| 1 |
/* Motorola 68k series support for 32-bit ELF |
| 2 |
Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, |
| 3 |
2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. |
| 4 |
|
| 5 |
This file is part of BFD, the Binary File Descriptor library. |
| 6 |
|
| 7 |
This program is free software; you can redistribute it and/or modify |
| 8 |
it under the terms of the GNU General Public License as published by |
| 9 |
the Free Software Foundation; either version 3 of the License, or |
| 10 |
(at your option) any later version. |
| 11 |
|
| 12 |
This program is distributed in the hope that it will be useful, |
| 13 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 |
GNU General Public License for more details. |
| 16 |
|
| 17 |
You should have received a copy of the GNU General Public License |
| 18 |
along with this program; if not, write to the Free Software |
| 19 |
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| 20 |
MA 02110-1301, USA. */ |
| 21 |
|
| 22 |
#include "sysdep.h" |
| 23 |
#include "bfd.h" |
| 24 |
#include "bfdlink.h" |
| 25 |
#include "libbfd.h" |
| 26 |
#include "elf-bfd.h" |
| 27 |
#include "elf/m68k.h" |
| 28 |
#include "opcode/m68k.h" |
| 29 |
|
| 30 |
static reloc_howto_type *reloc_type_lookup |
| 31 |
PARAMS ((bfd *, bfd_reloc_code_real_type)); |
| 32 |
static void rtype_to_howto |
| 33 |
PARAMS ((bfd *, arelent *, Elf_Internal_Rela *)); |
| 34 |
static struct bfd_hash_entry *elf_m68k_link_hash_newfunc |
| 35 |
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); |
| 36 |
static struct bfd_link_hash_table *elf_m68k_link_hash_table_create |
| 37 |
PARAMS ((bfd *)); |
| 38 |
static bfd_boolean elf_m68k_check_relocs |
| 39 |
PARAMS ((bfd *, struct bfd_link_info *, asection *, |
| 40 |
const Elf_Internal_Rela *)); |
| 41 |
static bfd_boolean elf_m68k_adjust_dynamic_symbol |
| 42 |
PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); |
| 43 |
static bfd_boolean elf_m68k_size_dynamic_sections |
| 44 |
PARAMS ((bfd *, struct bfd_link_info *)); |
| 45 |
static bfd_boolean elf_m68k_discard_copies |
| 46 |
PARAMS ((struct elf_link_hash_entry *, PTR)); |
| 47 |
static bfd_boolean elf_m68k_relocate_section |
| 48 |
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, |
| 49 |
Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); |
| 50 |
static bfd_boolean elf_m68k_finish_dynamic_symbol |
| 51 |
PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, |
| 52 |
Elf_Internal_Sym *)); |
| 53 |
static bfd_boolean elf_m68k_finish_dynamic_sections |
| 54 |
PARAMS ((bfd *, struct bfd_link_info *)); |
| 55 |
|
| 56 |
static bfd_boolean elf32_m68k_set_private_flags |
| 57 |
PARAMS ((bfd *, flagword)); |
| 58 |
static bfd_boolean elf32_m68k_merge_private_bfd_data |
| 59 |
PARAMS ((bfd *, bfd *)); |
| 60 |
static bfd_boolean elf32_m68k_print_private_bfd_data |
| 61 |
PARAMS ((bfd *, PTR)); |
| 62 |
static enum elf_reloc_type_class elf32_m68k_reloc_type_class |
| 63 |
PARAMS ((const Elf_Internal_Rela *)); |
| 64 |
|
| 65 |
static reloc_howto_type howto_table[] = { |
| 66 |
HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE), |
| 67 |
HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE), |
| 68 |
HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE), |
| 69 |
HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE), |
| 70 |
HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE), |
| 71 |
HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE), |
| 72 |
HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE), |
| 73 |
HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE), |
| 74 |
HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE), |
| 75 |
HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE), |
| 76 |
HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE), |
| 77 |
HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE), |
| 78 |
HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE), |
| 79 |
HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE), |
| 80 |
HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE), |
| 81 |
HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE), |
| 82 |
HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE), |
| 83 |
HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE), |
| 84 |
HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE), |
| 85 |
HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE), |
| 86 |
HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE), |
| 87 |
HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE), |
| 88 |
HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE), |
| 89 |
/* GNU extension to record C++ vtable hierarchy. */ |
| 90 |
HOWTO (R_68K_GNU_VTINHERIT, /* type */ |
| 91 |
0, /* rightshift */ |
| 92 |
2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 93 |
0, /* bitsize */ |
| 94 |
FALSE, /* pc_relative */ |
| 95 |
0, /* bitpos */ |
| 96 |
complain_overflow_dont, /* complain_on_overflow */ |
| 97 |
NULL, /* special_function */ |
| 98 |
"R_68K_GNU_VTINHERIT", /* name */ |
| 99 |
FALSE, /* partial_inplace */ |
| 100 |
0, /* src_mask */ |
| 101 |
0, /* dst_mask */ |
| 102 |
FALSE), |
| 103 |
/* GNU extension to record C++ vtable member usage. */ |
| 104 |
HOWTO (R_68K_GNU_VTENTRY, /* type */ |
| 105 |
0, /* rightshift */ |
| 106 |
2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 107 |
0, /* bitsize */ |
| 108 |
FALSE, /* pc_relative */ |
| 109 |
0, /* bitpos */ |
| 110 |
complain_overflow_dont, /* complain_on_overflow */ |
| 111 |
_bfd_elf_rel_vtable_reloc_fn, /* special_function */ |
| 112 |
"R_68K_GNU_VTENTRY", /* name */ |
| 113 |
FALSE, /* partial_inplace */ |
| 114 |
0, /* src_mask */ |
| 115 |
0, /* dst_mask */ |
| 116 |
FALSE), |
| 117 |
|
| 118 |
/* TLS general dynamic variable reference. */ |
| 119 |
HOWTO (R_68K_TLS_GD32, /* type */ |
| 120 |
0, /* rightshift */ |
| 121 |
2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 122 |
32, /* bitsize */ |
| 123 |
FALSE, /* pc_relative */ |
| 124 |
0, /* bitpos */ |
| 125 |
complain_overflow_bitfield, /* complain_on_overflow */ |
| 126 |
bfd_elf_generic_reloc, /* special_function */ |
| 127 |
"R_68K_TLS_GD32", /* name */ |
| 128 |
FALSE, /* partial_inplace */ |
| 129 |
0, /* src_mask */ |
| 130 |
0xffffffff, /* dst_mask */ |
| 131 |
FALSE), /* pcrel_offset */ |
| 132 |
|
| 133 |
HOWTO (R_68K_TLS_GD16, /* type */ |
| 134 |
0, /* rightshift */ |
| 135 |
1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 136 |
16, /* bitsize */ |
| 137 |
FALSE, /* pc_relative */ |
| 138 |
0, /* bitpos */ |
| 139 |
complain_overflow_signed, /* complain_on_overflow */ |
| 140 |
bfd_elf_generic_reloc, /* special_function */ |
| 141 |
"R_68K_TLS_GD16", /* name */ |
| 142 |
FALSE, /* partial_inplace */ |
| 143 |
0, /* src_mask */ |
| 144 |
0x0000ffff, /* dst_mask */ |
| 145 |
FALSE), /* pcrel_offset */ |
| 146 |
|
| 147 |
HOWTO (R_68K_TLS_GD8, /* type */ |
| 148 |
0, /* rightshift */ |
| 149 |
0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 150 |
8, /* bitsize */ |
| 151 |
FALSE, /* pc_relative */ |
| 152 |
0, /* bitpos */ |
| 153 |
complain_overflow_signed, /* complain_on_overflow */ |
| 154 |
bfd_elf_generic_reloc, /* special_function */ |
| 155 |
"R_68K_TLS_GD8", /* name */ |
| 156 |
FALSE, /* partial_inplace */ |
| 157 |
0, /* src_mask */ |
| 158 |
0x000000ff, /* dst_mask */ |
| 159 |
FALSE), /* pcrel_offset */ |
| 160 |
|
| 161 |
/* TLS local dynamic variable reference. */ |
| 162 |
HOWTO (R_68K_TLS_LDM32, /* type */ |
| 163 |
0, /* rightshift */ |
| 164 |
2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 165 |
32, /* bitsize */ |
| 166 |
FALSE, /* pc_relative */ |
| 167 |
0, /* bitpos */ |
| 168 |
complain_overflow_bitfield, /* complain_on_overflow */ |
| 169 |
bfd_elf_generic_reloc, /* special_function */ |
| 170 |
"R_68K_TLS_LDM32", /* name */ |
| 171 |
FALSE, /* partial_inplace */ |
| 172 |
0, /* src_mask */ |
| 173 |
0xffffffff, /* dst_mask */ |
| 174 |
FALSE), /* pcrel_offset */ |
| 175 |
|
| 176 |
HOWTO (R_68K_TLS_LDM16, /* type */ |
| 177 |
0, /* rightshift */ |
| 178 |
1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 179 |
16, /* bitsize */ |
| 180 |
FALSE, /* pc_relative */ |
| 181 |
0, /* bitpos */ |
| 182 |
complain_overflow_signed, /* complain_on_overflow */ |
| 183 |
bfd_elf_generic_reloc, /* special_function */ |
| 184 |
"R_68K_TLS_LDM16", /* name */ |
| 185 |
FALSE, /* partial_inplace */ |
| 186 |
0, /* src_mask */ |
| 187 |
0x0000ffff, /* dst_mask */ |
| 188 |
FALSE), /* pcrel_offset */ |
| 189 |
|
| 190 |
HOWTO (R_68K_TLS_LDM8, /* type */ |
| 191 |
0, /* rightshift */ |
| 192 |
0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 193 |
8, /* bitsize */ |
| 194 |
FALSE, /* pc_relative */ |
| 195 |
0, /* bitpos */ |
| 196 |
complain_overflow_signed, /* complain_on_overflow */ |
| 197 |
bfd_elf_generic_reloc, /* special_function */ |
