K_GOT32O;
762
763 case R_68K_TLS_GD32:
764 case R_68K_TLS_GD16:
765 case R_68K_TLS_GD8:
766 return R_68K_TLS_GD32;
767
768 case R_68K_TLS_LDM32:
769 case R_68K_TLS_LDM16:
770 case R_68K_TLS_LDM8:
771 return R_68K_TLS_LDM32;
772
773 case R_68K_TLS_IE32:
774 case R_68K_TLS_IE16:
775 case R_68K_TLS_IE8:
776 return R_68K_TLS_IE32;
777
778 default:
779 BFD_ASSERT (FALSE);
780 return 0;
781 }
782 }
783
784 /* Return size of the GOT entry offset for relocation R_TYPE. */
785
786 static enum elf_m68k_got_offset_size
787 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
788 {
789 switch (r_type)
790 {
791 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
792 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
793 case R_68K_TLS_IE32:
794 return R_32;
795
796 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
797 case R_68K_TLS_IE16:
798 return R_16;
799
800 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
801 case R_68K_TLS_IE8:
802 return R_8;
803
804 default:
805 BFD_ASSERT (FALSE);
806 return 0;
807 }
808 }
809
810 /* Return number of GOT entries we need to allocate in GOT for
811 relocation R_TYPE. */
812
813 static bfd_vma
814 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
815 {
816 switch (elf_m68k_reloc_got_type (r_type))
817 {
818 case R_68K_GOT32O:
819 case R_68K_TLS_IE32:
820 return 1;
821
822 case R_68K_TLS_GD32:
823 case R_68K_TLS_LDM32:
824 return 2;
825
826 default:
827 BFD_ASSERT (FALSE);
828 return 0;
829 }
830 }
831
832 /* Return TRUE if relocation R_TYPE is a TLS one. */
833
834 static bfd_boolean
835 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
836 {
837 switch (r_type)
838 {
839 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
840 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
841 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
842 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
843 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
844 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
845 return TRUE;
846
847 default:
848 return FALSE;
849 }
850 }
851
852 /* Data structure representing a single GOT. */
853 struct elf_m68k_got
854 {
855 /* Hashtable of 'struct elf_m68k_got_entry's.
856 Starting size of this table is the maximum number of
857 R_68K_GOT8O entries. */
858 htab_t entries;
859
860 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
861 several GOT slots.
862
863 n_slots[R_8] is the count of R_8 slots in this GOT.
864 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
865 in this GOT.
866 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
867 in this GOT. This is the total number of slots. */
868 bfd_vma n_slots[R_LAST];
869
870 /* Number of local (entry->key_.h == NULL) slots in this GOT.
871 This is only used to properly calculate size of .rela.got section;
872 see elf_m68k_partition_multi_got. */
873 bfd_vma local_n_slots;
874
875 /* Offset of this GOT relative to beginning of .got section. */
876 bfd_vma offset;
877 };
878
879 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
880 struct elf_m68k_bfd2got_entry
881 {
882 /* BFD. */
883 const bfd *bfd;
884
885 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
886 GOT structure. After partitioning several BFD's might [and often do]
887 share a single GOT. */
888 struct elf_m68k_got *got;
889 };
890
891 /* The main data structure holding all the pieces. */
892 struct elf_m68k_multi_got
893 {
894 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
895 here, then it doesn't need a GOT (this includes the case of a BFD
896 having an empty GOT).
897
898 ??? This hashtable can be replaced by an array indexed by bfd->id. */
899 htab_t bfd2got;
900
901 /* Next symndx to assign a global symbol.
902 h->got_entry_key is initialized from this counter. */
903 unsigned long global_symndx;
904 };
905
906 /* m68k ELF linker hash table. */
907
908 struct elf_m68k_link_hash_table
909 {
910 struct elf_link_hash_table root;
911
912 /* Small local sym cache. */
913 struct sym_cache sym_cache;
914
915 /* The PLT format used by this link, or NULL if the format has not
916 yet been chosen. */
917 const struct elf_m68k_plt_info *plt_info;
918
919 /* True, if GP is loaded within each function which uses it.
920 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
921 bfd_boolean local_gp_p;
922
923 /* Switch controlling use of negative offsets to double the size of GOTs. */
924 bfd_boolean use_neg_got_offsets_p;
925
926 /* Switch controlling generation of multiple GOTs. */
927 bfd_boolean allow_multigot_p;
928
929 /* Multi-GOT data structure. */
930 struct elf_m68k_multi_got multi_got_;
931 };
932
933 /* Get the m68k ELF linker hash table from a link_info structure. */
934
935 #define elf_m68k_hash_table(p) \
936 ((struct elf_m68k_link_hash_table *) (p)->hash)
937
938 /* Shortcut to multi-GOT data. */
939 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
940
941 /* Create an entry in an m68k ELF linker hash table. */
942
943 static struct bfd_hash_entry *
944 elf_m68k_link_hash_newfunc (entry, table, string)
945 struct bfd_hash_entry *entry;
946 struct bfd_hash_table *table;
947 const char *string;
948 {
949 struct bfd_hash_entry *ret = entry;
950
951 /* Allocate the structure if it has not already been allocated by a
952 subclass. */
953 if (ret == NULL)
954 ret = bfd_hash_allocate (table,
955 sizeof (struct elf_m68k_link_hash_entry));
956 if (ret == NULL)
957 return ret;
958
959 /* Call the allocation method of the superclass. */
960 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
961 if (ret != NULL)
962 {
963 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
964 elf_m68k_hash_entry (ret)->got_entry_key = 0;
965 elf_m68k_hash_entry (ret)->glist = NULL;
966 }
967
968 return ret;
969 }
970
971 /* Create an m68k ELF linker hash table. */
972
973 static struct bfd_link_hash_table *
974 elf_m68k_link_hash_table_create (abfd)
975 bfd *abfd;
976 {
977 struct elf_m68k_link_hash_table *ret;
978 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
979
980 ret = (struct elf_m68k_link_hash_table *) bfd_malloc (amt);
981 if (ret == (struct elf_m68k_link_hash_table *) NULL)
982 return NULL;
983
984 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
985 elf_m68k_link_hash_newfunc,
986 sizeof (struct elf_m68k_link_hash_entry)))
987 {
988 free (ret);
989 return NULL;
990 }
991
992 ret->sym_cache.abfd = NULL;
993 ret->plt_info = NULL;
994 ret->local_gp_p = FALSE;
995 ret->use_neg_got_offsets_p = FALSE;
996 ret->allow_multigot_p = FALSE;
997 ret->multi_got_.bfd2got = NULL;
998 ret->multi_got_.global_symndx = 1;
999
1000 return &ret->root.root;
1001 }
1002
1003 /* Destruct local data. */
1004
1005 static void
1006 elf_m68k_link_hash_table_free (struct bfd_link_hash_table *_htab)
1007 {
1008 struct elf_m68k_link_hash_table *htab;
1009
1010 htab = (struct elf_m68k_link_hash_table *) _htab;
1011
1012 if (htab->multi_got_.bfd2got != NULL)
1013 {
1014 htab_delete (htab->multi_got_.bfd2got);
1015 htab->multi_got_.bfd2got = NULL;
1016 }
1017 }
1018
1019 /* Set the right machine number. */
1020
1021 static bfd_boolean
1022 elf32_m68k_object_p (bfd *abfd)
1023 {
1024 unsigned int mach = 0;
1025 unsigned features = 0;
1026 flagword eflags = elf_elfheader (abfd)->e_flags;
1027
1028 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1029 features |= m68000;
1030 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1031 features |= cpu32;
1032 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1033 features |= fido_a;
1034 else
1035 {
1036 switch (eflags & EF_M68K_CF_ISA_MASK)
1037 {
1038 case EF_M68K_CF_ISA_A_NODIV:
1039 features |= mcfisa_a;
1040 break;
1041 case EF_M68K_CF_ISA_A:
1042 features |= mcfisa_a|mcfhwdiv;
1043 break;
1044 case EF_M68K_CF_ISA_A_PLUS:
1045 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1046 break;
1047 case EF_M68K_CF_ISA_B_NOUSP:
1048 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1049 break;
1050 case EF_M68K_CF_ISA_B:
1051 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1052 break;
1053 case EF_M68K_CF_ISA_C:
1054 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1055 break;
1056 case EF_M68K_CF_ISA_C_NODIV:
1057 features |= mcfisa_a|mcfisa_c|mcfusp;
1058 break;
1059 }
1060 switch (eflags & EF_M68K_CF_MAC_MASK)
1061 {
1062 case EF_M68K_CF_MAC:
1063 features |= mcfmac;
1064 break;
1065 case EF_M68K_CF_EMAC:
1066 features |= mcfemac;
1067 break;
1068 }
1069 if (eflags & EF_M68K_CF_FLOAT)
1070 features |= cfloat;
1071 }
1072
1073 mach = bfd_m68k_features_to_mach (features);
1074 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1075
1076 return TRUE;
1077 }
1078
1079 /* Keep m68k-specific flags in the ELF header. */
1080 static bfd_boolean
1081 elf32_m68k_set_private_flags (abfd, flags)
1082 bfd *abfd;
1083 flagword flags;
1084 {
1085 elf_elfheader (abfd)->e_flags = flags;
1086 elf_flags_init (abfd) = TRUE;
1087 return TRUE;
1088 }
1089
1090 /* Merge backend specific data from an object file to the output
1091 object file when linking. */
1092 static bfd_boolean
1093 elf32_m68k_merge_private_bfd_data (ibfd, obfd)
1094 bfd *ibfd;
1095 bfd *obfd;
1096 {
1097 flagword out_flags;
1098 flagword in_flags;
1099 flagword out_isa;
1100 flagword in_isa;
1101 const bfd_arch_info_type *arch_info;
1102
1103 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1104 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1105 return FALSE;
1106
1107 /* Get the merged machine. This checks for incompatibility between
1108 Coldfire & non-Coldfire flags, incompability between different
1109 Coldfire ISAs, and incompability between different MAC types. */
1110 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1111 if (!arch_info)
1112 return FALSE;
1113
1114 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1115
1116 in_flags = elf_elfheader (ibfd)->e_flags;
1117 if (!elf_flags_init (obfd))
1118 {
1119 elf_flags_init (obfd) = TRUE;
1120 out_flags = in_flags;
1121 }
1122 else
1123 {
1124 out_flags = elf_elfheader (obfd)->e_flags;
1125 unsigned int variant_mask;
1126
1127 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1128 variant_mask = 0;
1129 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1130 variant_mask = 0;
1131 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1132 variant_mask = 0;
1133 else
1134 variant_mask = EF_M68K_CF_ISA_MASK;
1135
1136 in_isa = (in_flags & variant_mask);
1137 out_isa = (out_flags & variant_mask);
1138 if (in_isa > out_isa)
1139 out_flags ^= in_isa ^ out_isa;
1140 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1141 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1142 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1143 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1144 out_flags = EF_M68K_FIDO;
1145 else
1146 out_flags |= in_flags ^ in_isa;
1147 }
1148 elf_elfheader (obfd)->e_flags = out_flags;
1149
1150 return TRUE;
1151 }
1152
1153 /* Display the flags field. */
1154
1155 static bfd_boolean
1156 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1157 {
1158 FILE *file = (FILE *) ptr;
1159 flagword eflags = elf_elfheader (abfd)->e_flags;
1160
1161 BFD_ASSERT (abfd != NULL && ptr != NULL);
1162
1163 /* Print normal ELF private data. */
1164 _bfd_elf_print_private_bfd_data (abfd, ptr);
1165
1166 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1167
1168 /* xgettext:c-format */
1169 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1170
1171 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1172 fprintf (file, " [m68000]");
1173 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1174 fprintf (file, " [cpu32]");
1175 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1176 fprintf (file, " [fido]");
1177 else
1178 {
1179 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1180 fprintf (file, " [cfv4e]");
1181
1182 if (eflags & EF_M68K_CF_ISA_MASK)
1183 {
1184 char const *isa = _("unknown");
1185 char const *mac = _("unknown");
1186 char const *additional = "";
1187
1188 switch (eflags & EF_M68K_CF_ISA_MASK)
1189 {
1190 case EF_M68K_CF_ISA_A_NODIV:
1191 isa = "A";
1192 additional = " [nodiv]";
1193 break;
1194 case EF_M68K_CF_ISA_A:
1195 isa = "A";
1196 break;
1197 case EF_M68K_CF_ISA_A_PLUS:
1198 isa = "A+";
1199 break;
1200 case EF_M68K_CF_ISA_B_NOUSP:
1201 isa = "B";
1202 additional = " [nousp]";
1203 break;
1204 case EF_M68K_CF_ISA_B:
1205 isa = "B";
1206 break;
1207 case EF_M68K_CF_ISA_C:
1208 isa = "C";
1209 break;
1210 case EF_M68K_CF_ISA_C_NODIV:
1211 isa = "C";
1212 additional = " [nodiv]";
1213 break;
1214 }
1215 fprintf (file, " [isa %s]%s", isa, additional);
1216
1217 if (eflags & EF_M68K_CF_FLOAT)
1218 fprintf (file, " [float]");
1219
1220 switch (eflags & EF_M68K_CF_MAC_MASK)
1221 {
1222 case 0:
1223 mac = NULL;
1224 break;
1225 case EF_M68K_CF_MAC:
1226 mac = "mac";
1227 break;
1228 case EF_M68K_CF_EMAC:
1229 mac = "emac";
1230 break;
1231 }
1232 if (mac)
1233 fprintf (file, " [%s]", mac);
1234 }
1235 }
1236
1237 fputc ('\n', file);
1238
1239 return TRUE;
1240 }
1241
1242 /* Multi-GOT support implementation design:
1243
1244 Multi-GOT starts in check_relocs hook. There we scan all
1245 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1246 for it. If a single BFD appears to require too many GOT slots with
1247 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1248 to user.