| 198 |
"R_68K_TLS_LDM8", /* name */ |
| 199 |
FALSE, /* partial_inplace */ |
| 200 |
0, /* src_mask */ |
| 201 |
0x000000ff, /* dst_mask */ |
| 202 |
FALSE), /* pcrel_offset */ |
| 203 |
|
| 204 |
HOWTO (R_68K_TLS_LDO32, /* type */ |
| 205 |
0, /* rightshift */ |
| 206 |
2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 207 |
32, /* bitsize */ |
| 208 |
FALSE, /* pc_relative */ |
| 209 |
0, /* bitpos */ |
| 210 |
complain_overflow_bitfield, /* complain_on_overflow */ |
| 211 |
bfd_elf_generic_reloc, /* special_function */ |
| 212 |
"R_68K_TLS_LDO32", /* name */ |
| 213 |
FALSE, /* partial_inplace */ |
| 214 |
0, /* src_mask */ |
| 215 |
0xffffffff, /* dst_mask */ |
| 216 |
FALSE), /* pcrel_offset */ |
| 217 |
|
| 218 |
HOWTO (R_68K_TLS_LDO16, /* type */ |
| 219 |
0, /* rightshift */ |
| 220 |
1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 221 |
16, /* bitsize */ |
| 222 |
FALSE, /* pc_relative */ |
| 223 |
0, /* bitpos */ |
| 224 |
complain_overflow_signed, /* complain_on_overflow */ |
| 225 |
bfd_elf_generic_reloc, /* special_function */ |
| 226 |
"R_68K_TLS_LDO16", /* name */ |
| 227 |
FALSE, /* partial_inplace */ |
| 228 |
0, /* src_mask */ |
| 229 |
0x0000ffff, /* dst_mask */ |
| 230 |
FALSE), /* pcrel_offset */ |
| 231 |
|
| 232 |
HOWTO (R_68K_TLS_LDO8, /* type */ |
| 233 |
0, /* rightshift */ |
| 234 |
0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 235 |
8, /* bitsize */ |
| 236 |
FALSE, /* pc_relative */ |
| 237 |
0, /* bitpos */ |
| 238 |
complain_overflow_signed, /* complain_on_overflow */ |
| 239 |
bfd_elf_generic_reloc, /* special_function */ |
| 240 |
"R_68K_TLS_LDO8", /* name */ |
| 241 |
FALSE, /* partial_inplace */ |
| 242 |
0, /* src_mask */ |
| 243 |
0x000000ff, /* dst_mask */ |
| 244 |
FALSE), /* pcrel_offset */ |
| 245 |
|
| 246 |
/* TLS initial execution variable reference. */ |
| 247 |
HOWTO (R_68K_TLS_IE32, /* type */ |
| 248 |
0, /* rightshift */ |
| 249 |
2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 250 |
32, /* bitsize */ |
| 251 |
FALSE, /* pc_relative */ |
| 252 |
0, /* bitpos */ |
| 253 |
complain_overflow_bitfield, /* complain_on_overflow */ |
| 254 |
bfd_elf_generic_reloc, /* special_function */ |
| 255 |
"R_68K_TLS_IE32", /* name */ |
| 256 |
FALSE, /* partial_inplace */ |
| 257 |
0, /* src_mask */ |
| 258 |
0xffffffff, /* dst_mask */ |
| 259 |
FALSE), /* pcrel_offset */ |
| 260 |
|
| 261 |
HOWTO (R_68K_TLS_IE16, /* type */ |
| 262 |
0, /* rightshift */ |
| 263 |
1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 264 |
16, /* bitsize */ |
| 265 |
FALSE, /* pc_relative */ |
| 266 |
0, /* bitpos */ |
| 267 |
complain_overflow_signed, /* complain_on_overflow */ |
| 268 |
bfd_elf_generic_reloc, /* special_function */ |
| 269 |
"R_68K_TLS_IE16", /* name */ |
| 270 |
FALSE, /* partial_inplace */ |
| 271 |
0, /* src_mask */ |
| 272 |
0x0000ffff, /* dst_mask */ |
| 273 |
FALSE), /* pcrel_offset */ |
| 274 |
|
| 275 |
HOWTO (R_68K_TLS_IE8, /* type */ |
| 276 |
0, /* rightshift */ |
| 277 |
0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 278 |
8, /* bitsize */ |
| 279 |
FALSE, /* pc_relative */ |
| 280 |
0, /* bitpos */ |
| 281 |
complain_overflow_signed, /* complain_on_overflow */ |
| 282 |
bfd_elf_generic_reloc, /* special_function */ |
| 283 |
"R_68K_TLS_IE8", /* name */ |
| 284 |
FALSE, /* partial_inplace */ |
| 285 |
0, /* src_mask */ |
| 286 |
0x000000ff, /* dst_mask */ |
| 287 |
FALSE), /* pcrel_offset */ |
| 288 |
|
| 289 |
/* TLS local execution variable reference. */ |
| 290 |
HOWTO (R_68K_TLS_LE32, /* type */ |
| 291 |
0, /* rightshift */ |
| 292 |
2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 293 |
32, /* bitsize */ |
| 294 |
FALSE, /* pc_relative */ |
| 295 |
0, /* bitpos */ |
| 296 |
complain_overflow_bitfield, /* complain_on_overflow */ |
| 297 |
bfd_elf_generic_reloc, /* special_function */ |
| 298 |
"R_68K_TLS_LE32", /* name */ |
| 299 |
FALSE, /* partial_inplace */ |
| 300 |
0, /* src_mask */ |
| 301 |
0xffffffff, /* dst_mask */ |
| 302 |
FALSE), /* pcrel_offset */ |
| 303 |
|
| 304 |
HOWTO (R_68K_TLS_LE16, /* type */ |
| 305 |
0, /* rightshift */ |
| 306 |
1, /* size (0 = byte, 1 = short, 2 = long) */ |
| 307 |
16, /* bitsize */ |
| 308 |
FALSE, /* pc_relative */ |
| 309 |
0, /* bitpos */ |
| 310 |
complain_overflow_signed, /* complain_on_overflow */ |
| 311 |
bfd_elf_generic_reloc, /* special_function */ |
| 312 |
"R_68K_TLS_LE16", /* name */ |
| 313 |
FALSE, /* partial_inplace */ |
| 314 |
0, /* src_mask */ |
| 315 |
0x0000ffff, /* dst_mask */ |
| 316 |
FALSE), /* pcrel_offset */ |
| 317 |
|
| 318 |
HOWTO (R_68K_TLS_LE8, /* type */ |
| 319 |
0, /* rightshift */ |
| 320 |
0, /* size (0 = byte, 1 = short, 2 = long) */ |
| 321 |
8, /* bitsize */ |
| 322 |
FALSE, /* pc_relative */ |
| 323 |
0, /* bitpos */ |
| 324 |
complain_overflow_signed, /* complain_on_overflow */ |
| 325 |
bfd_elf_generic_reloc, /* special_function */ |
| 326 |
"R_68K_TLS_LE8", /* name */ |
| 327 |
FALSE, /* partial_inplace */ |
| 328 |
0, /* src_mask */ |
| 329 |
0x000000ff, /* dst_mask */ |
| 330 |
FALSE), /* pcrel_offset */ |
| 331 |
|
| 332 |
/* TLS GD/LD dynamic relocations. */ |
| 333 |
HOWTO (R_68K_TLS_DTPMOD32, /* type */ |
| 334 |
0, /* rightshift */ |
| 335 |
2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 336 |
32, /* bitsize */ |
| 337 |
FALSE, /* pc_relative */ |
| 338 |
0, /* bitpos */ |
| 339 |
complain_overflow_dont, /* complain_on_overflow */ |
| 340 |
bfd_elf_generic_reloc, /* special_function */ |
| 341 |
"R_68K_TLS_DTPMOD32", /* name */ |
| 342 |
FALSE, /* partial_inplace */ |
| 343 |
0, /* src_mask */ |
| 344 |
0xffffffff, /* dst_mask */ |
| 345 |
FALSE), /* pcrel_offset */ |
| 346 |
|
| 347 |
HOWTO (R_68K_TLS_DTPREL32, /* type */ |
| 348 |
0, /* rightshift */ |
| 349 |
2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 350 |
32, /* bitsize */ |
| 351 |
FALSE, /* pc_relative */ |
| 352 |
0, /* bitpos */ |
| 353 |
complain_overflow_dont, /* complain_on_overflow */ |
| 354 |
bfd_elf_generic_reloc, /* special_function */ |
| 355 |
"R_68K_TLS_DTPREL32", /* name */ |
| 356 |
FALSE, /* partial_inplace */ |
| 357 |
0, /* src_mask */ |
| 358 |
0xffffffff, /* dst_mask */ |
| 359 |
FALSE), /* pcrel_offset */ |
| 360 |
|
| 361 |
HOWTO (R_68K_TLS_TPREL32, /* type */ |
| 362 |
0, /* rightshift */ |
| 363 |
2, /* size (0 = byte, 1 = short, 2 = long) */ |
| 364 |
32, /* bitsize */ |
| 365 |
FALSE, /* pc_relative */ |
| 366 |
0, /* bitpos */ |
| 367 |
complain_overflow_dont, /* complain_on_overflow */ |
| 368 |
bfd_elf_generic_reloc, /* special_function */ |
| 369 |
"R_68K_TLS_TPREL32", /* name */ |
| 370 |
FALSE, /* partial_inplace */ |
| 371 |
0, /* src_mask */ |
| 372 |
0xffffffff, /* dst_mask */ |
| 373 |
FALSE), /* pcrel_offset */ |
| 374 |
}; |
| 375 |
|
| 376 |
static void |
| 377 |
rtype_to_howto (abfd, cache_ptr, dst) |
| 378 |
bfd *abfd ATTRIBUTE_UNUSED; |
| 379 |
arelent *cache_ptr; |
| 380 |
Elf_Internal_Rela *dst; |
| 381 |
{ |
| 382 |
BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_68K_max); |
| 383 |
cache_ptr->howto = &howto_table[ELF32_R_TYPE(dst->r_info)]; |
| 384 |
} |
| 385 |
|
| 386 |
#define elf_info_to_howto rtype_to_howto |
| 387 |
|
| 388 |
static const struct |
| 389 |
{ |
| 390 |
bfd_reloc_code_real_type bfd_val; |
| 391 |
int elf_val; |
| 392 |
} |
| 393 |
reloc_map[] = |
| 394 |
{ |
| 395 |
{ BFD_RELOC_NONE, R_68K_NONE }, |
| 396 |
{ BFD_RELOC_32, R_68K_32 }, |
| 397 |
{ BFD_RELOC_16, R_68K_16 }, |
| 398 |
{ BFD_RELOC_8, R_68K_8 }, |
| 399 |
{ BFD_RELOC_32_PCREL, R_68K_PC32 }, |
| 400 |
{ BFD_RELOC_16_PCREL, R_68K_PC16 }, |
| 401 |
{ BFD_RELOC_8_PCREL, R_68K_PC8 }, |
| 402 |
{ BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 }, |
| 403 |
{ BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 }, |
| 404 |
{ BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 }, |
| 405 |
{ BFD_RELOC_32_GOTOFF, R_68K_GOT32O }, |
| 406 |
{ BFD_RELOC_16_GOTOFF, R_68K_GOT16O }, |
| 407 |
{ BFD_RELOC_8_GOTOFF, R_68K_GOT8O }, |
| 408 |
{ BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 }, |
| 409 |
{ BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 }, |
| 410 |
{ BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 }, |
| 411 |
{ BFD_RELOC_32_PLTOFF, R_68K_PLT32O }, |
| 412 |
{ BFD_RELOC_16_PLTOFF, R_68K_PLT16O }, |
| 413 |
{ BFD_RELOC_8_PLTOFF, R_68K_PLT8O }, |
| 414 |
{ BFD_RELOC_NONE, R_68K_COPY }, |
| 415 |
{ BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT }, |
| 416 |
{ BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT }, |
| 417 |
{ BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE }, |
| 418 |
{ BFD_RELOC_CTOR, R_68K_32 }, |
| 419 |
{ BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT }, |
| 420 |
{ BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY }, |
| 421 |
{ BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 }, |
| 422 |
{ BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 }, |
| 423 |
{ BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 }, |
| 424 |
{ BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 }, |
| 425 |
{ BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 }, |
| 426 |
{ BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 }, |
| 427 |
{ BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 }, |
| 428 |
{ BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 }, |
| 429 |
{ BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 }, |
| 430 |
{ BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 }, |
| 431 |
{ BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 }, |
| 432 |
{ BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 }, |
| 433 |
{ BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 }, |
| 434 |
{ BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 }, |
| 435 |
{ BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 }, |
| 436 |
}; |
| 437 |
|
| 438 |
static reloc_howto_type * |
| 439 |
reloc_type_lookup (abfd, code) |
| 440 |
bfd *abfd ATTRIBUTE_UNUSED; |
| 441 |
bfd_reloc_code_real_type code; |
| 442 |
{ |
| 443 |
unsigned int i; |
| 444 |
for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++) |
| 445 |
{ |
| 446 |
if (reloc_map[i].bfd_val == code) |
| 447 |
return &howto_table[reloc_map[i].elf_val]; |
| 448 |
} |
| 449 |
return 0; |
| 450 |
} |
| 451 |
|
| 452 |
static reloc_howto_type * |
| 453 |
reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) |
| 454 |
{ |
| 455 |
unsigned int i; |
| 456 |
|
| 457 |
for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++) |
| 458 |
if (howto_table[i].name != NULL |
| 459 |
&& strcasecmp (howto_table[i].name, r_name) == 0) |
| 460 |
return &howto_table[i]; |
| 461 |
|
| 462 |
return NULL; |
| 463 |
} |
| 464 |
|
| 465 |
#define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup |
| 466 |
#define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup |
| 467 |
#define ELF_ARCH bfd_arch_m68k |
| 468 |
|
| 469 |
/* Functions for the m68k ELF linker. */ |
| 470 |
|
| 471 |
/* The name of the dynamic interpreter. This is put in the .interp |
| 472 |
section. */ |
| 473 |
|
| 474 |
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" |
| 475 |
|
| 476 |
/* Describes one of the various PLT styles. */ |
| 477 |
|
| 478 |
struct elf_m68k_plt_info |
| 479 |
{ |
| 480 |
/* The size of each PLT entry. */ |
| 481 |
bfd_vma size; |
| 482 |
|
| 483 |
/* The template for the first PLT entry. */ |
| 484 |
const bfd_byte *plt0_entry; |
| 485 |
|
| 486 |
/* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations. |
| 487 |
The comments by each member indicate the value that the relocation |
| 488 |
is against. */ |
| 489 |
struct { |
| 490 |
unsigned int got4; /* .got + 4 */ |
| 491 |
unsigned int got8; /* .got + 8 */ |
| 492 |
} plt0_relocs; |
| 493 |
|
| 494 |
/* The template for a symbol's PLT entry. */ |
| 495 |
const bfd_byte *symbol_entry; |
| 496 |
|
| 497 |
/* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations. |
| 498 |
The comments by each member indicate the value that the relocation |
| 499 |
is against. */ |
| 500 |
struct { |
| 501 |
unsigned int got; /* the symbol's .got.plt entry */ |
| 502 |
unsigned int plt; /* .plt */ |
| 503 |
} symbol_relocs; |
| 504 |
|
| 505 |
/* The offset of the resolver stub from the start of SYMBOL_ENTRY. |
| 506 |
The stub starts with "move.l #relocoffset,%d0". */ |
| 507 |
bfd_vma symbol_resolve_entry; |
| 508 |
}; |
| 509 |
|
| 510 |
/* The size in bytes of an entry in the procedure linkage table. */ |
| 511 |
|
| 512 |
#define PLT_ENTRY_SIZE 20 |
| 513 |
|
| 514 |
/* The first entry in a procedure linkage table looks like this. See |
| 515 |
the SVR4 ABI m68k supplement to see how this works. */ |
| 516 |
|
| 517 |
static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] = |
| 518 |
{ |
| 519 |
0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ |
| 520 |
0, 0, 0, 2, /* + (.got + 4) - . */ |
| 521 |
0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */ |
| 522 |
0, 0, 0, 2, /* + (.got + 8) - . */ |
| 523 |
0, 0, 0, 0 /* pad out to 20 bytes. */ |
| 524 |
}; |
| 525 |
|
| 526 |
/* Subsequent entries in a procedure linkage table look like this. */ |
| 527 |
|
| 528 |
static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] = |
| 529 |
{ |
| 530 |
0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */ |
| 531 |
0, 0, 0, 2, /* + (.got.plt entry) - . */ |
| 532 |
0x2f, 0x3c, /* move.l #offset,-(%sp) */ |
| 533 |
0, 0, 0, 0, /* + reloc index */ |
| 534 |
0x60, 0xff, /* bra.l .plt */ |
| 535 |
0, 0, 0, 0 /* + .plt - . */ |
| 536 |
}; |
| 537 |
|
| 538 |
static const struct elf_m68k_plt_info elf_m68k_plt_info = { |
| 539 |
PLT_ENTRY_SIZE, |
| 540 |
elf_m68k_plt0_entry, { 4, 12 }, |
| 541 |
elf_m68k_plt_entry, { 4, 16 }, 8 |
| 542 |
}; |
| 543 |
|
| 544 |
#define ISAB_PLT_ENTRY_SIZE 24 |
| 545 |
|
| 546 |
static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] = |
| 547 |
{ |
| 548 |
0x20, 0x3c, /* move.l #offset,%d0 */ |
| 549 |
0, 0, 0, 0, /* + (.got + 4) - . */ |
| 550 |
0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */ |
| 551 |
0x20, 0x3c, /* move.l #offset,%d0 */ |
| 552 |
0, 0, 0, 0, /* + (.got + 8) - . */ |
| 553 |
0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ |
| 554 |
0x4e, 0xd0, /* jmp (%a0) */ |
| 555 |
0x4e, 0x71 /* nop */ |
| 556 |
}; |
| 557 |
|
| 558 |
/* Subsequent entries in a procedure linkage table look like this. */ |
| 559 |
|
| 560 |
static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] = |
| 561 |
{ |
| 562 |
0x20, 0x3c, /* move.l #offset,%d0 */ |
| 563 |
0, 0, 0, 0, /* + (.got.plt entry) - . */ |
| 564 |
0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ |
| 565 |
0x4e, 0xd0, /* jmp (%a0) */ |
| 566 |
0x2f, 0x3c, /* move.l #offset,-(%sp) */ |
| 567 |
0, 0, 0, 0, /* + reloc index */ |
| 568 |
0x60, 0xff, /* bra.l .plt */ |
| 569 |
0, 0, 0, 0 /* + .plt - . */ |
| 570 |
}; |
| 571 |
|
| 572 |
static const struct elf_m68k_plt_info elf_isab_plt_info = { |
| 573 |
ISAB_PLT_ENTRY_SIZE, |
| 574 |
elf_isab_plt0_entry, { 2, 12 }, |
| 575 |
elf_isab_plt_entry, { 2, 20 }, 12 |
| 576 |
}; |
| 577 |
|
| 578 |
#define ISAC_PLT_ENTRY_SIZE 24 |
| 579 |
|
| 580 |
static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] = |
| 581 |
{ |
| 582 |
0x20, 0x3c, /* move.l #offset,%d0 */ |
| 583 |
0, 0, 0, 0, /* replaced with .got + 4 - . */ |
| 584 |
0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */ |
| 585 |
0x20, 0x3c, /* move.l #offset,%d0 */ |
| 586 |
0, 0, 0, 0, /* replaced with .got + 8 - . */ |
| 587 |
0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ |
| 588 |
0x4e, 0xd0, /* jmp (%a0) */ |
| 589 |
0x4e, 0x71 /* nop */ |
| 590 |
}; |
| 591 |
|
| 592 |
/* Subsequent entries in a procedure linkage table look like this. */ |
| 593 |
|
| 594 |
static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] = |
| 595 |
{ |
| 596 |
0x20, 0x3c, /* move.l #offset,%d0 */ |
| 597 |
0, 0, 0, 0, /* replaced with (.got entry) - . */ |
| 598 |
0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ |
| 599 |
0x4e, 0xd0, /* jmp (%a0) */ |
| 600 |
0x2f, 0x3c, /* move.l #offset,-(%sp) */ |
| 601 |
0, 0, 0, 0, /* replaced with offset into relocation table */ |
| 602 |
0x61, 0xff, /* bsr.l .plt */ |
| 603 |
0, 0, 0, 0 /* replaced with .plt - . */ |
| 604 |
}; |
| 605 |
|
| 606 |
static const struct elf_m68k_plt_info elf_isac_plt_info = { |
| 607 |
ISAC_PLT_ENTRY_SIZE, |
| 608 |
elf_isac_plt0_entry, { 2, 12}, |
| 609 |
elf_isac_plt_entry, { 2, 20 }, 12 |
| 610 |
}; |
| 611 |
|
| 612 |
#define CPU32_PLT_ENTRY_SIZE 24 |
| 613 |
/* Procedure linkage table entries for the cpu32 */ |
| 614 |
static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] = |
| 615 |
{ |
| 616 |
0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ |
| 617 |
0, 0, 0, 2, /* + (.got + 4) - . */ |
| 618 |
0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ |
| 619 |
0, 0, 0, 2, /* + (.got + 8) - . */ |
| 620 |
0x4e, 0xd1, /* jmp %a1@ */ |
| 621 |
0, 0, 0, 0, /* pad out to 24 bytes. */ |
| 622 |
0, 0 |
| 623 |
}; |
| 624 |
|
| 625 |
static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] = |
| 626 |
{ |
| 627 |
0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ |
| 628 |
0, 0, 0, 2, /* + (.got.plt entry) - . */ |
| 629 |
0x4e, 0xd1, /* jmp %a1@ */ |
| 630 |
0x2f, 0x3c, /* move.l #offset,-(%sp) */ |
| 631 |
0, 0, 0, 0, /* + reloc index */ |
| 632 |
0x60, 0xff, /* bra.l .plt */ |
| 633 |
0, 0, 0, 0, /* + .plt - . */ |
| 634 |
0, 0 |
| 635 |
}; |
| 636 |
|
| 637 |
static const struct elf_m68k_plt_info elf_cpu32_plt_info = { |
| 638 |
CPU32_PLT_ENTRY_SIZE, |
| 639 |
elf_cpu32_plt0_entry, { 4, 12 }, |
| 640 |
elf_cpu32_plt_entry, { 4, 18 }, 10 |
| 641 |
}; |
| 642 |
|
| 643 |
/* The m68k linker needs to keep track of the number of relocs that it |
| 644 |
decides to copy in check_relocs for each symbol. This is so that it |
| 645 |
can discard PC relative relocs if it doesn't need them when linking |
| 646 |
with -Bsymbolic. We store the information in a field extending the |
| 647 |
regular ELF linker hash table. */ |
| 648 |
|
| 649 |
/* This structure keeps track of the number of PC relative relocs we have |
| 650 |
copied for a given symbol. */ |
| 651 |
|
| 652 |
struct elf_m68k_pcrel_relocs_copied |
| 653 |
{ |
| 654 |
/* Next section. */ |
| 655 |
struct elf_m68k_pcrel_relocs_copied *next; |
| 656 |
/* A section in dynobj. */ |
| 657 |
asection *section; |
| 658 |
/* Number of relocs copied in this section. */ |
| 659 |
bfd_size_type count; |
| 660 |
}; |
| 661 |
|
| 662 |
/* Forward declaration. */ |
| 663 |
struct elf_m68k_got_entry; |
| 664 |
|
| 665 |
/* m68k ELF linker hash entry. */ |
| 666 |
|
| 667 |
struct elf_m68k_link_hash_entry |
| 668 |
{ |
| 669 |
struct elf_link_hash_entry root; |
| 670 |
|
| 671 |
/* Number of PC relative relocs copied for this symbol. */ |
| 672 |
struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied; |
| 673 |
|
| 674 |
/* Key to got_entries. */ |
| 675 |
unsigned long got_entry_key; |
| 676 |
|
| 677 |
/* List of GOT entries for this symbol. This list is build during |
| 678 |
offset finalization and is used within elf_m68k_finish_dynamic_symbol |
| 679 |
to traverse all GOT entries for a particular symbol. |
| 680 |
|
| 681 |
??? We could've used root.got.glist field instead, but having |
| 682 |
a separate field is cleaner. */ |
| 683 |
struct elf_m68k_got_entry *glist; |
| 684 |
}; |
| 685 |
|
| 686 |
#define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent)) |
| 687 |
|
| 688 |
/* Key part of GOT entry in hashtable. */ |
| 689 |
struct elf_m68k_got_entry_key |
| 690 |
{ |
| 691 |
/* BFD in which this symbol was defined. NULL for global symbols. */ |
| 692 |
const bfd *bfd; |
| 693 |
|
| 694 |
/* Symbol index. Either local symbol index or h->got_entry_key. */ |
| 695 |
unsigned long symndx; |
| 696 |
|
| 697 |
/* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32}, |
| 698 |
R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}. |
| 699 |
|
| 700 |
From perspective of hashtable key, only elf_m68k_got_reloc_type (type) |
| 701 |
matters. That is, we distinguish between, say, R_68K_GOT16O |
| 702 |
and R_68K_GOT32O when allocating offsets, but they are considered to be |
| 703 |
the same when searching got->entries. */ |
| 704 |
enum elf_m68k_reloc_type type; |
| 705 |
}; |
| 706 |
|
| 707 |
/* Size of the GOT offset suitable for relocation. */ |
| 708 |
enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST }; |
| 709 |
|
| 710 |
/* Entry of the GOT. */ |
| 711 |
struct elf_m68k_got_entry |
| 712 |
{ |
| 713 |
/* GOT entries are put into a got->entries hashtable. This is the key. */ |
| 714 |
struct elf_m68k_got_entry_key key_; |
| 715 |
|
| 716 |
/* GOT entry data. We need s1 before offset finalization and s2 after. */ |
| 717 |
union |
| 718 |
{ |
| 719 |
struct |
| 720 |
{ |
| 721 |
/* Number of times this entry is referenced. It is used to |
| 722 |
filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook. */ |
| 723 |
bfd_vma refcount; |
| 724 |
} s1; |
| 725 |
|
| 726 |
struct |
| 727 |
{ |
| 728 |
/* Offset from the start of .got section. To calculate offset relative |
| 729 |
to GOT pointer one should substract got->offset from this value. */ |
| 730 |
bfd_vma offset; |
| 731 |
|
| 732 |
/* Pointer to the next GOT entry for this global symbol. |
| 733 |
Symbols have at most one entry in one GOT, but might |
| 734 |
have entries in more than one GOT. |
| 735 |
Root of this list is h->glist. |
| 736 |
NULL for local symbols. */ |
| 737 |
struct elf_m68k_got_entry *next; |
| 738 |
} s2; |
| 739 |
} u; |
| 740 |
}; |
| 741 |
|
| 742 |
/* Return representative type for relocation R_TYPE. |
| 743 |
This is used to avoid enumerating many relocations in comparisons, |
| 744 |
switches etc. */ |
| 745 |
|
| 746 |
static enum elf_m68k_reloc_type |
| 747 |
elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type) |
| 748 |
{ |
| 749 |
switch (r_type) |
| 750 |
{ |
| 751 |
/* In most cases R_68K_GOTx relocations require the very same |
| 752 |
handling as R_68K_GOT32O relocation. In cases when we need |
| 753 |
to distinguish between the two, we use explicitly compare against |
| 754 |
r_type. */ |
| 755 |
case R_68K_GOT32: |
| 756 |
case R_68K_GOT16: |
| 757 |
case R_68K_GOT8: |
| 758 |
case R_68K_GOT32O: |
| 759 |
case R_68K_GOT16O: |
| 760 |
case R_68K_GOT8O: |
| 761 |
return R_68K_GOT32O; |
| 762 |
|
| 763 |
case R_68K_TLS_GD32: |
| 764 |
case R_68K_TLS_GD16: |
| 765 |
case R_68K_TLS_GD8: |
| 766 |
return R_68K_TLS_GD32; |
| 767 |
|
| 768 |
case R_68K_TLS_LDM32: |
| 769 |
case R_68K_TLS_LDM16: |
| 770 |
case R_68K_TLS_LDM8: |
| 771 |
return R_68K_TLS_LDM32; |
| 772 |
|
| 773 |
case R_68K_TLS_IE32: |
| 774 |
case R_68K_TLS_IE16: |
| 775 |
case R_68K_TLS_IE8: |
| 776 |
return R_68K_TLS_IE32; |
| 777 |
|
| 778 |
default: |
| 779 |
BFD_ASSERT (FALSE); |
| 780 |
return 0; |
| 781 |
} |
| 782 |
} |
| 783 |
|
| 784 |
/* Return size of the GOT entry offset for relocation R_TYPE. */ |
| 785 |
|
| 786 |
static enum elf_m68k_got_offset_size |
| 787 |
elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type) |
| 788 |
{ |
| 789 |
switch (r_type) |
| 790 |
{ |
| 791 |
case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8: |
| 792 |
case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32: |
| 793 |
case R_68K_TLS_IE32: |
| 794 |
return R_32; |
| 795 |
|
| 796 |
case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16: |
| 797 |
case R_68K_TLS_IE16: |
| 798 |
return R_16; |
| 799 |
|
| 800 |
case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8: |
| 801 |
case R_68K_TLS_IE8: |
| 802 |
return R_8; |
| 803 |
|
| 804 |
default: |
| 805 |
BFD_ASSERT (FALSE); |
| 806 |
return 0; |
| 807 |
} |
| 808 |
} |
| 809 |
|
| 810 |
/* Return number of GOT entries we need to allocate in GOT for |
| 811 |
relocation R_TYPE. */ |
| 812 |
|
| 813 |
static bfd_vma |
| 814 |
elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type) |
| 815 |
{ |
| 816 |
switch (elf_m68k_reloc_got_type (r_type)) |
| 817 |
{ |
| 818 |
case R_68K_GOT32O: |
| 819 |
case R_68K_TLS_IE32: |
| 820 |
return 1; |
| 821 |
|
| 822 |
case R_68K_TLS_GD32: |
| 823 |
case R_68K_TLS_LDM32: |
| 824 |
return 2; |
| 825 |
|
| 826 |
default: |
| 827 |
BFD_ASSERT (FALSE); |
| 828 |
return 0; |
| 829 |
} |
| 830 |
} |
| 831 |
|
| 832 |
/* Return TRUE if relocation R_TYPE is a TLS one. */ |
| 833 |
|
| 834 |
static bfd_boolean |
| 835 |
elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type) |
| 836 |
{ |
| 837 |
switch (r_type) |
| 838 |
{ |
| 839 |
case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8: |
| 840 |
case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8: |
| 841 |
case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8: |
| 842 |
case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8: |
| 843 |
case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8: |
| 844 |
case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32: |
| 845 |
return TRUE; |
| 846 |
|
| 847 |
default: |
| 848 |
return FALSE; |
| 849 |
} |
| 850 |
} |
| 851 |
|
| 852 |
/* Data structure representing a single GOT. */ |
| 853 |
struct elf_m68k_got |
| 854 |
{ |
| 855 |
/* Hashtable of 'struct elf_m68k_got_entry's. |
| 856 |
Starting size of this table is the maximum number of |
| 857 |
R_68K_GOT8O entries. */ |
| 858 |
htab_t entries; |
| 859 |
|
| 860 |
/* Number of R_x slots in this GOT. Some (e.g., TLS) entries require |
| 861 |
several GOT slots. |
| 862 |
|
| 863 |
n_slots[R_8] is the count of R_8 slots in this GOT. |
| 864 |
n_slots[R_16] is the cumulative count of R_8 and R_16 slots |
| 865 |
in this GOT. |
| 866 |
n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots |
| 867 |
in this GOT. This is the total number of slots. */ |
| 868 |
bfd_vma n_slots[R_LAST]; |
| 869 |
|
| 870 |
/* Number of local (entry->key_.h == NULL) slots in this GOT. |
| 871 |
This is only used to properly calculate size of .rela.got section; |
| 872 |
see elf_m68k_partition_multi_got. */ |
| 873 |
bfd_vma local_n_slots; |
| 874 |
|
| 875 |
/* Offset of this GOT relative to beginning of .got section. */ |
| 876 |
bfd_vma offset; |
| 877 |
}; |
| 878 |
|
| 879 |
/* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */ |
| 880 |
struct elf_m68k_bfd2got_entry |
| 881 |
{ |
| 882 |
/* BFD. */ |
| 883 |
const bfd *bfd; |
| 884 |
|
| 885 |
/* Assigned GOT. Before partitioning multi-GOT each BFD has its own |
| 886 |