1249 After check_relocs has been invoked for each input BFD, we have
1250 constructed a GOT for each input BFD.
1251
1252 To minimize total number of GOTs required for a particular output BFD
1253 (as some environments support only 1 GOT per output object) we try
1254 to merge some of the GOTs to share an offset space. Ideally [and in most
1255 cases] we end up with a single GOT. In cases when there are too many
1256 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1257 several GOTs, assuming the environment can handle them.
1258
1259 Partitioning is done in elf_m68k_partition_multi_got. We start with
1260 an empty GOT and traverse bfd2got hashtable putting got_entries from
1261 local GOTs to the new 'big' one. We do that by constructing an
1262 intermediate GOT holding all the entries the local GOT has and the big
1263 GOT lacks. Then we check if there is room in the big GOT to accomodate
1264 all the entries from diff. On success we add those entries to the big
1265 GOT; on failure we start the new 'big' GOT and retry the adding of
1266 entries from the local GOT. Note that this retry will always succeed as
1267 each local GOT doesn't overflow the limits. After partitioning we
1268 end up with each bfd assigned one of the big GOTs. GOT entries in the
1269 big GOTs are initialized with GOT offsets. Note that big GOTs are
1270 positioned consequently in program space and represent a single huge GOT
1271 to the outside world.
1272
1273 After that we get to elf_m68k_relocate_section. There we
1274 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1275 relocations to refer to appropriate [assigned to current input_bfd]
1276 big GOT.
1277
1278 Notes:
1279
1280 GOT entry type: We have several types of GOT entries.
1281 * R_8 type is used in entries for symbols that have at least one
1282 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
1283 such entries in one GOT.
1284 * R_16 type is used in entries for symbols that have at least one
1285 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1286 We can have at most 0x4000 such entries in one GOT.
1287 * R_32 type is used in all other cases. We can have as many
1288 such entries in one GOT as we'd like.
1289 When counting relocations we have to include the count of the smaller
1290 ranged relocations in the counts of the larger ranged ones in order
1291 to correctly detect overflow.
1292
1293 Sorting the GOT: In each GOT starting offsets are assigned to
1294 R_8 entries, which are followed by R_16 entries, and
1295 R_32 entries go at the end. See finalize_got_offsets for details.
1296
1297 Negative GOT offsets: To double usable offset range of GOTs we use
1298 negative offsets. As we assign entries with GOT offsets relative to
1299 start of .got section, the offset values are positive. They become
1300 negative only in relocate_section where got->offset value is
1301 subtracted from them.
1302
1303 3 special GOT entries: There are 3 special GOT entries used internally
1304 by loader. These entries happen to be placed to .got.plt section,
1305 so we don't do anything about them in multi-GOT support.
1306
1307 Memory management: All data except for hashtables
1308 multi_got->bfd2got and got->entries are allocated on
1309 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1310 to most functions), so we don't need to care to free them. At the
1311 moment of allocation hashtables are being linked into main data
1312 structure (multi_got), all pieces of which are reachable from
1313 elf_m68k_multi_got (info). We deallocate them in
1314 elf_m68k_link_hash_table_free. */
1315
1316 /* Initialize GOT. */
1317
1318 static void
1319 elf_m68k_init_got (struct elf_m68k_got *got)
1320 {
1321 got->entries = NULL;
1322 got->n_slots[R_8] = 0;
1323 got->n_slots[R_16] = 0;
1324 got->n_slots[R_32] = 0;
1325 got->local_n_slots = 0;
1326 got->offset = (bfd_vma) -1;
1327 }
1328
1329 /* Destruct GOT. */
1330
1331 static void
1332 elf_m68k_clear_got (struct elf_m68k_got *got)
1333 {
1334 if (got->entries != NULL)
1335 {
1336 htab_delete (got->entries);
1337 got->entries = NULL;
1338 }
1339 }
1340
1341 /* Create and empty GOT structure. INFO is the context where memory
1342 should be allocated. */
1343
1344 static struct elf_m68k_got *
1345 elf_m68k_create_empty_got (struct bfd_link_info *info)
1346 {
1347 struct elf_m68k_got *got;
1348
1349 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1350 if (got == NULL)
1351 return NULL;
1352
1353 elf_m68k_init_got (got);
1354
1355 return got;
1356 }
1357
1358 /* Initialize KEY. */
1359
1360 static void
1361 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1362 struct elf_link_hash_entry *h,
1363 const bfd *abfd, unsigned long symndx,
1364 enum elf_m68k_reloc_type reloc_type)
1365 {
1366 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1367 /* All TLS_LDM relocations share a single GOT entry. */
1368 {
1369 key->bfd = NULL;
1370 key->symndx = 0;
1371 }
1372 else if (h != NULL)
1373 /* Global symbols are identified with their got_entry_key. */
1374 {
1375 key->bfd = NULL;
1376 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1377 BFD_ASSERT (key->symndx != 0);
1378 }
1379 else
1380 /* Local symbols are identified by BFD they appear in and symndx. */
1381 {
1382 key->bfd = abfd;
1383 key->symndx = symndx;
1384 }
1385
1386 key->type = reloc_type;
1387 }
1388
1389 /* Calculate hash of got_entry.
1390 ??? Is it good? */
1391
1392 static hashval_t
1393 elf_m68k_got_entry_hash (const void *_entry)
1394 {
1395 const struct elf_m68k_got_entry_key *key;
1396
1397 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1398
1399 return (key->symndx
1400 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1401 + elf_m68k_reloc_got_type (key->type));
1402 }
1403
1404 /* Check if two got entries are equal. */
1405
1406 static int
1407 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1408 {
1409 const struct elf_m68k_got_entry_key *key1;
1410 const struct elf_m68k_got_entry_key *key2;
1411
1412 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1413 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1414
1415 return (key1->bfd == key2->bfd
1416 && key1->symndx == key2->symndx
1417 && (elf_m68k_reloc_got_type (key1->type)
1418 == elf_m68k_reloc_got_type (key2->type)));
1419 }
1420
1421 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1422 and one extra R_32 slots to simplify handling of 2-slot entries during
1423 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1424
1425 /* Maximal number of R_8 slots in a single GOT. */
1426 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
1427 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1428 ? (0x40 - 1) \
1429 : 0x20)
1430
1431 /* Maximal number of R_8 and R_16 slots in a single GOT. */
1432 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
1433 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1434 ? (0x4000 - 2) \
1435 : 0x2000)
1436
1437 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1438 the entry cannot be found.
1439 FIND_OR_CREATE - search for an existing entry, but create new if there's
1440 no such.