GOT structure. After partitioning several BFD's might [and often do] |
| 887 |
share a single GOT. */ |
| 888 |
struct elf_m68k_got *got; |
| 889 |
}; |
| 890 |
|
| 891 |
/* The main data structure holding all the pieces. */ |
| 892 |
struct elf_m68k_multi_got |
| 893 |
{ |
| 894 |
/* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry |
| 895 |
here, then it doesn't need a GOT (this includes the case of a BFD |
| 896 |
having an empty GOT). |
| 897 |
|
| 898 |
??? This hashtable can be replaced by an array indexed by bfd->id. */ |
| 899 |
htab_t bfd2got; |
| 900 |
|
| 901 |
/* Next symndx to assign a global symbol. |
| 902 |
h->got_entry_key is initialized from this counter. */ |
| 903 |
unsigned long global_symndx; |
| 904 |
}; |
| 905 |
|
| 906 |
/* m68k ELF linker hash table. */ |
| 907 |
|
| 908 |
struct elf_m68k_link_hash_table |
| 909 |
{ |
| 910 |
struct elf_link_hash_table root; |
| 911 |
|
| 912 |
/* Small local sym cache. */ |
| 913 |
struct sym_cache sym_cache; |
| 914 |
|
| 915 |
/* The PLT format used by this link, or NULL if the format has not |
| 916 |
yet been chosen. */ |
| 917 |
const struct elf_m68k_plt_info *plt_info; |
| 918 |
|
| 919 |
/* True, if GP is loaded within each function which uses it. |
| 920 |
Set to TRUE when GOT negative offsets or multi-GOT is enabled. */ |
| 921 |
bfd_boolean local_gp_p; |
| 922 |
|
| 923 |
/* Switch controlling use of negative offsets to double the size of GOTs. */ |
| 924 |
bfd_boolean use_neg_got_offsets_p; |
| 925 |
|
| 926 |
/* Switch controlling generation of multiple GOTs. */ |
| 927 |
bfd_boolean allow_multigot_p; |
| 928 |
|
| 929 |
/* Multi-GOT data structure. */ |
| 930 |
struct elf_m68k_multi_got multi_got_; |
| 931 |
}; |
| 932 |
|
| 933 |
/* Get the m68k ELF linker hash table from a link_info structure. */ |
| 934 |
|
| 935 |
#define elf_m68k_hash_table(p) \ |
| 936 |
((struct elf_m68k_link_hash_table *) (p)->hash) |
| 937 |
|
| 938 |
/* Shortcut to multi-GOT data. */ |
| 939 |
#define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_) |
| 940 |
|
| 941 |
/* Create an entry in an m68k ELF linker hash table. */ |
| 942 |
|
| 943 |
static struct bfd_hash_entry * |
| 944 |
elf_m68k_link_hash_newfunc (entry, table, string) |
| 945 |
struct bfd_hash_entry *entry; |
| 946 |
struct bfd_hash_table *table; |
| 947 |
const char *string; |
| 948 |
{ |
| 949 |
struct bfd_hash_entry *ret = entry; |
| 950 |
|
| 951 |
/* Allocate the structure if it has not already been allocated by a |
| 952 |
subclass. */ |
| 953 |
if (ret == NULL) |
| 954 |
ret = bfd_hash_allocate (table, |
| 955 |
sizeof (struct elf_m68k_link_hash_entry)); |
| 956 |
if (ret == NULL) |
| 957 |
return ret; |
| 958 |
|
| 959 |
/* Call the allocation method of the superclass. */ |
| 960 |
ret = _bfd_elf_link_hash_newfunc (ret, table, string); |
| 961 |
if (ret != NULL) |
| 962 |
{ |
| 963 |
elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL; |
| 964 |
elf_m68k_hash_entry (ret)->got_entry_key = 0; |
| 965 |
elf_m68k_hash_entry (ret)->glist = NULL; |
| 966 |
} |
| 967 |
|
| 968 |
return ret; |
| 969 |
} |
| 970 |
|
| 971 |
/* Create an m68k ELF linker hash table. */ |
| 972 |
|
| 973 |
static struct bfd_link_hash_table * |
| 974 |
elf_m68k_link_hash_table_create (abfd) |
| 975 |
bfd *abfd; |
| 976 |
{ |
| 977 |
struct elf_m68k_link_hash_table *ret; |
| 978 |
bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table); |
| 979 |
|
| 980 |
ret = (struct elf_m68k_link_hash_table *) bfd_malloc (amt); |
| 981 |
if (ret == (struct elf_m68k_link_hash_table *) NULL) |
| 982 |
return NULL; |
| 983 |
|
| 984 |
if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
| 985 |
elf_m68k_link_hash_newfunc, |
| 986 |
sizeof (struct elf_m68k_link_hash_entry))) |
| 987 |
{ |
| 988 |
free (ret); |
| 989 |
return NULL; |
| 990 |
} |
| 991 |
|
| 992 |
ret->sym_cache.abfd = NULL; |
| 993 |
ret->plt_info = NULL; |
| 994 |
ret->local_gp_p = FALSE; |
| 995 |
ret->use_neg_got_offsets_p = FALSE; |
| 996 |
ret->allow_multigot_p = FALSE; |
| 997 |
ret->multi_got_.bfd2got = NULL; |
| 998 |
ret->multi_got_.global_symndx = 1; |
| 999 |
|
| 1000 |
return &ret->root.root; |
| 1001 |
} |
| 1002 |
|
| 1003 |
/* Destruct local data. */ |
| 1004 |
|
| 1005 |
static void |
| 1006 |
elf_m68k_link_hash_table_free (struct bfd_link_hash_table *_htab) |
| 1007 |
{ |
| 1008 |
struct elf_m68k_link_hash_table *htab; |
| 1009 |
|
| 1010 |
htab = (struct elf_m68k_link_hash_table *) _htab; |
| 1011 |
|
| 1012 |
if (htab->multi_got_.bfd2got != NULL) |
| 1013 |
{ |
| 1014 |
htab_delete (htab->multi_got_.bfd2got); |
| 1015 |
htab->multi_got_.bfd2got = NULL; |
| 1016 |
} |
| 1017 |
} |
| 1018 |
|
| 1019 |
/* Set the right machine number. */ |
| 1020 |
|
| 1021 |
static bfd_boolean |
| 1022 |
elf32_m68k_object_p (bfd *abfd) |
| 1023 |
{ |
| 1024 |
unsigned int mach = 0; |
| 1025 |
unsigned features = 0; |
| 1026 |
flagword eflags = elf_elfheader (abfd)->e_flags; |
| 1027 |
|
| 1028 |
if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) |
| 1029 |
features |= m68000; |
| 1030 |
else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) |
| 1031 |
features |= cpu32; |
| 1032 |
else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) |
| 1033 |
features |= fido_a; |
| 1034 |
else |
| 1035 |
{ |
| 1036 |
switch (eflags & EF_M68K_CF_ISA_MASK) |
| 1037 |
{ |
| 1038 |
case EF_M68K_CF_ISA_A_NODIV: |
| 1039 |
features |= mcfisa_a; |
| 1040 |
break; |
| 1041 |
case EF_M68K_CF_ISA_A: |
| 1042 |
features |= mcfisa_a|mcfhwdiv; |
| 1043 |
break; |
| 1044 |
case EF_M68K_CF_ISA_A_PLUS: |
| 1045 |
features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp; |
| 1046 |
break; |
| 1047 |
case EF_M68K_CF_ISA_B_NOUSP: |
| 1048 |
features |= mcfisa_a|mcfisa_b|mcfhwdiv; |
| 1049 |
break; |
| 1050 |
case EF_M68K_CF_ISA_B: |
| 1051 |
features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp; |
| 1052 |
break; |
| 1053 |
case EF_M68K_CF_ISA_C: |
| 1054 |
features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp; |
| 1055 |
break; |
| 1056 |
case EF_M68K_CF_ISA_C_NODIV: |
| 1057 |
features |= mcfisa_a|mcfisa_c|mcfusp; |
| 1058 |
break; |
| 1059 |
} |
| 1060 |
switch (eflags & EF_M68K_CF_MAC_MASK) |
| 1061 |
{ |
| 1062 |
case EF_M68K_CF_MAC: |
| 1063 |
features |= mcfmac; |
| 1064 |
break; |
| 1065 |
case EF_M68K_CF_EMAC: |
| 1066 |
features |= mcfemac; |
| 1067 |
break; |
| 1068 |
} |
| 1069 |
if (eflags & EF_M68K_CF_FLOAT) |
| 1070 |
features |= cfloat; |
| 1071 |
} |
| 1072 |
|
| 1073 |
mach = bfd_m68k_features_to_mach (features); |
| 1074 |
bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach); |
| 1075 |
|
| 1076 |
return TRUE; |
| 1077 |
} |
| 1078 |
|
| 1079 |
/* Keep m68k-specific flags in the ELF header. */ |
| 1080 |
static bfd_boolean |
| 1081 |
elf32_m68k_set_private_flags (abfd, flags) |
| 1082 |
bfd *abfd; |
| 1083 |
flagword flags; |
| 1084 |
{ |
| 1085 |
elf_elfheader (abfd)->e_flags = flags; |
| 1086 |
elf_flags_init (abfd) = TRUE; |
| 1087 |
return TRUE; |
| 1088 |
} |
| 1089 |
|
| 1090 |
/* Merge backend specific data from an object file to the output |
| 1091 |
object file when linking. */ |
| 1092 |
static bfd_boolean |
| 1093 |
elf32_m68k_merge_private_bfd_data (ibfd, obfd) |
| 1094 |
bfd *ibfd; |
| 1095 |
bfd *obfd; |
| 1096 |
{ |
| 1097 |
flagword out_flags; |
| 1098 |
flagword in_flags; |
| 1099 |
flagword out_isa; |
| 1100 |
flagword in_isa; |
| 1101 |
const bfd_arch_info_type *arch_info; |
| 1102 |
|
| 1103 |
if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| 1104 |
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| 1105 |
return FALSE; |
| 1106 |
|
| 1107 |
/* Get the merged machine. This checks for incompatibility between |
| 1108 |
Coldfire & non-Coldfire flags, incompability between different |
| 1109 |
Coldfire ISAs, and incompability between different MAC types. */ |
| 1110 |
arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE); |
| 1111 |
if (!arch_info) |
| 1112 |
return FALSE; |
| 1113 |
|
| 1114 |
bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach); |
| 1115 |
|
| 1116 |
in_flags = elf_elfheader (ibfd)->e_flags; |
| 1117 |
if (!elf_flags_init (obfd)) |
| 1118 |
{ |
| 1119 |
elf_flags_init (obfd) = TRUE; |
| 1120 |
out_flags = in_flags; |
| 1121 |
} |
| 1122 |
else |
| 1123 |
{ |
| 1124 |
out_flags = elf_elfheader (obfd)->e_flags; |
| 1125 |
unsigned int variant_mask; |
| 1126 |
|
| 1127 |
if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) |
| 1128 |
variant_mask = 0; |
| 1129 |
else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) |
| 1130 |
variant_mask = 0; |
| 1131 |
else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) |
| 1132 |
variant_mask = 0; |
| 1133 |
else |
| 1134 |
variant_mask = EF_M68K_CF_ISA_MASK; |
| 1135 |
|
| 1136 |
in_isa = (in_flags & variant_mask); |
| 1137 |
out_isa = (out_flags & variant_mask); |