1441 MUST_FIND - search for an existing entry and assert that it exist.
1442 MUST_CREATE - assert that there's no such entry and create new one. */
1443 enum elf_m68k_get_entry_howto
1444 {
1445 SEARCH,
1446 FIND_OR_CREATE,
1447 MUST_FIND,
1448 MUST_CREATE
1449 };
1450
1451 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1452 INFO is context in which memory should be allocated (can be NULL if
1453 HOWTO is SEARCH or MUST_FIND). */
1454
1455 static struct elf_m68k_got_entry *
1456 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1457 const struct elf_m68k_got_entry_key *key,
1458 enum elf_m68k_get_entry_howto howto,
1459 struct bfd_link_info *info)
1460 {
1461 struct elf_m68k_got_entry entry_;
1462 struct elf_m68k_got_entry *entry;
1463 void **ptr;
1464
1465 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1466
1467 if (got->entries == NULL)
1468 /* This is the first entry in ABFD. Initialize hashtable. */
1469 {
1470 if (howto == SEARCH)
1471 return NULL;
1472
1473 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1474 (info),
1475 elf_m68k_got_entry_hash,
1476 elf_m68k_got_entry_eq, NULL);
1477 if (got->entries == NULL)
1478 {
1479 bfd_set_error (bfd_error_no_memory);
1480 return NULL;
1481 }
1482 }
1483
1484 entry_.key_ = *key;
1485 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1486 ? INSERT : NO_INSERT));
1487 if (ptr == NULL)
1488 {
1489 if (howto == SEARCH)
1490 /* Entry not found. */
1491 return NULL;
1492
1493 /* We're out of memory. */
1494 bfd_set_error (bfd_error_no_memory);
1495 return NULL;
1496 }
1497
1498 if (*ptr == NULL)
1499 /* We didn't find the entry and we're asked to create a new one. */
1500 {
1501 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1502
1503 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1504 if (entry == NULL)
1505 return NULL;
1506
1507 /* Initialize new entry. */
1508 entry->key_ = *key;
1509
1510 entry->u.s1.refcount = 0;
1511
1512 /* Mark the entry as not initialized. */
1513 entry->key_.type = R_68K_max;
1514
1515 *ptr = entry;
1516 }
1517 else
1518 /* We found the entry. */
1519 {
1520 BFD_ASSERT (howto != MUST_CREATE);
1521
1522 entry = *ptr;
1523 }
1524
1525 return entry;
1526 }
1527
1528 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1529 Return the value to which ENTRY's type should be set. */
1530
1531 static enum elf_m68k_reloc_type
1532 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1533 enum elf_m68k_reloc_type was,
1534 enum elf_m68k_reloc_type new)
1535 {
1536 enum elf_m68k_got_offset_size was_size;
1537 enum elf_m68k_got_offset_size new_size;
1538 bfd_vma n_slots;
1539
1540 if (was == R_68K_max)
1541 /* The type of the entry is not initialized yet. */
1542 {
1543 /* Update all got->n_slots counters, including n_slots[R_32]. */
1544 was_size = R_LAST;
1545
1546 was = new;
1547 }
1548 else
1549 {
1550 /* !!! We, probably, should emit an error rather then fail on assert
1551 in such a case. */
1552 BFD_ASSERT (elf_m68k_reloc_got_type (was)
1553 == elf_m68k_reloc_got_type (new));
1554
1555 was_size = elf_m68k_reloc_got_offset_size (was);
1556 }
1557
1558 new_size = elf_m68k_reloc_got_offset_size (new);
1559 n_slots = elf_m68k_reloc_got_n_slots (new);
1560
1561 while (was_size > new_size)
1562 {
1563 --was_size;
1564 got->n_slots[was_size] += n_slots;
1565 }
1566
1567 if (new > was)
1568 /* Relocations are ordered from bigger got offset size to lesser,
1569 so choose the relocation type with lesser offset size. */
1570 was = new;
1571
1572 return was;
1573 }
1574
1575 /* Update GOT counters when removing an entry of type TYPE. */
1576
1577 static void
1578 elf_m68k_remove_got_entry_type (struct elf_m68k_got *got,
1579 enum elf_m68k_reloc_type type)
1580 {
1581 enum elf_m68k_got_offset_size os;
1582 bfd_vma n_slots;
1583
1584 n_slots = elf_m68k_reloc_got_n_slots (type);
1585
1586 /* Decrese counter of slots with offset size corresponding to TYPE
1587 and all greater offset sizes. */
1588 for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os)
1589 {
1590 BFD_ASSERT (got->n_slots[os] >= n_slots);
1591
1592 got->n_slots[os] -= n_slots;
1593 }
1594 }
1595
1596 /* Add new or update existing entry to GOT.
1597 H, ABFD, TYPE and SYMNDX is data for the entry.
1598 INFO is a context where memory should be allocated. */
1599
1600 static struct elf_m68k_got_entry *
1601 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1602 struct elf_link_hash_entry *h,
1603 const bfd *abfd,
1604 enum elf_m68k_reloc_type reloc_type,
1605 unsigned long symndx,
1606 struct bfd_link_info *info)
1607 {
1608 struct elf_m68k_got_entry_key key_;
1609 struct elf_m68k_got_entry *entry;
1610
1611 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1612 elf_m68k_hash_entry (h)->got_entry_key
1613 = elf_m68k_multi_got (info)->global_symndx++;
1614
1615 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1616
1617 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1618 if (entry == NULL)
1619 return NULL;
1620
1621 /* Determine entry's type and update got->n_slots counters. */
1622 entry->key_.type = elf_m68k_update_got_entry_type (got,
1623 entry->key_.type,
1624 reloc_type);
1625
1626 /* Update refcount. */
1627 ++entry->u.s1.refcount;
1628
1629 if (entry->u.s1.refcount == 1)
1630 /* We see this entry for the first time. */
1631 {
1632 if (entry->key_.bfd != NULL)
1633 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1634 }
1635
1636 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1637
1638 if ((got->n_slots[R_8]
1639 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1640 || (got->n_slots[R_16]
1641 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1642 /* This BFD has too many relocation. */
1643 {
1644 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1645 (*_bfd_error_handler) (_("%B: GOT overflow: "
1646 "Number of relocations with 8-bit "
1647 "offset > %d"),
1648 abfd,
1649 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1650 else
1651 (*_bfd_error_handler) (_("%B: GOT overflow: "
1652 "Number of relocations with 8- or 16-bit "
1653 "offset > %d"),
1654 abfd,
1655 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1656
1657 return NULL;
1658 }
1659
1660 return entry;
1661 }
1662
1663 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1664
1665 static hashval_t
1666 elf_m68k_bfd2got_entry_hash (const void *entry)
1667 {
1668 const struct elf_m68k_bfd2got_entry *e;
1669
1670 e = (const struct elf_m68k_bfd2got_entry *) entry;
1671
1672 return e->bfd->id;
1673 }
1674
1675 /* Check whether two hash entries have the same bfd. */
1676
1677 static int
1678 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1679 {
1680 const struct elf_m68k_bfd2got_entry *e1;
1681 const struct elf_m68k_bfd2got_entry *e2;
1682
1683 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1684 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1685
1686 return e1->bfd == e2->bfd;
1687 }
1688
1689 /* Destruct a bfd2got entry. */
1690
1691 static void
1692 elf_m68k_bfd2got_entry_del (void *_entry)
1693 {
1694 struct elf_m68k_bfd2got_entry *entry;
1695
1696 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1697
1698 BFD_ASSERT (entry->got != NULL);
1699 elf_m68k_clear_got (entry->got);
1700 }
1701
1702 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1703 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1704 memory should be allocated. */
1705
1706 static struct elf_m68k_bfd2got_entry *
1707 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1708 const bfd *abfd,
1709 enum elf_m68k_get_entry_howto howto,
1710 struct bfd_link_info *info)
1711 {
1712 struct elf_m68k_bfd2got_entry entry_;
1713 void **ptr;
1714 struct elf_m68k_bfd2got_entry *entry;
1715
1716 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1717
1718 if (multi_got->bfd2got == NULL)
1719 /* This is the first GOT. Initialize bfd2got. */
1720 {
1721 if (howto == SEARCH)
1722 return NULL;
1723
1724 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1725 elf_m68k_bfd2got_entry_eq,
1726 elf_m68k_bfd2got_entry_del);
1727 if (multi_got->bfd2got == NULL)
1728 {
1729 bfd_set_error (bfd_error_no_memory);
1730 return NULL;
1731 }
1732 }
1733
1734 entry_.bfd = abfd;
1735 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1736 ? INSERT : NO_INSERT));
1737 if (ptr == NULL)
1738 {
1739 if (howto == SEARCH)
1740 /* Entry not found. */
1741 return NULL;
1742
1743 /* We're out of memory. */
1744 bfd_set_error (bfd_error_no_memory);
1745 return NULL;
1746 }
1747
1748 if (*ptr == NULL)
1749 /* Entry was not found. Create new one. */
1750 {
1751 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1752
1753 entry = ((struct elf_m68k_bfd2got_entry *)
1754 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1755 if (entry == NULL)
1756 return NULL;
1757
1758 entry->bfd = abfd;
1759
1760 entry->got = elf_m68k_create_empty_got (info);
1761 if (entry->got == NULL)
1762 return NULL;
1763
1764 *ptr = entry;
1765 }
1766 else
1767 {
1768 BFD_ASSERT (howto != MUST_CREATE);
1769
1770 /* Return existing entry. */
1771 entry = *ptr;
1772 }
1773
1774 return entry;
1775 }
1776
1777 struct elf_m68k_can_merge_gots_arg
1778 {
1779 /* A current_got that we constructing a DIFF against. */
1780 struct elf_m68k_got *big;
1781
1782 /* GOT holding entries not present or that should be changed in
1783 BIG. */
1784 struct elf_m68k_got *diff;
1785
1786 /* Context where to allocate memory. */
1787 struct bfd_link_info *info;
1788
1789 /* Error flag. */
1790 bfd_boolean error_p;
1791 };
1792
1793 /* Process a single entry from the small GOT to see if it should be added
1794 or updated in the big GOT. */
1795
1796 static int
1797 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1798 {
1799 const struct elf_m68k_got_entry *entry1;
1800 struct elf_m68k_can_merge_gots_arg *arg;
1801 const struct elf_m68k_got_entry *entry2;
1802 enum elf_m68k_reloc_type type;
1803
1804 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1805 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1806
1807 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1808
1809 if (entry2 != NULL)
1810 /* We found an existing entry. Check if we should update it. */
1811 {
1812 type = elf_m68k_update_got_entry_type (arg->diff,
1813 entry2->key_.type,
1814 entry1->key_.type);
1815
1816 if (type == entry2->key_.type)
1817 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1818 To skip creation of difference entry we use the type,
1819 which we won't see in GOT entries for sure. */
1820 type = R_68K_max;
1821 }
1822 else
1823 /* We didn't find the entry. Add entry1 to DIFF. */
1824 {
1825 BFD_ASSERT (entry1->key_.type != R_68K_max);
1826
1827 type = elf_m68k_update_got_entry_type (arg->diff,
1828 R_68K_max, entry1->key_.type);
1829
1830 if (entry1->key_.bfd != NULL)
1831 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1832 }
1833
1834 if (type != R_68K_max)
1835 /* Create an entry in DIFF. */
1836 {
1837 struct elf_m68k_got_entry *entry;
1838
1839 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1840 arg->info);
1841 if (entry == NULL)
1842 {
1843 arg->error_p = TRUE;
1844 return 0;
1845 }
1846
1847 entry->key_.type = type;
1848 }
1849
1850 return 1;
1851 }
1852
1853 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1854 Construct DIFF GOT holding the entries which should be added or updated
1855 in BIG GOT to accumulate information from SMALL.