| 1138 |
if (in_isa > out_isa) |
| 1139 |
out_flags ^= in_isa ^ out_isa; |
| 1140 |
if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32 |
| 1141 |
&& (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) |
| 1142 |
|| ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO |
| 1143 |
&& (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)) |
| 1144 |
out_flags = EF_M68K_FIDO; |
| 1145 |
else |
| 1146 |
out_flags |= in_flags ^ in_isa; |
| 1147 |
} |
| 1148 |
elf_elfheader (obfd)->e_flags = out_flags; |
| 1149 |
|
| 1150 |
return TRUE; |
| 1151 |
} |
| 1152 |
|
| 1153 |
/* Display the flags field. */ |
| 1154 |
|
| 1155 |
static bfd_boolean |
| 1156 |
elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr) |
| 1157 |
{ |
| 1158 |
FILE *file = (FILE *) ptr; |
| 1159 |
flagword eflags = elf_elfheader (abfd)->e_flags; |
| 1160 |
|
| 1161 |
BFD_ASSERT (abfd != NULL && ptr != NULL); |
| 1162 |
|
| 1163 |
/* Print normal ELF private data. */ |
| 1164 |
_bfd_elf_print_private_bfd_data (abfd, ptr); |
| 1165 |
|
| 1166 |
/* Ignore init flag - it may not be set, despite the flags field containing valid data. */ |
| 1167 |
|
| 1168 |
/* xgettext:c-format */ |
| 1169 |
fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); |
| 1170 |
|
| 1171 |
if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) |
| 1172 |
fprintf (file, " [m68000]"); |
| 1173 |
else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) |
| 1174 |
fprintf (file, " [cpu32]"); |
| 1175 |
else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) |
| 1176 |
fprintf (file, " [fido]"); |
| 1177 |
else |
| 1178 |
{ |
| 1179 |
if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E) |
| 1180 |
fprintf (file, " [cfv4e]"); |
| 1181 |
|
| 1182 |
if (eflags & EF_M68K_CF_ISA_MASK) |
| 1183 |
{ |
| 1184 |
char const *isa = _("unknown"); |
| 1185 |
char const *mac = _("unknown"); |
| 1186 |
char const *additional = ""; |
| 1187 |
|
| 1188 |
switch (eflags & EF_M68K_CF_ISA_MASK) |
| 1189 |
{ |
| 1190 |
case EF_M68K_CF_ISA_A_NODIV: |
| 1191 |
isa = "A"; |
| 1192 |
additional = " [nodiv]"; |
| 1193 |
break; |
| 1194 |
case EF_M68K_CF_ISA_A: |
| 1195 |
isa = "A"; |
| 1196 |
break; |
| 1197 |
case EF_M68K_CF_ISA_A_PLUS: |
| 1198 |
isa = "A+"; |
| 1199 |
break; |
| 1200 |
case EF_M68K_CF_ISA_B_NOUSP: |
| 1201 |
isa = "B"; |
| 1202 |
additional = " [nousp]"; |
| 1203 |
break; |
| 1204 |
case EF_M68K_CF_ISA_B: |
| 1205 |
isa = "B"; |
| 1206 |
break; |
| 1207 |
case EF_M68K_CF_ISA_C: |
| 1208 |
isa = "C"; |
| 1209 |
break; |
| 1210 |
case EF_M68K_CF_ISA_C_NODIV: |
| 1211 |
isa = "C"; |
| 1212 |
additional = " [nodiv]"; |
| 1213 |
break; |
| 1214 |
} |
| 1215 |
fprintf (file, " [isa %s]%s", isa, additional); |
| 1216 |
|
| 1217 |
if (eflags & EF_M68K_CF_FLOAT) |
| 1218 |
fprintf (file, " [float]"); |
| 1219 |
|
| 1220 |
switch (eflags & EF_M68K_CF_MAC_MASK) |
| 1221 |
{ |
| 1222 |
case 0: |
| 1223 |
mac = NULL; |
| 1224 |
break; |
| 1225 |
case EF_M68K_CF_MAC: |
| 1226 |
mac = "mac"; |
| 1227 |
break; |
| 1228 |
case EF_M68K_CF_EMAC: |
| 1229 |
mac = "emac"; |
| 1230 |
break; |
| 1231 |
} |
| 1232 |
if (mac) |
| 1233 |
fprintf (file, " [%s]", mac); |
| 1234 |
} |
| 1235 |
} |
| 1236 |
|
| 1237 |
fputc ('\n', file); |
| 1238 |
|
| 1239 |
return TRUE; |
| 1240 |
} |
| 1241 |
|
| 1242 |
/* Multi-GOT support implementation design: |
| 1243 |
|
| 1244 |
Multi-GOT starts in check_relocs hook. There we scan all |
| 1245 |
relocations of a BFD and build a local GOT (struct elf_m68k_got) |
| 1246 |
for it. If a single BFD appears to require too many GOT slots with |
| 1247 |
R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification |
| 1248 |
to user. |
| 1249 |
After check_relocs has been invoked for each input BFD, we have |
| 1250 |
constructed a GOT for each input BFD. |
| 1251 |
|
| 1252 |
To minimize total number of GOTs required for a particular output BFD |
| 1253 |
(as some environments support only 1 GOT per output object) we try |
| 1254 |
to merge some of the GOTs to share an offset space. Ideally [and in most |
| 1255 |
cases] we end up with a single GOT. In cases when there are too many |
| 1256 |
restricted relocations (e.g., R_68K_GOT16O relocations) we end up with |
| 1257 |
several GOTs, assuming the environment can handle them. |
| 1258 |
|
| 1259 |
Partitioning is done in elf_m68k_partition_multi_got. We start with |
| 1260 |
an empty GOT and traverse bfd2got hashtable putting got_entries from |
| 1261 |
local GOTs to the new 'big' one. We do that by constructing an |
| 1262 |
intermediate GOT holding all the entries the local GOT has and the big |
| 1263 |
GOT lacks. Then we check if there is room in the big GOT to accomodate |
| 1264 |
all the entries from diff. On success we add those entries to the big |
| 1265 |
GOT; on failure we start the new 'big' GOT and retry the adding of |
| 1266 |
entries from the local GOT. Note that this retry will always succeed as |
| 1267 |
each local GOT doesn't overflow the limits. After partitioning we |
| 1268 |
end up with each bfd assigned one of the big GOTs. GOT entries in the |
| 1269 |
big GOTs are initialized with GOT offsets. Note that big GOTs are |
| 1270 |
positioned consequently in program space and represent a single huge GOT |
| 1271 |
to the outside world. |
| 1272 |
|
| 1273 |
After that we get to elf_m68k_relocate_section. There we |
| 1274 |
adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol |
| 1275 |
relocations to refer to appropriate [assigned to current input_bfd] |
| 1276 |
big GOT. |
| 1277 |
|
| 1278 |
Notes: |
| 1279 |
|
| 1280 |
GOT entry type: We have several types of GOT entries. |
| 1281 |
* R_8 type is used in entries for symbols that have at least one |
| 1282 |
R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40 |
| 1283 |
such entries in one GOT. |
| 1284 |
* R_16 type is used in entries for symbols that have at least one |
| 1285 |
R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations. |
| 1286 |
We can have at most 0x4000 such entries in one GOT. |
| 1287 |
* R_32 type is used in all other cases. We can have as many |
| 1288 |
such entries in one GOT as we'd like. |
| 1289 |
When counting relocations we have to include the count of the smaller |
| 1290 |
ranged relocations in the counts of the larger ranged ones in order |
| 1291 |
to correctly detect overflow. |
| 1292 |
|
| 1293 |
Sorting the GOT: In each GOT starting offsets are assigned to |
| 1294 |
R_8 entries, which are followed by R_16 entries, and |
| 1295 |
R_32 entries go at the end. See finalize_got_offsets for details. |
| 1296 |
|
| 1297 |
Negative GOT offsets: To double usable offset range of GOTs we use |
| 1298 |
negative offsets. As we assign entries with GOT offsets relative to |
| 1299 |
start of .got section, the offset values are positive. They become |
| 1300 |
negative only in relocate_section where got->offset value is |
| 1301 |
subtracted from them. |
| 1302 |
|
| 1303 |
3 special GOT entries: There are 3 special GOT entries used internally |
| 1304 |
by loader. These entries happen to be placed to .got.plt section, |
| 1305 |
so we don't do anything about them in multi-GOT support. |
| 1306 |
|
| 1307 |
Memory management: All data except for hashtables |
| 1308 |
multi_got->bfd2got and got->entries are allocated on |
| 1309 |
elf_hash_table (info)->dynobj bfd (for this reason we pass 'info' |
| 1310 |
to most functions), so we don't need to care to free them. At the |
| 1311 |
moment of allocation hashtables are being linked into main data |
| 1312 |
structure (multi_got), all pieces of which are reachable from |
| 1313 |
elf_m68k_multi_got (info). We deallocate them in |
| 1314 |
elf_m68k_link_hash_table_free. */ |
| 1315 |
|
| 1316 |
/* Initialize GOT. */ |
| 1317 |
|
| 1318 |
static void |
| 1319 |
elf_m68k_init_got (struct elf_m68k_got *got) |
| 1320 |
{ |
| 1321 |
got->entries = NULL; |
| 1322 |
got->n_slots[R_8] = 0; |
| 1323 |
got->n_slots[R_16] = 0; |
| 1324 |
got->n_slots[R_32] = 0; |
| 1325 |
got->local_n_slots = 0; |
| 1326 |
got->offset = (bfd_vma) -1; |
| 1327 |
} |
| 1328 |
|
| 1329 |
/* Destruct GOT. */ |
| 1330 |
|
| 1331 |
static void |
| 1332 |
elf_m68k_clear_got (struct elf_m68k_got *got) |
| 1333 |
{ |
| 1334 |
if (got->entries != NULL) |
| 1335 |
{ |
| 1336 |
htab_delete (got->entries); |
| 1337 |
got->entries = NULL; |
| 1338 |
} |
| 1339 |
} |
| 1340 |
|
| 1341 |
/* Create and empty GOT structure. INFO is the context where memory |
| 1342 |
should be allocated. */ |
| 1343 |
|
| 1344 |
static struct elf_m68k_got * |
| 1345 |
elf_m68k_create_empty_got (struct bfd_link_info *info) |
| 1346 |
{ |
| 1347 |
struct elf_m68k_got *got; |
| 1348 |
|
| 1349 |
got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got)); |
| 1350 |
if (got == NULL) |
| 1351 |
return NULL; |