1856 INFO is the context where memory should be allocated. */
1857
1858 static bfd_boolean
1859 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1860 const struct elf_m68k_got *small,
1861 struct bfd_link_info *info,
1862 struct elf_m68k_got *diff)
1863 {
1864 struct elf_m68k_can_merge_gots_arg arg_;
1865
1866 BFD_ASSERT (small->offset == (bfd_vma) -1);
1867
1868 arg_.big = big;
1869 arg_.diff = diff;
1870 arg_.info = info;
1871 arg_.error_p = FALSE;
1872 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1873 if (arg_.error_p)
1874 {
1875 diff->offset = 0;
1876 return FALSE;
1877 }
1878
1879 /* Check for overflow. */
1880 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1881 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1882 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1883 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1884 return FALSE;
1885
1886 return TRUE;
1887 }
1888
1889 struct elf_m68k_merge_gots_arg
1890 {
1891 /* The BIG got. */
1892 struct elf_m68k_got *big;
1893
1894 /* Context where memory should be allocated. */
1895 struct bfd_link_info *info;
1896
1897 /* Error flag. */
1898 bfd_boolean error_p;
1899 };
1900
1901 /* Process a single entry from DIFF got. Add or update corresponding
1902 entry in the BIG got. */
1903
1904 static int
1905 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1906 {
1907 const struct elf_m68k_got_entry *from;
1908 struct elf_m68k_merge_gots_arg *arg;
1909 struct elf_m68k_got_entry *to;
1910
1911 from = (const struct elf_m68k_got_entry *) *entry_ptr;
1912 arg = (struct elf_m68k_merge_gots_arg *) _arg;
1913
1914 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1915 arg->info);
1916 if (to == NULL)
1917 {
1918 arg->error_p = TRUE;
1919 return 0;
1920 }
1921
1922 BFD_ASSERT (to->u.s1.refcount == 0);
1923 /* All we need to merge is TYPE. */
1924 to->key_.type = from->key_.type;
1925
1926 return 1;
1927 }
1928
1929 /* Merge data from DIFF to BIG. INFO is context where memory should be
1930 allocated. */
1931
1932 static bfd_boolean
1933 elf_m68k_merge_gots (struct elf_m68k_got *big,
1934 struct elf_m68k_got *diff,
1935 struct bfd_link_info *info)
1936 {
1937 if (diff->entries != NULL)
1938 /* DIFF is not empty. Merge it into BIG GOT. */
1939 {
1940 struct elf_m68k_merge_gots_arg arg_;
1941
1942 /* Merge entries. */
1943 arg_.big = big;
1944 arg_.info = info;
1945 arg_.error_p = FALSE;
1946 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1947 if (arg_.error_p)
1948 return FALSE;
1949
1950 /* Merge counters. */
1951 big->n_slots[R_8] += diff->n_slots[R_8];
1952 big->n_slots[R_16] += diff->n_slots[R_16];
1953 big->n_slots[R_32] += diff->n_slots[R_32];
1954 big->local_n_slots += diff->local_n_slots;
1955 }
1956 else
1957 /* DIFF is empty. */
1958 {
1959 BFD_ASSERT (diff->n_slots[R_8] == 0);
1960 BFD_ASSERT (diff->n_slots[R_16] == 0);
1961 BFD_ASSERT (diff->n_slots[R_32] == 0);
1962 BFD_ASSERT (diff->local_n_slots == 0);
1963 }
1964
1965 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
1966 || ((big->n_slots[R_8]
1967 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1968 && (big->n_slots[R_16]
1969 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
1970
1971 return TRUE;
1972 }
1973
1974 struct elf_m68k_finalize_got_offsets_arg
1975 {
1976 /* Ranges of the offsets for GOT entries.
1977 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
1978 R_x is R_8, R_16 and R_32. */
1979 bfd_vma *offset1;
1980 bfd_vma *offset2;
1981
1982 /* Mapping from global symndx to global symbols.
1983 This is used to build lists of got entries for global symbols. */
1984 struct elf_m68k_link_hash_entry **symndx2h;
1985
1986 bfd_vma n_ldm_entries;
1987 };
1988
1989 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
1990 along the way. */
1991
1992 static int
1993 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
1994 {
1995 struct elf_m68k_got_entry *entry;
1996 struct elf_m68k_finalize_got_offsets_arg *arg;
1997
1998 enum elf_m68k_got_offset_size got_offset_size;
1999 bfd_vma entry_size;
2000
2001 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2002 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2003
2004 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2005 BFD_ASSERT (entry->u.s1.refcount == 0);
2006
2007 /* Get GOT offset size for the entry . */
2008 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2009
2010 /* Calculate entry size in bytes. */
2011 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2012
2013 /* Check if we should switch to negative range of the offsets. */
2014 if (arg->offset1[got_offset_size] + entry_size
2015 > arg->offset2[got_offset_size])
2016 {
2017 /* Verify that this is the only switch to negative range for
2018 got_offset_size. If this assertion fails, then we've miscalculated
2019 range for got_offset_size entries in
2020 elf_m68k_finalize_got_offsets. */
2021 BFD_ASSERT (arg->offset2[got_offset_size]
2022 != arg->offset2[-(int) got_offset_size - 1]);
2023
2024 /* Switch. */
2025 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2026 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2027
2028 /* Verify that now we have enough room for the entry. */
2029 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2030 <= arg->offset2[got_offset_size]);
2031 }
2032
2033 /* Assign offset to entry. */
2034 entry->u.s2.offset = arg->offset1[got_offset_size];
2035 arg->offset1[got_offset_size] += entry_size;
2036
2037 if (entry->key_.bfd == NULL)
2038 /* Hook up this entry into the list of got_entries of H. */
2039 {
2040 struct elf_m68k_link_hash_entry *h;
2041
2042 h = arg->symndx2h[entry->key_.symndx];
2043 if (h != NULL)
2044 {
2045 entry->u.s2.next = h->glist;
2046 h->glist = entry;
2047 }
2048 else
2049 /* This should be the entry for TLS_LDM relocation then. */
2050 {
2051 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2052 == R_68K_TLS_LDM32)
2053 && entry->key_.symndx == 0);
2054
2055 ++arg->n_ldm_entries;
2056 }
2057 }
2058 else
2059 /* This entry is for local symbol. */
2060 entry->u.s2.next = NULL;
2061
2062 return 1;
2063 }
2064
2065 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2066 should use negative offsets.
2067 Build list of GOT entries for global symbols along the way.
2068 SYMNDX2H is mapping from global symbol indices to actual
2069 global symbols.
2070 Return offset at which next GOT should start. */
2071
2072 static void
2073 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2074 bfd_boolean use_neg_got_offsets_p,
2075 struct elf_m68k_link_hash_entry **symndx2h,
2076 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2077 {
2078 struct elf_m68k_finalize_got_offsets_arg arg_;
2079 bfd_vma offset1_[2 * R_LAST];
2080 bfd_vma offset2_[2 * R_LAST];
2081 int i;
2082 bfd_vma start_offset;
2083
2084 BFD_ASSERT (got->offset != (bfd_vma) -1);
2085
2086 /* We set entry offsets relative to the .got section (and not the
2087 start of a particular GOT), so that we can use them in
2088 finish_dynamic_symbol without needing to know the GOT which they come
2089 from. */
2090
2091 /* Put offset1 in the middle of offset1_, same for offset2. */
2092 arg_.offset1 = offset1_ + R_LAST;
2093 arg_.offset2 = offset2_ + R_LAST;
2094
2095 start_offset = got->offset;
2096
2097 if (use_neg_got_offsets_p)
2098 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2099 i = -(int) R_32 - 1;
2100 else
2101 /* Setup positives ranges for R_8, R_16 and R_32. */
2102 i = (int) R_8;
2103
2104 for (; i <= (int) R_32; ++i)
2105 {
2106 int j;
2107 size_t n;
2108
2109 /* Set beginning of the range of offsets I. */
2110 arg_.offset1[i] = start_offset;
2111
2112 /* Calculate number of slots that require I offsets. */
2113 j = (i >= 0) ? i : -i - 1;
2114 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2115 n = got->n_slots[j] - n;
2116
2117 if (use_neg_got_offsets_p && n != 0)
2118 {
2119 if (i < 0)
2120 /* We first fill the positive side of the range, so we might
2121 end up with one empty slot at that side when we can't fit
2122 whole 2-slot entry. Account for that at negative side of
2123 the interval with one additional entry. */
2124 n = n / 2 + 1;
2125 else
2126 /* When the number of slots is odd, make positive side of the
2127 range one entry bigger. */
2128 n = (n + 1) / 2;
2129 }
2130
2131 /* N is the number of slots that require I offsets.
2132 Calculate length of the range for I offsets. */
2133 n = 4 * n;
2134
2135 /* Set end of the range. */
2136 arg_.offset2[i] = start_offset + n;
2137
2138 start_offset = arg_.offset2[i];
2139 }
2140
2141 if (!use_neg_got_offsets_p)
2142 /* Make sure that if we try to switch to negative offsets in
2143 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2144 the bug. */
2145 for (i = R_8; i <= R_32; ++i)
2146 arg_.offset2[-i - 1] = arg_.offset2[i];
2147
2148 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2149 beginning of GOT depending on use_neg_got_offsets_p. */
2150 got->offset = arg_.offset1[R_8];
2151
2152 arg_.symndx2h = symndx2h;
2153 arg_.n_ldm_entries = 0;
2154
2155 /* Assign offsets. */
2156 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2157
2158 /* Check offset ranges we have actually assigned. */
2159 for (i = (int) R_8; i <= (int) R_32; ++i)
2160 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2161
2162 *final_offset = start_offset;
2163 *n_ldm_entries = arg_.n_ldm_entries;
2164 }
2165
2166 struct elf_m68k_partition_multi_got_arg
2167 {
2168 /* The GOT we are adding entries to. Aka big got. */
2169 struct elf_m68k_got *current_got;
2170
2171 /* Offset to assign the next CURRENT_GOT. */
2172 bfd_vma offset;
2173
2174 /* Context where memory should be allocated. */
2175 struct bfd_link_info *info;
2176
2177 /* Total number of slots in the .got section.
2178 This is used to calculate size of the .got and .rela.got sections. */
2179 bfd_vma n_slots;
2180
2181 /* Difference in numbers of allocated slots in the .got section
2182 and necessary relocations in the .rela.got section.
2183 This is used to calculate size of the .rela.got section. */
2184 bfd_vma slots_relas_diff;
2185
2186 /* Error flag. */
2187 bfd_boolean error_p;
2188
2189 /* Mapping from global symndx to global symbols.
2190 This is used to build lists of got entries for global symbols. */
2191 struct elf_m68k_link_hash_entry **symndx2h;
2192 };
2193
2194 static void
2195 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2196 {
2197 bfd_vma n_ldm_entries;
2198
2199 elf_m68k_finalize_got_offsets (arg->current_got,
2200 (elf_m68k_hash_table (arg->info)
2201 ->use_neg_got_offsets_p),
2202 arg->symndx2h,
2203 &arg->offset, &n_ldm_entries);
2204
2205 arg->n_slots += arg->current_got->n_slots[R_32];
2206
2207 if (!arg->info->shared)
2208 /* If we are generating a shared object, we need to
2209 output a R_68K_RELATIVE reloc so that the dynamic
2210 linker can adjust this GOT entry. Overwise we
2211 don't need space in .rela.got for local symbols. */
2212 arg->slots_relas_diff += arg->current_got->local_n_slots;
2213
2214 /* @LDM relocations require a 2-slot GOT entry, but only
2215 one relocation. Account for that. */
2216 arg->slots_relas_diff += n_ldm_entries;
2217
2218 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2219 }
2220
2221
2222 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2223 or start a new CURRENT_GOT. */
2224
2225 static int
2226 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2227 {
2228 struct elf_m68k_bfd2got_entry *entry;
2229 struct elf_m68k_partition_multi_got_arg *arg;
2230 struct elf_m68k_got *got;
2231 struct elf_m68k_got diff_;
2232 struct elf_m68k_got *diff;
2233
2234 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2235 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2236
2237 got = entry->got;
2238 BFD_ASSERT (got != NULL);
2239 BFD_ASSERT (got->offset == (bfd_vma) -1);
2240
2241 diff = NULL;
2242
2243 if (arg->current_got != NULL)
2244 /* Construct diff. */
2245 {
2246 diff = &diff_;
2247 elf_m68k_init_got (diff);
2248
2249 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2250 {
2251 if (diff->offset == 0)
2252 /* Offset set to 0 in the diff_ indicates an error. */
2253 {
2254 arg->error_p = TRUE;
2255 goto final_return;
2256 }
2257
2258 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2259 {
2260 elf_m68k_clear_got (diff);
2261 /* Schedule to finish up current_got and start new one. */
2262 diff = NULL;
2263 }
2264 /* else
2265 Merge GOTs no matter what. If big GOT overflows,
2266 we'll fail in relocate_section due to truncated relocations.
2267
2268 ??? May be fail earlier? E.g., in can_merge_gots. */
2269 }
2270 }
2271 else
2272 /* Diff of got against empty current_got is got itself. */
2273 {
2274 /* Create empty current_got to put subsequent GOTs to. */
2275 arg->current_got = elf_m68k_create_empty_got (arg->info);
2276 if (arg->current_got == NULL)
2277 {
2278 arg->error_p = TRUE;
2279 goto final_return;
2280 }
2281
2282 arg->current_got->offset = arg->offset;
2283
2284 diff = got;
2285 }
2286
2287 if (diff != NULL)
2288 {
2289 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2290 {
2291 arg->error_p = TRUE;
2292 goto final_return;
2293 }
2294
2295 /* Now we can free GOT. */
2296 elf_m68k_clear_got (got);
2297
2298 entry->got = arg->current_got;
2299 }
2300 else
2301 {
2302 /* Finish up current_got. */
2303 elf_m68k_partition_multi_got_2 (arg);
2304
2305 /* Schedule to start a new current_got. */
2306 arg->current_got = NULL;
2307
2308 /* Retry. */
2309 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2310 {
2311 BFD_ASSERT (arg->error_p);
2312 goto final_return;
2313 }
2314 }
2315
2316 final_return:
2317 if (diff != NULL)
2318 elf_m68k_clear_got (diff);
2319
2320 return arg->error_p == FALSE ? 1 : 0;
2321 }
2322
2323 /* Helper function to build symndx2h mapping. */
2324
2325 static bfd_boolean
2326 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2327 void *_arg)
2328 {
2329 struct elf_m68k_link_hash_entry *h;
2330
2331 h = elf_m68k_hash_entry (_h);
2332
2333 if (h->got_entry_key != 0)
2334 /* H has at least one entry in the GOT. */
2335 {
2336 struct elf_m68k_partition_multi_got_arg *arg;
2337
2338 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2339
2340 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2341 arg->symndx2h[h->got_entry_key] = h;
2342 }
2343
2344 return TRUE;
2345 }
2346
2347 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2348 lists of GOT entries for global symbols.
2349 Calculate sizes of .got and .rela.got sections. */
2350
2351 static bfd_boolean
2352 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2353 {
2354 struct elf_m68k_multi_got *multi_got;
2355 struct elf_m68k_partition_multi_got_arg arg_;
2356
2357 multi_got = elf_m68k_multi_got (info);
2358
2359 arg_.current_got = NULL;
2360 arg_.offset = 0;
2361 arg_.info = info;
2362 arg_.n_slots = 0;
2363 arg_.slots_relas_diff = 0;
2364 arg_.error_p = FALSE;
2365
2366 if (multi_got->bfd2got != NULL)
2367 {
2368 /* Initialize symndx2h mapping. */
2369 {
2370 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2371 * sizeof (*arg_.symndx2h));
2372 if (arg_.symndx2h == NULL)
2373 return FALSE;
2374
2375 elf_link_hash_traverse (elf_hash_table (info),
2376 elf_m68k_init_symndx2h_1, &arg_);
2377 }
2378
2379 /* Partition. */
2380 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2381 &arg_);
2382 if (arg_.error_p)
2383 {
2384 free (arg_.symndx2h);
2385 arg_.symndx2h = NULL;
2386
2387 return FALSE;
2388 }
2389
2390 /* Finish up last current_got. */
2391 elf_m68k_partition_multi_got_2 (&arg_);
2392
2393 free (arg_.symndx2h);
2394 }
2395
2396 if (elf_hash_table (info)->dynobj != NULL)
2397 /* Set sizes of .got and .rela.got sections. */
2398 {
2399 asection *s;
2400
2401 s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".got");
2402 if (s != NULL)
2403 s->size = arg_.offset;
2404 else
2405 BFD_ASSERT (arg_.offset == 0);
2406
2407 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2408 arg_.n_slots -= arg_.slots_relas_diff;
2409
2410 s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".rela.got");
2411 if (s != NULL)
2412 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2413 else
2414 BFD_ASSERT (arg_.n_slots == 0);
2415 }
2416 else
2417 BFD_ASSERT (multi_got->bfd2got == NULL);
2418
2419 return TRUE;
2420 }
2421
2422 /* Specialized version of elf_m68k_get_got_entry that returns pointer
2423 to hashtable slot, thus allowing removal of entry via
2424 elf_m68k_remove_got_entry. */
2425
2426 static struct elf_m68k_got_entry **
2427 elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got,
2428 struct elf_m68k_got_entry_key *key)
2429 {
2430 void **ptr;
2431 struct elf_m68k_got_entry entry_;
2432 struct elf_m68k_got_entry **entry_ptr;
2433
2434 entry_.key_ = *key;
2435 ptr = htab_find_slot (got->entries, &entry_, NO_INSERT);
2436 BFD_ASSERT (ptr != NULL);
2437
2438 entry_ptr = (struct elf_m68k_got_entry **) ptr;
2439
2440 return entry_ptr;
2441 }
2442
2443 /* Remove entry pointed to by ENTRY_PTR from GOT. */
2444
2445 static void
2446 elf_m68k_remove_got_entry (struct elf_m68k_got *got,
2447 struct elf_m68k_got_entry **entry_ptr)
2448 {
2449 struct elf_m68k_got_entry *entry;
2450
2451 entry = *entry_ptr;
2452
2453 /* Check that offsets have not been finalized yet. */
2454 BFD_ASSERT (got->offset == (bfd_vma) -1);
2455 /* Check that this entry is indeed unused. */
2456 BFD_ASSERT (entry->u.s1.refcount == 0);
2457
2458 elf_m68k_remove_got_entry_type (got, entry->key_.type);
2459
2460 if (entry->key_.bfd != NULL)
2461 got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type);
2462
2463 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
2464
2465 htab_clear_slot (got->entries, (void **) entry_ptr);
2466 }
2467
2468 /* Copy any information related to dynamic linking from a pre-existing
2469 symbol to a newly created symbol. Also called to copy flags and
2470 other back-end info to a weakdef, in which case the symbol is not
2471 newly created and plt/got refcounts and dynamic indices should not
2472 be copied. */
2473
2474 static void
2475 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2476 struct elf_link_hash_entry *_dir,
2477 struct elf_link_hash_entry *_ind)
2478 {
2479 struct elf_m68k_link_hash_entry *dir;
2480 struct elf_m68k_link_hash_entry *ind;
2481
2482 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2483
2484 if (_ind->root.type != bfd_link_hash_indirect)
2485 return;
2486
2487 dir = elf_m68k_hash_entry (_dir);
2488 ind = elf_m68k_hash_entry (_ind);
2489
2490 /* We might have a direct symbol already having entries in the GOTs.