| 1352 |
|
| 1353 |
elf_m68k_init_got (got); |
| 1354 |
|
| 1355 |
return got; |
| 1356 |
} |
| 1357 |
|
| 1358 |
/* Initialize KEY. */ |
| 1359 |
|
| 1360 |
static void |
| 1361 |
elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key, |
| 1362 |
struct elf_link_hash_entry *h, |
| 1363 |
const bfd *abfd, unsigned long symndx, |
| 1364 |
enum elf_m68k_reloc_type reloc_type) |
| 1365 |
{ |
| 1366 |
if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32) |
| 1367 |
/* All TLS_LDM relocations share a single GOT entry. */ |
| 1368 |
{ |
| 1369 |
key->bfd = NULL; |
| 1370 |
key->symndx = 0; |
| 1371 |
} |
| 1372 |
else if (h != NULL) |
| 1373 |
/* Global symbols are identified with their got_entry_key. */ |
| 1374 |
{ |
| 1375 |
key->bfd = NULL; |
| 1376 |
key->symndx = elf_m68k_hash_entry (h)->got_entry_key; |
| 1377 |
BFD_ASSERT (key->symndx != 0); |
| 1378 |
} |
| 1379 |
else |
| 1380 |
/* Local symbols are identified by BFD they appear in and symndx. */ |
| 1381 |
{ |
| 1382 |
key->bfd = abfd; |
| 1383 |
key->symndx = symndx; |
| 1384 |
} |
| 1385 |
|
| 1386 |
key->type = reloc_type; |
| 1387 |
} |
| 1388 |
|
| 1389 |
/* Calculate hash of got_entry. |
| 1390 |
??? Is it good? */ |
| 1391 |
|
| 1392 |
static hashval_t |
| 1393 |
elf_m68k_got_entry_hash (const void *_entry) |
| 1394 |
{ |
| 1395 |
const struct elf_m68k_got_entry_key *key; |
| 1396 |
|
| 1397 |
key = &((const struct elf_m68k_got_entry *) _entry)->key_; |
| 1398 |
|
| 1399 |
return (key->symndx |
| 1400 |
+ (key->bfd != NULL ? (int) key->bfd->id : -1) |
| 1401 |
+ elf_m68k_reloc_got_type (key->type)); |
| 1402 |
} |
| 1403 |
|
| 1404 |
/* Check if two got entries are equal. */ |
| 1405 |
|
| 1406 |
static int |
| 1407 |
elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2) |
| 1408 |
{ |
| 1409 |
const struct elf_m68k_got_entry_key *key1; |
| 1410 |
const struct elf_m68k_got_entry_key *key2; |
| 1411 |
|
| 1412 |
key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_; |
| 1413 |
key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_; |
| 1414 |
|
| 1415 |
return (key1->bfd == key2->bfd |
| 1416 |
&& key1->symndx == key2->symndx |
| 1417 |
&& (elf_m68k_reloc_got_type (key1->type) |
| 1418 |
== elf_m68k_reloc_got_type (key2->type))); |
| 1419 |
} |
| 1420 |
|
| 1421 |
/* When using negative offsets, we allocate one extra R_8, one extra R_16 |
| 1422 |
and one extra R_32 slots to simplify handling of 2-slot entries during |
| 1423 |
offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */ |
| 1424 |
|
| 1425 |
/* Maximal number of R_8 slots in a single GOT. */ |
| 1426 |
#define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \ |
| 1427 |
(elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \ |
| 1428 |
? (0x40 - 1) \ |
| 1429 |
: 0x20) |
| 1430 |
|
| 1431 |
/* Maximal number of R_8 and R_16 slots in a single GOT. */ |
| 1432 |
#define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \ |
| 1433 |
(elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \ |
| 1434 |
? (0x4000 - 2) \ |
| 1435 |
: 0x2000) |
| 1436 |
|
| 1437 |
/* SEARCH - simply search the hashtable, don't insert new entries or fail when |
| 1438 |
the entry cannot be found. |
| 1439 |
FIND_OR_CREATE - search for an existing entry, but create new if there's |
| 1440 |
no such. |
| 1441 |
MUST_FIND - search for an existing entry and assert that it exist. |
| 1442 |
MUST_CREATE - assert that there's no such entry and create new one. */ |
| 1443 |
enum elf_m68k_get_entry_howto |
| 1444 |
{ |
| 1445 |
SEARCH, |
| 1446 |
FIND_OR_CREATE, |
| 1447 |
MUST_FIND, |
| 1448 |
MUST_CREATE |
| 1449 |
}; |
| 1450 |
|
| 1451 |
/* Get or create (depending on HOWTO) entry with KEY in GOT. |
| 1452 |
INFO is context in which memory should be allocated (can be NULL if |
| 1453 |
HOWTO is SEARCH or MUST_FIND). */ |
| 1454 |
|
| 1455 |
static struct elf_m68k_got_entry * |
| 1456 |
elf_m68k_get_got_entry (struct elf_m68k_got *got, |
| 1457 |
const struct elf_m68k_got_entry_key *key, |
| 1458 |
enum elf_m68k_get_entry_howto howto, |
| 1459 |
struct bfd_link_info *info) |
| 1460 |
{ |
| 1461 |
struct elf_m68k_got_entry entry_; |
| 1462 |
struct elf_m68k_got_entry *entry; |
| 1463 |
void **ptr; |
| 1464 |
|
| 1465 |
BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND)); |
| 1466 |
|
| 1467 |
if (got->entries == NULL) |
| 1468 |
/* This is the first entry in ABFD. Initialize hashtable. */ |
| 1469 |
{ |
| 1470 |
if (howto == SEARCH) |
| 1471 |
return NULL; |
| 1472 |
|
| 1473 |
got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT |
| 1474 |
(info), |
| 1475 |
elf_m68k_got_entry_hash, |
| 1476 |
elf_m68k_got_entry_eq, NULL); |
| 1477 |
if (got->entries == NULL) |
| 1478 |
{ |
| 1479 |
bfd_set_error (bfd_error_no_memory); |
| 1480 |
return NULL; |
| 1481 |
} |
| 1482 |
} |
| 1483 |
|
| 1484 |
entry_.key_ = *key; |
| 1485 |
ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH |
| 1486 |
? INSERT : NO_INSERT)); |
| 1487 |
if (ptr == NULL) |
| 1488 |
{ |
| 1489 |
if (howto == SEARCH) |
| 1490 |
/* Entry not found. */ |
| 1491 |
return NULL; |
| 1492 |
|
| 1493 |
/* We're out of memory. */ |
| 1494 |
bfd_set_error (bfd_error_no_memory); |
| 1495 |
return NULL; |
| 1496 |
} |
| 1497 |
|
| 1498 |
if (*ptr == NULL) |
| 1499 |
/* We didn't find the entry and we're asked to create a new one. */ |
| 1500 |
{ |
| 1501 |
BFD_ASSERT (howto != MUST_FIND && howto != SEARCH); |
| 1502 |
|
| 1503 |
entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)); |
| 1504 |
if (entry == NULL) |
| 1505 |
return NULL; |
| 1506 |
|
| 1507 |
/* Initialize new entry. */ |
| 1508 |
entry->key_ = *key; |
| 1509 |
|
| 1510 |
entry->u.s1.refcount = 0; |
| 1511 |
|
| 1512 |
/* Mark the entry as not initialized. */ |
| 1513 |
entry->key_.type = R_68K_max; |
| 1514 |
|
| 1515 |
*ptr = entry; |
| 1516 |
} |
| 1517 |
else |
| 1518 |
/* We found the entry. */ |
| 1519 |
{ |
| 1520 |
BFD_ASSERT (howto != MUST_CREATE); |
| 1521 |
|
| 1522 |
entry = *ptr; |
| 1523 |
} |
| 1524 |
|
| 1525 |
return entry; |
| 1526 |
} |
| 1527 |
|
| 1528 |
/* Update GOT counters when merging entry of WAS type with entry of NEW type. |
| 1529 |
Return the value to which ENTRY's type should be set. */ |
| 1530 |
|
| 1531 |
static enum elf_m68k_reloc_type |
| 1532 |
elf_m68k_update_got_entry_type (struct elf_m68k_got *got, |
| 1533 |
enum elf_m68k_reloc_type was, |
| 1534 |
enum elf_m68k_reloc_type new) |
| 1535 |
{ |
| 1536 |
enum elf_m68k_got_offset_size was_size; |
| 1537 |
enum elf_m68k_got_offset_size new_size; |
| 1538 |
bfd_vma n_slots; |
| 1539 |
|
| 1540 |
if (was == R_68K_max) |
| 1541 |
/* The type of the entry is not initialized yet. */ |
| 1542 |
{ |
| 1543 |
/* Update all got->n_slots counters, including n_slots[R_32]. */ |
| 1544 |
was_size = R_LAST; |
| 1545 |
|
| 1546 |
was = new; |
| 1547 |
} |
| 1548 |
else |
| 1549 |
{ |
| 1550 |
/* !!! We, probably, should emit an error rather then fail on assert |
| 1551 |
in such a case. */ |
| 1552 |
BFD_ASSERT (elf_m68k_reloc_got_type (was) |
| 1553 |
== elf_m68k_reloc_got_type (new)); |
| 1554 |
|
| 1555 |
was_size = elf_m68k_reloc_got_offset_size (was); |
| 1556 |
} |
| 1557 |
|
| 1558 |
new_size = elf_m68k_reloc_got_offset_size (new); |
| 1559 |
n_slots = elf_m68k_reloc_got_n_slots (new); |
| 1560 |
|
| 1561 |
while (was_size > new_size) |
| 1562 |
{ |
| 1563 |
--was_size; |
| 1564 |
got->n_slots[was_size] += n_slots; |
| 1565 |
} |
| 1566 |
|
| 1567 |
if (new > was) |
| 1568 |
/* Relocations are ordered from bigger got offset size to lesser, |
| 1569 |
so choose the relocation type with lesser offset size. */ |
| 1570 |
was = new; |
| 1571 |
|
| 1572 |
return was; |
| 1573 |
} |
| 1574 |
|
| 1575 |
/* Update GOT counters when removing an entry of type TYPE. */ |
| 1576 |
|
| 1577 |
static void |
| 1578 |
elf_m68k_remove_got_entry_type (struct elf_m68k_got *got, |
| 1579 |
enum elf_m68k_reloc_type type) |
| 1580 |
{ |
| 1581 |
enum elf_m68k_got_offset_size os; |
| 1582 |
bfd_vma n_slots; |
| 1583 |
|
| 1584 |
n_slots = elf_m68k_reloc_got_n_slots (type); |
| 1585 |
|
| 1586 |
/* Decrese counter of slots with offset size corresponding to TYPE |
| 1587 |
and all greater offset sizes. */ |
| 1588 |
for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os) |
| 1589 |
{ |
| 1590 |
BFD_ASSERT (got->n_slots[os] >= n_slots); |
| 1591 |
|
| 1592 |
got->n_slots[os] -= n_slots; |
| 1593 |
} |
| 1594 |
} |
| 1595 |
|
| 1596 |
/* Add new or update existing entry to GOT. |
| 1597 |
H, ABFD, TYPE and SYMNDX is data for the entry. |
| 1598 |
INFO is a context where memory should be allocated. */ |
| 1599 |
|
| 1600 |
static struct elf_m68k_got_entry * |
| 1601 |
elf_m68k_add_entry_to_got (struct elf_m68k_got *got, |
| 1602 |
struct elf_link_hash_entry *h, |
| 1603 |
const bfd *abfd, |
| 1604 |
enum elf_m68k_reloc_type reloc_type, |