2491 Update its key only in case indirect symbol has GOT entries and
2492 assert that both indirect and direct symbols don't have GOT entries
2493 at the same time. */
2494 if (ind->got_entry_key != 0)
2495 {
2496 BFD_ASSERT (dir->got_entry_key == 0);
2497 /* Assert that GOTs aren't partioned yet. */
2498 BFD_ASSERT (ind->glist == NULL);
2499
2500 dir->got_entry_key = ind->got_entry_key;
2501 ind->got_entry_key = 0;
2502 }
2503 }
2504
2505 /* Look through the relocs for a section during the first phase, and
2506 allocate space in the global offset table or procedure linkage
2507 table. */
2508
2509 static bfd_boolean
2510 elf_m68k_check_relocs (abfd, info, sec, relocs)
2511 bfd *abfd;
2512 struct bfd_link_info *info;
2513 asection *sec;
2514 const Elf_Internal_Rela *relocs;
2515 {
2516 bfd *dynobj;
2517 Elf_Internal_Shdr *symtab_hdr;
2518 struct elf_link_hash_entry **sym_hashes;
2519 const Elf_Internal_Rela *rel;
2520 const Elf_Internal_Rela *rel_end;
2521 asection *sgot;
2522 asection *srelgot;
2523 asection *sreloc;
2524 struct elf_m68k_got *got;
2525
2526 if (info->relocatable)
2527 return TRUE;
2528
2529 dynobj = elf_hash_table (info)->dynobj;
2530 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2531 sym_hashes = elf_sym_hashes (abfd);
2532
2533 sgot = NULL;
2534 srelgot = NULL;
2535 sreloc = NULL;
2536
2537 got = NULL;
2538
2539 rel_end = relocs + sec->reloc_count;
2540 for (rel = relocs; rel < rel_end; rel++)
2541 {
2542 unsigned long r_symndx;
2543 struct elf_link_hash_entry *h;
2544
2545 r_symndx = ELF32_R_SYM (rel->r_info);
2546
2547 if (r_symndx < symtab_hdr->sh_info)
2548 h = NULL;
2549 else
2550 {
2551 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2552 while (h->root.type == bfd_link_hash_indirect
2553 || h->root.type == bfd_link_hash_warning)
2554 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2555 }
2556
2557 switch (ELF32_R_TYPE (rel->r_info))
2558 {
2559 case R_68K_GOT8:
2560 case R_68K_GOT16:
2561 case R_68K_GOT32:
2562 if (h != NULL
2563 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2564 break;
2565 /* Fall through. */
2566
2567 /* Relative GOT relocations. */
2568 case R_68K_GOT8O:
2569 case R_68K_GOT16O:
2570 case R_68K_GOT32O:
2571 /* Fall through. */
2572
2573 /* TLS relocations. */
2574 case R_68K_TLS_GD8:
2575 case R_68K_TLS_GD16:
2576 case R_68K_TLS_GD32:
2577 case R_68K_TLS_LDM8:
2578 case R_68K_TLS_LDM16:
2579 case R_68K_TLS_LDM32:
2580 case R_68K_TLS_IE8:
2581 case R_68K_TLS_IE16:
2582 case R_68K_TLS_IE32:
2583
2584 /* This symbol requires a global offset table entry. */
2585
2586 if (dynobj == NULL)
2587 {
2588 /* Create the .got section. */
2589 elf_hash_table (info)->dynobj = dynobj = abfd;
2590 if (!_bfd_elf_create_got_section (dynobj, info))
2591 return FALSE;
2592 }
2593
2594 if (sgot == NULL)
2595 {
2596 sgot = bfd_get_section_by_name (dynobj, ".got");
2597 BFD_ASSERT (sgot != NULL);
2598 }
2599
2600 if (srelgot == NULL
2601 && (h != NULL || info->shared))
2602 {
2603 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
2604 if (srelgot == NULL)
2605 {
2606 srelgot = bfd_make_section_with_flags (dynobj,
2607 ".rela.got",
2608 (SEC_ALLOC
2609 | SEC_LOAD
2610 | SEC_HAS_CONTENTS
2611 | SEC_IN_MEMORY
2612 | SEC_LINKER_CREATED
2613 | SEC_READONLY));
2614 if (srelgot == NULL
2615 || !bfd_set_section_alignment (dynobj, srelgot, 2))
2616 return FALSE;
2617 }
2618 }
2619
2620 if (got == NULL)
2621 {
2622 struct elf_m68k_bfd2got_entry *bfd2got_entry;
2623
2624 bfd2got_entry
2625 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2626 abfd, FIND_OR_CREATE, info);
2627 if (bfd2got_entry == NULL)
2628 return FALSE;
2629
2630 got = bfd2got_entry->got;
2631 BFD_ASSERT (got != NULL);
2632 }
2633
2634 {
2635 struct elf_m68k_got_entry *got_entry;
2636
2637 /* Add entry to got. */
2638 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2639 ELF32_R_TYPE (rel->r_info),
2640 r_symndx, info);
2641 if (got_entry == NULL)
2642 return FALSE;
2643
2644 if (got_entry->u.s1.refcount == 1)
2645 {
2646 /* Make sure this symbol is output as a dynamic symbol. */
2647 if (h != NULL
2648 && h->dynindx == -1
2649 && !h->forced_local)
2650 {
2651 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2652 return FALSE;
2653 }
2654 }
2655 }
2656
2657 break;
2658
2659 case R_68K_PLT8:
2660 case R_68K_PLT16:
2661 case R_68K_PLT32:
2662 /* This symbol requires a procedure linkage table entry. We
2663 actually build the entry in adjust_dynamic_symbol,
2664 because this might be a case of linking PIC code which is
2665 never referenced by a dynamic object, in which case we
2666 don't need to generate a procedure linkage table entry
2667 after all. */
2668
2669 /* If this is a local symbol, we resolve it directly without
2670 creating a procedure linkage table entry. */
2671 if (h == NULL)
2672 continue;
2673
2674 h->needs_plt = 1;
2675 h->plt.refcount++;
2676 break;
2677
2678 case R_68K_PLT8O:
2679 case R_68K_PLT16O:
2680 case R_68K_PLT32O:
2681 /* This symbol requires a procedure linkage table entry. */
2682
2683 if (h == NULL)
2684 {
2685 /* It does not make sense to have this relocation for a
2686 local symbol. FIXME: does it? How to handle it if
2687 it does make sense? */
2688 bfd_set_error (bfd_error_bad_value);
2689 return FALSE;
2690 }
2691
2692 /* Make sure this symbol is output as a dynamic symbol. */
2693 if (h->dynindx == -1
2694 && !h->forced_local)
2695 {
2696 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2697 return FALSE;
2698 }
2699
2700 h->needs_plt = 1;
2701 h->plt.refcount++;
2702 break;
2703
2704 case R_68K_PC8:
2705 case R_68K_PC16:
2706 case R_68K_PC32:
2707 /* If we are creating a shared library and this is not a local
2708 symbol, we need to copy the reloc into the shared library.
2709 However when linking with -Bsymbolic and this is a global
2710 symbol which is defined in an object we are including in the
2711 link (i.e., DEF_REGULAR is set), then we can resolve the
2712 reloc directly. At this point we have not seen all the input
2713 files, so it is possible that DEF_REGULAR is not set now but
2714 will be set later (it is never cleared). We account for that
2715 possibility below by storing information in the
2716 pcrel_relocs_copied field of the hash table entry. */
2717 if (!(info->shared
2718 && (sec->flags & SEC_ALLOC) != 0
2719 && h != NULL
2720 && (!info->symbolic
2721 || h->root.type == bfd_link_hash_defweak
2722 || !h->def_regular)))
2723 {
2724 if (h != NULL)
2725 {
2726 /* Make sure a plt entry is created for this symbol if
2727 it turns out to be a function defined by a dynamic
2728 object. */
2729 h->plt.refcount++;
2730 }
2731 break;
2732 }
2733 /* Fall through. */
2734 case R_68K_8:
2735 case R_68K_16:
2736 case R_68K_32:
2737 if (h != NULL)
2738 {
2739 /* Make sure a plt entry is created for this symbol if it
2740 turns out to be a function defined by a dynamic object. */
2741 h->plt.refcount++;
2742 }
2743
2744 /* If we are creating a shared library, we need to copy the
2745 reloc into the shared library. */
2746 if (info->shared
2747 && (sec->flags & SEC_ALLOC) != 0)
2748 {
2749 /* When creating a shared object, we must copy these
2750 reloc types into the output file. We create a reloc
2751 section in dynobj and make room for this reloc. */
2752 if (sreloc == NULL)
2753 {
2754 sreloc = _bfd_elf_make_dynamic_reloc_section
2755 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2756
2757 if (sreloc == NULL)
2758 return FALSE;
2759 }
2760
2761 if (sec->flags & SEC_READONLY
2762 /* Don't set DF_TEXTREL yet for PC relative
2763 relocations, they might be discarded later. */
2764 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2765 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2766 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2767 info->flags |= DF_TEXTREL;
2768
2769 sreloc->size += sizeof (Elf32_External_Rela);
2770
2771 /* We count the number of PC relative relocations we have
2772 entered for this symbol, so that we can discard them
2773 again if, in the -Bsymbolic case, the symbol is later
2774 defined by a regular object, or, in the normal shared
2775 case, the symbol is forced to be local. Note that this
2776 function is only called if we are using an m68kelf linker
2777 hash table, which means that h is really a pointer to an
2778 elf_m68k_link_hash_entry. */
2779 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2780 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2781 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2782 {
2783 struct elf_m68k_pcrel_relocs_copied *p;
2784 struct elf_m68k_pcrel_relocs_copied **head;
2785
2786 if (h != NULL)
2787 {
2788 struct elf_m68k_link_hash_entry *eh
2789 = elf_m68k_hash_entry (h);
2790 head = &eh->pcrel_relocs_copied;
2791 }
2792 else
2793 {
2794 asection *s;
2795 void *vpp;
2796 Elf_Internal_Sym *isym;
2797
2798 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2799 abfd, r_symndx);
2800 if (isym == NULL)
2801 return FALSE;
2802
2803 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2804 if (s == NULL)
2805 s = sec;
2806
2807 vpp = &elf_section_data (s)->local_dynrel;
2808 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2809 }
2810
2811 for (p = *head; p != NULL; p = p->next)
2812 if (p->section == sreloc)
2813 break;
2814
2815 if (p == NULL)
2816 {
2817 p = ((struct elf_m68k_pcrel_relocs_copied *)
2818 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2819 if (p == NULL)
2820 return FALSE;
2821 p->next = *head;
2822 *head = p;
2823 p->section = sreloc;
2824 p->count = 0;
2825 }
2826
2827 ++p->count;
2828 }
2829 }
2830
2831 break;
2832
2833 /* This relocation describes the C++ object vtable hierarchy.
2834 Reconstruct it for later use during GC. */
2835 case R_68K_GNU_VTINHERIT:
2836 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2837 return FALSE;
2838 break;
2839
2840 /* This relocation describes which C++ vtable entries are actually
2841 used. Record for later use during GC. */
2842 case R_68K_GNU_VTENTRY:
2843 BFD_ASSERT (h != NULL);
2844 if (h != NULL
2845 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2846 return FALSE;
2847 break;
2848
2849 default:
2850 break;
2851 }
2852 }
2853
2854 return TRUE;
2855 }
2856
2857 /* Return the section that should be marked against GC for a given
2858 relocation. */
2859
2860 static asection *
2861 elf_m68k_gc_mark_hook (asection *sec,
2862 struct bfd_link_info *info,
2863 Elf_Internal_Rela *rel,
2864 struct elf_link_hash_entry *h,
2865 Elf_Internal_Sym *sym)
2866 {
2867 if (h != NULL)
2868 switch (ELF32_R_TYPE (rel->r_info))
2869 {
2870 case R_68K_GNU_VTINHERIT:
2871 case R_68K_GNU_VTENTRY:
2872 return NULL;
2873 }
2874
2875 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2876 }
2877
2878 /* Update the got entry reference counts for the section being removed. */
2879
2880 static bfd_boolean
2881 elf_m68k_gc_sweep_hook (bfd *abfd,
2882 struct bfd_link_info *info,
2883 asection *sec,
2884 const Elf_Internal_Rela *relocs)
2885 {
2886 Elf_Internal_Shdr *symtab_hdr;
2887 struct elf_link_hash_entry **sym_hashes;
2888 const Elf_Internal_Rela *rel, *relend;
2889 bfd *dynobj;
2890 asection *sgot;
2891 asection *srelgot;
2892 struct elf_m68k_got *got;
2893
2894 if (info->relocatable)
2895 return TRUE;
2896
2897 dynobj = elf_hash_table (info)->dynobj;
2898 if (dynobj == NULL)
2899 return TRUE;
2900
2901 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2902 sym_hashes = elf_sym_hashes (abfd);
2903
2904 sgot = bfd_get_section_by_name (dynobj, ".got");
2905 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
2906 got = NULL;
2907
2908 relend = relocs + sec->reloc_count;
2909 for (rel = relocs; rel < relend; rel++)
2910 {
2911 unsigned long r_symndx;
2912 struct elf_link_hash_entry *h = NULL;
2913
2914 r_symndx = ELF32_R_SYM (rel->r_info);
2915 if (r_symndx >= symtab_hdr->sh_info)
2916 {
2917 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2918 while (h->root.type == bfd_link_hash_indirect
2919 || h->root.type == bfd_link_hash_warning)
2920 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2921 }
2922
2923 switch (ELF32_R_TYPE (rel->r_info))
2924 {
2925 case R_68K_GOT8:
2926 case R_68K_GOT16:
2927 case R_68K_GOT32:
2928 if (h != NULL
2929 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2930 break;
2931
2932 /* FALLTHRU */
2933 case R_68K_GOT8O:
2934 case R_68K_GOT16O:
2935 case R_68K_GOT32O:
2936 /* Fall through. */
2937
2938 /* TLS relocations. */
2939 case R_68K_TLS_GD8:
2940 case R_68K_TLS_GD16:
2941 case R_68K_TLS_GD32:
2942 case R_68K_TLS_LDM8:
2943 case R_68K_TLS_LDM16:
2944 case R_68K_TLS_LDM32:
2945 case R_68K_TLS_IE8:
2946 case R_68K_TLS_IE16:
2947 case R_68K_TLS_IE32:
2948
2949 if (got == NULL)
2950 {
2951 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2952 abfd, MUST_FIND, NULL)->got;
2953 BFD_ASSERT (got != NULL);
2954 }
2955
2956 {
2957 struct elf_m68k_got_entry_key key_;
2958 struct elf_m68k_got_entry **got_entry_ptr;
2959 struct elf_m68k_got_entry *got_entry;
2960
2961 elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx,
2962 ELF32_R_TYPE (rel->r_info));
2963 got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_);
2964
2965 got_entry = *got_entry_ptr;
2966
2967 if (got_entry->u.s1.refcount > 0)
2968 {
2969 --got_entry->u.s1.refcount;
2970
2971 if (got_entry->u.s1.refcount == 0)
2972 /* We don't need the .got entry any more. */
2973 elf_m68k_remove_got_entry (got, got_entry_ptr);
2974 }
2975 }
2976 break;
2977
2978 case R_68K_PLT8:
2979 case R_68K_PLT16:
2980 case R_68K_PLT32:
2981 case R_68K_PLT8O:
2982 case R_68K_PLT16O:
2983 case R_68K_PLT32O:
2984 case R_68K_PC8:
2985 case R_68K_PC16:
2986 case R_68K_PC32:
2987 case R_68K_8:
2988 case R_68K_16:
2989 case R_68K_32:
2990 if (h != NULL)
2991 {
2992 if (h->plt.refcount > 0)
2993 --h->plt.refcount;
2994 }
2995 break;
2996
2997 default:
2998 break;
2999 }
3000 }
3001
3002 return TRUE;
3003 }
3004
3005 /* Return the type of PLT associated with OUTPUT_BFD. */
3006
3007 static const struct elf_m68k_plt_info *
3008 elf_m68k_get_plt_info (bfd *output_bfd)
3009 {
3010 unsigned int features;
3011
3012 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
3013 if (features & cpu32)
3014 return &elf_cpu32_plt_info;
3015 if (features & mcfisa_b)
3016 return &elf_isab_plt_info;
3017 if (features & mcfisa_c)
3018 return &elf_isac_plt_info;
3019 return &elf_m68k_plt_info;
3020 }
3021
3022 /* This function is called after all the input files have been read,
3023 and the input sections have been assigned to output sections.
3024 It's a convenient place to determine the PLT style. */
3025
3026 static bfd_boolean
3027 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
3028 {
3029 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
3030 sections. */
3031 if (!elf_m68k_partition_multi_got (info))
3032 return FALSE;
3033
3034 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
3035 return TRUE;
3036 }
3037
3038 /* Adjust a symbol defined by a dynamic object and referenced by a
3039 regular object. The current definition is in some section of the
3040 dynamic object, but we're not including those sections. We have to
3041 change the definition to something the rest of the link can
3042 understand. */
3043
3044 static bfd_boolean
3045 elf_m68k_adjust_dynamic_symbol (info, h)
3046 struct bfd_link_info *info;
3047 struct elf_link_hash_entry *h;
3048 {
3049 struct elf_m68k_link_hash_table *htab;
3050 bfd *dynobj;
3051 asection *s;
3052
3053 htab = elf_m68k_hash_table (info);
3054 dynobj = elf_hash_table (info)->dynobj;
3055
3056 /* Make sure we know what is going on here. */
3057 BFD_ASSERT (dynobj != NULL
3058 && (h->needs_plt
3059 || h->u.weakdef != NULL
3060 || (h->def_dynamic
3061 && h->ref_regular
3062 && !h->def_regular)));
3063
3064 /* If this is a function, put it in the procedure linkage table. We
3065 will fill in the contents of the procedure linkage table later,
3066 when we know the address of the .got section. */
3067 if (h->type == STT_FUNC
3068 || h->needs_plt)
3069 {
3070 if ((h->plt.refcount <= 0
3071 || SYMBOL_CALLS_LOCAL (info, h)
3072 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3073 && h->root.type == bfd_link_hash_undefweak))
3074 /* We must always create the plt entry if it was referenced
3075 by a PLTxxO relocation. In this case we already recorded
3076 it as a dynamic symbol. */
3077 && h->dynindx == -1)
3078 {
3079 /* This case can occur if we saw a PLTxx reloc in an input
3080 file, but the symbol was never referred to by a dynamic
3081 object, or if all references were garbage collected. In
3082 such a case, we don't actually need to build a procedure
3083 linkage table, and we can just do a PCxx reloc instead. */
3084 h->plt.offset = (bfd_vma) -1;
3085 h->needs_plt = 0;
3086 return TRUE;
3087 }
3088
3089 /* Make sure this symbol is output as a dynamic symbol. */
3090 if (h->dynindx == -1
3091 && !h->forced_local)
3092 {
3093 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3094 return FALSE;
3095 }
3096
3097 s = bfd_get_section_by_name (dynobj, ".plt");
3098 BFD_ASSERT (s != NULL);
3099
3100 /* If this is the first .plt entry, make room for the special
3101 first entry. */
3102 if (s->size == 0)
3103 s->size = htab->plt_info->size;
3104
3105 /* If this symbol is not defined in a regular file, and we are
3106 not generating a shared library, then set the symbol to this
3107 location in the .plt. This is required to make function
3108 pointers compare as equal between the normal executable and
3109 the shared library. */
3110 if (!info->shared
3111 && !h->def_regular)
3112 {
3113 h->root.u.def.section = s;
3114 h->root.u.def.value = s->size;
3115 }
3116
3117 h->plt.offset = s->size;
3118
3119 /* Make room for this entry. */
3120 s->size += htab->plt_info->size;
3121
3122 /* We also need to make an entry in the .got.plt section, which
3123 will be placed in the .got section by the linker script. */
3124 s = bfd_get_section_by_name (dynobj, ".got.plt");
3125 BFD_ASSERT (s != NULL);
3126 s->size += 4;
3127
3128 /* We also need to make an entry in the .rela.plt section. */
3129 s = bfd_get_section_by_name (dynobj, ".rela.plt");
3130 BFD_ASSERT (s != NULL);
3131 s->size += sizeof (Elf32_External_Rela);
3132
3133 return TRUE;
3134 }
3135
3136 /* Reinitialize the plt offset now that it is not used as a reference
3137 count any more. */
3138 h->plt.offset = (bfd_vma) -1;
3139
3140 /* If this is a weak symbol, and there is a real definition, the
3141 processor independent code will have arranged for us to see the
3142 real definition first, and we can just use the same value. */
3143 if (h->u.weakdef != NULL)
3144 {
3145 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3146 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3147 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3148 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3149 return TRUE;
3150 }
3151
3152 /* This is a reference to a symbol defined by a dynamic object which
3153 is not a function. */
3154
3155 /* If we are creating a shared library, we must presume that the
3156 only references to the symbol are via the global offset table.
3157 For such cases we need not do anything here; the relocations will
3158 be handled correctly by relocate_section. */
3159 if (info->shared)
3160 return TRUE;
3161
3162 if (h->size == 0)
3163 {
3164 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
3165 h->root.root.string);
3166 return TRUE;
3167 }
3168
3169 /* We must allocate the symbol in our .dynbss section, which will
3170 become part of the .bss section of the executable. There will be
3171 an entry for this symbol in the .dynsym section. The dynamic
3172 object will contain position independent code, so all references
3173 from the dynamic object to this symbol will go through the global
3174 offset table. The dynamic linker will use the .dynsym entry to
3175 determine the address it must put in the global offset table, so
3176 both the dynamic object and the regular object will refer to the
3177 same memory location for the variable. */
3178
3179 s = bfd_get_section_by_name (dynobj, ".dynbss");
3180 BFD_ASSERT (s != NULL);
3181
3182 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3183 copy the initial value out of the dynamic object and into the
3184 runtime process image. We need to remember the offset into the
3185 .rela.bss section we are going to use. */
3186 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
3187 {
3188 asection *srel;
3189
3190 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
3191 BFD_ASSERT (srel != NULL);
3192 srel->size += sizeof (Elf32_External_Rela);
3193 h->needs_copy = 1;
3194 }
3195
3196 return _bfd_elf_adjust_dynamic_copy (h, s);
3197 }
3198
3199 /* Set the sizes of the dynamic sections. */
3200
3201 static bfd_boolean
3202 elf_m68k_size_dynamic_sections (output_bfd, info)
3203 bfd *output_bfd ATTRIBUTE_UNUSED;
3204 struct bfd_link_info *info;
3205 {
3206 bfd *dynobj;
3207 asection *s;
3208 bfd_boolean plt;
3209 bfd_boolean relocs;
3210
3211 dynobj = elf_hash_table (info)->dynobj;
3212 BFD_ASSERT (dynobj != NULL);
3213
3214 if (elf_hash_table (info)->dynamic_sections_created)
3215 {
3216 /* Set the contents of the .interp section to the interpreter. */
3217 if (info->executable)
3218 {
3219 s = bfd_get_section_by_name (dynobj, ".interp");
3220 BFD_ASSERT (s != NULL);
3221 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3222 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3223 }
3224 }
3225 else
3226 {
3227 /* We may have created entries in the .rela.got section.
3228 However, if we are not creating the dynamic sections, we will
3229 not actually use these entries. Reset the size of .rela.got,
3230 which will cause it to get stripped from the output file
3231 below. */
3232 s = bfd_get_section_by_name (dynobj, ".rela.got");
3233 if (s != NULL)
3234 s->size = 0;
3235 }
3236
3237 /* If this is a -Bsymbolic shared link, then we need to discard all
3238 PC relative relocs against symbols defined in a regular object.
3239 For the normal shared case we discard the PC relative relocs
3240 against symbols that have become local due to visibility changes.
3241 We allocated space for them in the check_relocs routine, but we
3242 will not fill them in in the relocate_section routine. */
3243 if (info->shared)
3244 elf_link_hash_traverse (elf_hash_table (info),
3245 elf_m68k_discard_copies,
3246 (PTR) info);
3247
3248 /* The check_relocs and adjust_dynamic_symbol entry points have
3249 determined the sizes of the various dynamic sections. Allocate
3250 memory for them. */
3251 plt = FALSE;
3252 relocs = FALSE;
3253 for (s = dynobj->sections; s != NULL; s = s->next)
3254 {
3255 const char *name;
3256
3257 if ((s->flags & SEC_LINKER_CREATED) == 0)
3258 continue;
3259
3260 /* It's OK to base decisions on the section name, because none
3261 of the dynobj section names depend upon the input files. */
3262 name = bfd_get_section_name (dynobj, s);
3263
3264 if (strcmp (name, ".plt") == 0)
3265 {
3266 /* Remember whether there is a PLT. */
3267 plt = s->size != 0;
3268 }
3269 else if (CONST_STRNEQ (name, ".rela"))
3270 {
3271 if (s->size != 0)
3272 {
3273 relocs = TRUE;
3274
3275 /* We use the reloc_count field as a counter if we need
3276 to copy relocs into the output file. */
3277 s->reloc_count = 0;
3278 }
3279 }
3280 else if (! CONST_STRNEQ (name, ".got")
3281 && strcmp (name, ".dynbss") != 0)
3282 {
3283 /* It's not one of our sections, so don't allocate space. */
3284 continue;
3285 }
3286
3287 if (s->size == 0)
3288 {
3289 /* If we don't need this section, strip it from the
3290 output file. This is mostly to handle .rela.bss and
3291 .rela.plt. We must create both sections in
3292 create_dynamic_sections, because they must be created
3293 before the linker maps input sections to output
3294 sections. The linker does that before
3295 adjust_dynamic_symbol is called, and it is that
3296 function which decides whether anything needs to go
3297 into these sections. */
3298 s->flags |= SEC_EXCLUDE;
3299 continue;
3300 }
3301
3302 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3303 continue;
3304
3305 /* Allocate memory for the section contents. */
3306 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3307 Unused entries should be reclaimed before the section's contents
3308 are written out, but at the moment this does not happen. Thus in
3309 order to prevent writing out garbage, we initialise the section's
3310 contents to zero. */
3311 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3312 if (s->contents == NULL)
3313 return FALSE;
3314 }
3315
3316 if (elf_hash_table (info)->dynamic_sections_created)
3317 {
3318 /* Add some entries to the .dynamic section. We fill in the
3319 values later, in elf_m68k_finish_dynamic_sections, but we
3320 must add the entries now so that we get the correct size for
3321 the .dynamic section. The DT_DEBUG entry is filled in by the
3322 dynamic linker and used by the debugger. */
3323 #define add_dynamic_entry(TAG, VAL) \
3324 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3325
3326 if (!info->shared)
3327 {
3328 if (!add_dynamic_entry (DT_DEBUG, 0))
3329 return FALSE;
3330 }
3331
3332 if (plt)
3333 {
3334 if (!add_dynamic_entry (DT_PLTGOT, 0)
3335 || !add_dynamic_entry (DT_PLTRELSZ, 0)
3336 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3337 || !add_dynamic_entry (DT_JMPREL, 0))
3338 return FALSE;
3339 }
3340
3341 if (relocs)
3342 {
3343 if (!add_dynamic_entry (DT_RELA, 0)
3344 || !add_dynamic_entry (DT_RELASZ, 0)
3345 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
3346 return FALSE;
3347 }
3348
3349 if ((info->flags & DF_TEXTREL) != 0)
3350 {
3351 if (!add_dynamic_entry (DT_TEXTREL, 0))
3352 return FALSE;
3353 }
3354 }
3355 #undef add_dynamic_entry
3356
3357 return TRUE;
3358 }
3359
3360 /* This function is called via elf_link_hash_traverse if we are
3361 creating a shared object. In the -Bsymbolic case it discards the
3362 space allocated to copy PC relative relocs against symbols which
3363 are defined in regular objects. For the normal shared case, it
3364 discards space for pc-relative relocs that have become local due to
3365 symbol visibility changes. We allocated space for them in the
3366 check_relocs routine, but we won't fill them in in the
3367 relocate_section routine.
3368
3369 We also check whether any of the remaining relocations apply
3370 against a readonly section, and set the DF_TEXTREL flag in this
3371 case. */
3372
3373 static bfd_boolean
3374 elf_m68k_discard_copies (h, inf)
3375 struct elf_link_hash_entry *h;
3376 PTR inf;
3377 {
3378 struct bfd_link_info *info = (struct bfd_link_info *) inf;
3379 struct elf_m68k_pcrel_relocs_copied *s;
3380
3381 if (h->root.type == bfd_link_hash_warning)
3382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3383
3384 if (!SYMBOL_CALLS_LOCAL (info, h))
3385 {
3386 if ((info->flags & DF_TEXTREL) == 0)
3387 {
3388 /* Look for relocations against read-only sections. */
3389 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3390 s != NULL;
3391 s = s->next)
3392 if ((s->section->flags & SEC_READONLY) != 0)
3393 {
3394 info->flags |= DF_TEXTREL;
3395 break;
3396 }
3397 }
3398
3399 return TRUE;
3400 }
3401
3402 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3403 s != NULL;
3404 s = s->next)
3405 s->section->size -= s->count * sizeof (Elf32_External_Rela);
3406
3407 return TRUE;
3408 }
3409
3410
3411 /* Install relocation RELA. */
3412
3413 static void
3414 elf_m68k_install_rela (bfd *output_bfd,
3415 asection *srela,
3416 Elf_Internal_Rela *rela)
3417 {
3418 bfd_byte *loc;
3419
3420 loc = srela->contents;
3421 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3422 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3423 }
3424
3425 /* Return the base VMA address which should be subtracted from real addresses
3426 when resolving @dtpoff relocation.
3427 This is PT_TLS segment p_vaddr. */
3428
3429 static bfd_vma
3430 dtpoff_base (struct bfd_link_info *info)
3431 {
3432 /* If tls_sec is NULL, we should have signalled an error already. */
3433 if (elf_hash_table (info)->tls_sec == NULL)
3434 return 0;
3435 return elf_hash_table (info)->tls_sec->vma;
3436 }
3437
3438 /* Return the relocation value for @tpoff relocation
3439 if STT_TLS virtual address is ADDRESS. */
3440
3441 static bfd_vma
3442 tpoff (struct bfd_link_info *info, bfd_vma address)
3443 {
3444 struct elf_link_hash_table *htab = elf_hash_table (info);
3445 bfd_vma base;
3446
3447 /* If tls_sec is NULL, we should have signalled an error already. */
3448 if (htab->tls_sec == NULL)
3449 return 0;
3450 base = align_power ((bfd_vma) 8, htab->tls_sec->alignment_power);
3451 return address - htab->tls_sec->vma + base;
3452 }
3453
3454 /* Relocate an M68K ELF section. */
3455
3456 static bfd_boolean
3457 elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section,
3458 contents, relocs, local_syms, local_sections)
3459 bfd *output_bfd;
3460 struct bfd_link_info *info;
3461 bfd *input_bfd;
3462 asection *input_section;
3463 bfd_byte *contents;
3464 Elf_Internal_Rela *relocs;
3465 Elf_Internal_Sym *local_syms;
3466 asection **local_sections;
3467 {
3468 bfd *dynobj;
3469 Elf_Internal_Shdr *symtab_hdr;
3470 struct elf_link_hash_entry **sym_hashes;
3471 asection *sgot;
3472 asection *splt;
3473 asection *sreloc;
3474 struct elf_m68k_got *got;
3475 Elf_Internal_Rela *rel;
3476 Elf_Internal_Rela *relend;
3477
3478 dynobj = elf_hash_table (info)->dynobj;
3479 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3480 sym_hashes = elf_sym_hashes (input_bfd);
3481
3482 sgot = NULL;
3483 splt = NULL;
3484 sreloc = NULL;
3485
3486 got = NULL;
3487
3488 rel = relocs;
3489 relend = relocs + input_section->reloc_count;
3490 for (; rel < relend; rel++)
3491 {
3492 int r_type;
3493 reloc_howto_type *howto;
3494 unsigned long r_symndx;
3495 struct elf_link_hash_entry *h;
3496 Elf_Internal_Sym *sym;
3497 asection *sec;
3498 bfd_vma relocation;
3499 bfd_boolean unresolved_reloc;
3500 bfd_reloc_status_type r;
3501
3502 r_type = ELF32_R_TYPE (rel->r_info);
3503 if (r_type < 0 || r_type >= (int) R_68K_max)
3504 {
3505 bfd_set_error (bfd_error_bad_value);
3506 return FALSE;
3507 }
3508 howto = howto_table + r_type;
3509
3510 r_symndx = ELF32_R_SYM (rel->r_info);
3511
3512 h = NULL;
3513 sym = NULL;
3514 sec = NULL;
3515 unresolved_reloc = FALSE;
3516
3517 if (r_symndx < symtab_hdr->sh_info)
3518 {
3519 sym = local_syms + r_symndx;
3520 sec = local_sections[r_symndx];
3521 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3522 }
3523 else
3524 {
3525 bfd_boolean warned;
3526
3527 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3528 r_symndx, symtab_hdr, sym_hashes,
3529 h, sec, relocation,
3530 unresolved_reloc, warned);
3531 }
3532
3533 if (sec != NULL && elf_discarded_section (sec))
3534 {
3535 /* For relocs against symbols from removed linkonce sections,
3536 or sections discarded by a linker script, we just want the
3537 section contents zeroed. Avoid any special processing. */
3538 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
3539 rel->r_info = 0;
3540 rel->r_addend = 0;
3541 continue;
3542 }
3543
3544 if (info->relocatable)
3545 continue;
3546
3547 switch (r_type)
3548 {
3549 case R_68K_GOT8:
3550 case R_68K_GOT16:
3551 case R_68K_GOT32:
3552 /* Relocation is to the address of the entry for this symbol
3553 in the global offset table. */
3554 if (h != NULL
3555 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3556 {
3557 if (elf_m68k_hash_table (info)->local_gp_p)
3558 {
3559 bfd_vma sgot_output_offset;
3560 bfd_vma got_offset;
3561
3562 if (sgot == NULL)
3563 {
3564 sgot = bfd_get_section_by_name (dynobj, ".got");
3565
3566 if (sgot != NULL)
3567 sgot_output_offset = sgot->output_offset;
3568 else
3569 /* In this case we have a reference to
3570 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3571 empty.
3572 ??? Issue a warning? */
3573 sgot_output_offset = 0;
3574 }
3575 else
3576 sgot_output_offset = sgot->output_offset;
3577
3578 if (got == NULL)
3579 {
3580 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3581
3582 bfd2got_entry
3583 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3584 input_bfd, SEARCH, NULL);
3585
3586 if (bfd2got_entry != NULL)
3587 {
3588 got = bfd2got_entry->got;
3589 BFD_ASSERT (got != NULL);
3590
3591 got_offset = got->offset;
3592 }
3593 else
3594 /* In this case we have a reference to
3595 _GLOBAL_OFFSET_TABLE_, but no other references
3596 accessing any GOT entries.
3597 ??? Issue a warning? */
3598 got_offset = 0;
3599 }
3600 else
3601 got_offset = got->offset;
3602
3603 /* Adjust GOT pointer to point to the GOT
3604 assigned to input_bfd. */
3605 rel->r_addend += sgot_output_offset + got_offset;
3606 }