| 1605 |
unsigned long symndx, |
| 1606 |
struct bfd_link_info *info) |
| 1607 |
{ |
| 1608 |
struct elf_m68k_got_entry_key key_; |
| 1609 |
struct elf_m68k_got_entry *entry; |
| 1610 |
|
| 1611 |
if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0) |
| 1612 |
elf_m68k_hash_entry (h)->got_entry_key |
| 1613 |
= elf_m68k_multi_got (info)->global_symndx++; |
| 1614 |
|
| 1615 |
elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type); |
| 1616 |
|
| 1617 |
entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info); |
| 1618 |
if (entry == NULL) |
| 1619 |
return NULL; |
| 1620 |
|
| 1621 |
/* Determine entry's type and update got->n_slots counters. */ |
| 1622 |
entry->key_.type = elf_m68k_update_got_entry_type (got, |
| 1623 |
entry->key_.type, |
| 1624 |
reloc_type); |
| 1625 |
|
| 1626 |
/* Update refcount. */ |
| 1627 |
++entry->u.s1.refcount; |
| 1628 |
|
| 1629 |
if (entry->u.s1.refcount == 1) |
| 1630 |
/* We see this entry for the first time. */ |
| 1631 |
{ |
| 1632 |
if (entry->key_.bfd != NULL) |
| 1633 |
got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type); |
| 1634 |
} |
| 1635 |
|
| 1636 |
BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots); |
| 1637 |
|
| 1638 |
if ((got->n_slots[R_8] |
| 1639 |
> ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) |
| 1640 |
|| (got->n_slots[R_16] |
| 1641 |
> ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))) |
| 1642 |
/* This BFD has too many relocation. */ |
| 1643 |
{ |
| 1644 |
if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) |
| 1645 |
(*_bfd_error_handler) (_("%B: GOT overflow: " |
| 1646 |
"Number of relocations with 8-bit " |
| 1647 |
"offset > %d"), |
| 1648 |
abfd, |
| 1649 |
ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)); |
| 1650 |
else |
| 1651 |
(*_bfd_error_handler) (_("%B: GOT overflow: " |
| 1652 |
"Number of relocations with 8- or 16-bit " |
| 1653 |
"offset > %d"), |
| 1654 |
abfd, |
| 1655 |
ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)); |
| 1656 |
|
| 1657 |
return NULL; |
| 1658 |
} |
| 1659 |
|
| 1660 |
return entry; |
| 1661 |
} |
| 1662 |
|
| 1663 |
/* Compute the hash value of the bfd in a bfd2got hash entry. */ |
| 1664 |
|
| 1665 |
static hashval_t |
| 1666 |
elf_m68k_bfd2got_entry_hash (const void *entry) |
| 1667 |
{ |
| 1668 |
const struct elf_m68k_bfd2got_entry *e; |
| 1669 |
|
| 1670 |
e = (const struct elf_m68k_bfd2got_entry *) entry; |
| 1671 |
|
| 1672 |
return e->bfd->id; |
| 1673 |
} |
| 1674 |
|
| 1675 |
/* Check whether two hash entries have the same bfd. */ |
| 1676 |
|
| 1677 |
static int |
| 1678 |
elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2) |
| 1679 |
{ |
| 1680 |
const struct elf_m68k_bfd2got_entry *e1; |
| 1681 |
const struct elf_m68k_bfd2got_entry *e2; |
| 1682 |
|
| 1683 |
e1 = (const struct elf_m68k_bfd2got_entry *) entry1; |
| 1684 |
e2 = (const struct elf_m68k_bfd2got_entry *) entry2; |
| 1685 |
|
| 1686 |
return e1->bfd == e2->bfd; |
| 1687 |
} |
| 1688 |
|
| 1689 |
/* Destruct a bfd2got entry. */ |
| 1690 |
|
| 1691 |
static void |
| 1692 |
elf_m68k_bfd2got_entry_del (void *_entry) |
| 1693 |
{ |
| 1694 |
struct elf_m68k_bfd2got_entry *entry; |
| 1695 |
|
| 1696 |
entry = (struct elf_m68k_bfd2got_entry *) _entry; |
| 1697 |
|
| 1698 |
BFD_ASSERT (entry->got != NULL); |
| 1699 |
elf_m68k_clear_got (entry->got); |
| 1700 |
} |
| 1701 |
|
| 1702 |
/* Find existing or create new (depending on HOWTO) bfd2got entry in |
| 1703 |
MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where |
| 1704 |
memory should be allocated. */ |
| 1705 |
|
| 1706 |
static struct elf_m68k_bfd2got_entry * |
| 1707 |
elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got, |
| 1708 |
const bfd *abfd, |
| 1709 |
enum elf_m68k_get_entry_howto howto, |
| 1710 |
struct bfd_link_info *info) |
| 1711 |
{ |
| 1712 |
struct elf_m68k_bfd2got_entry entry_; |
| 1713 |
void **ptr; |
| 1714 |
struct elf_m68k_bfd2got_entry *entry; |
| 1715 |
|
| 1716 |
BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND)); |
| 1717 |
|
| 1718 |
if (multi_got->bfd2got == NULL) |
| 1719 |
/* This is the first GOT. Initialize bfd2got. */ |
| 1720 |
{ |
| 1721 |
if (howto == SEARCH) |
| 1722 |
return NULL; |
| 1723 |
|
| 1724 |
multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash, |
| 1725 |
elf_m68k_bfd2got_entry_eq, |
| 1726 |
elf_m68k_bfd2got_entry_del); |
| 1727 |
if (multi_got->bfd2got == NULL) |
| 1728 |
{ |
| 1729 |
bfd_set_error (bfd_error_no_memory); |
| 1730 |
return NULL; |
| 1731 |
} |
| 1732 |
} |
| 1733 |
|
| 1734 |
entry_.bfd = abfd; |
| 1735 |
ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH |
| 1736 |
? INSERT : NO_INSERT)); |
| 1737 |
if (ptr == NULL) |
| 1738 |
{ |
| 1739 |
if (howto == SEARCH) |
| 1740 |
/* Entry not found. */ |
| 1741 |
return NULL; |
| 1742 |
|
| 1743 |
/* We're out of memory. */ |
| 1744 |
bfd_set_error (bfd_error_no_memory); |
| 1745 |
return NULL; |
| 1746 |
} |
| 1747 |
|
| 1748 |
if (*ptr == NULL) |
| 1749 |
/* Entry was not found. Create new one. */ |
| 1750 |
{ |
| 1751 |
BFD_ASSERT (howto != MUST_FIND && howto != SEARCH); |
| 1752 |
|
| 1753 |
entry = ((struct elf_m68k_bfd2got_entry *) |
| 1754 |
bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry))); |
| 1755 |
if (entry == NULL) |
| 1756 |
return NULL; |
| 1757 |
|
| 1758 |
entry->bfd = abfd; |
| 1759 |
|
| 1760 |
entry->got = elf_m68k_create_empty_got (info); |
| 1761 |
if (entry->got == NULL) |
| 1762 |
return NULL; |
| 1763 |
|
| 1764 |
*ptr = entry; |
| 1765 |
} |
| 1766 |
else |
| 1767 |
{ |
| 1768 |
BFD_ASSERT (howto != MUST_CREATE); |
| 1769 |
|
| 1770 |
/* Return existing entry. */ |
| 1771 |
entry = *ptr; |
| 1772 |
} |
| 1773 |
|
| 1774 |
return entry; |
| 1775 |
} |
| 1776 |
|
| 1777 |
struct elf_m68k_can_merge_gots_arg |
| 1778 |
{ |
| 1779 |
/* A current_got that we constructing a DIFF against. */ |
| 1780 |
struct elf_m68k_got *big; |
| 1781 |
|
| 1782 |
/* GOT holding entries not present or that should be changed in |
| 1783 |
BIG. */ |
| 1784 |
struct elf_m68k_got *diff; |
| 1785 |
|
| 1786 |
/* Context where to allocate memory. */ |
| 1787 |
struct bfd_link_info *info; |
| 1788 |
|
| 1789 |
/* Error flag. */ |
| 1790 |
bfd_boolean error_p; |
| 1791 |
}; |
| 1792 |
|
| 1793 |
/* Process a single entry from the small GOT to see if it should be added |
| 1794 |
or updated in the big GOT. */ |
| 1795 |
|
| 1796 |
static int |
| 1797 |
elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg) |
| 1798 |
{ |
| 1799 |
const struct elf_m68k_got_entry *entry1; |
| 1800 |
struct elf_m68k_can_merge_gots_arg *arg; |
| 1801 |
const struct elf_m68k_got_entry *entry2; |
| 1802 |
enum elf_m68k_reloc_type type; |
| 1803 |
|
| 1804 |
entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr; |
| 1805 |
arg = (struct elf_m68k_can_merge_gots_arg *) _arg; |
| 1806 |
|
| 1807 |
entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL); |
| 1808 |
|
| 1809 |
if (entry2 != NULL) |
| 1810 |
/* We found an existing entry. Check if we should update it. */ |
| 1811 |
{ |
| 1812 |
type = elf_m68k_update_got_entry_type (arg->diff, |
| 1813 |
entry2->key_.type, |
| 1814 |
entry1->key_.type); |
| 1815 |
|
| 1816 |
if (type == entry2->key_.type) |
| 1817 |
/* ENTRY1 doesn't update data in ENTRY2. Skip it. |
| 1818 |
To skip creation of difference entry we use the type, |
| 1819 |
which we won't see in GOT entries for sure. */ |
| 1820 |
type = R_68K_max; |
| 1821 |
} |
| 1822 |
else |
| 1823 |
/* We didn't find the entry. Add entry1 to DIFF. */ |
| 1824 |
{ |
| 1825 |
BFD_ASSERT (entry1->key_.type != R_68K_max); |
| 1826 |
|
| 1827 |
type = elf_m68k_update_got_entry_type (arg->diff, |
| 1828 |
R_68K_max, entry1->key_.type); |
| 1829 |
|
| 1830 |
if (entry1->key_.bfd != NULL) |
| 1831 |
arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type); |
| 1832 |
} |
| 1833 |
|
| 1834 |
if (type != R_68K_max) |
| 1835 |
/* Create an entry in DIFF. */ |
| 1836 |
{ |
| 1837 |
struct elf_m68k_got_entry *entry; |
| 1838 |
|
| 1839 |
entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE, |
| 1840 |
arg->info); |
| 1841 |
if (entry == NULL) |
| 1842 |
{ |
| 1843 |
arg->error_p = TRUE; |
| 1844 |
return 0; |
| 1845 |
} |
| 1846 |
|
| 1847 |
entry->key_.type = type; |
| 1848 |
} |
| 1849 |
|
| 1850 |
return 1; |
| 1851 |
} |
| 1852 |
|
| 1853 |
/* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it. |
| 1854 |
Construct DIFF GOT holding the entries which should be added or updated |
| 1855 |
in BIG GOT to accumulate information from SMALL. |
| 1856 |
INFO is the context where memory should be allocated. */ |
| 1857 |
|
| 1858 |
static bfd_boolean |
| 1859 |
elf_m68k_can_merge_gots (struct elf_m68k_got *big, |
| 1860 |
const struct elf_m68k_got *small, |
| 1861 |
struct bfd_link_info *info, |
| 1862 |
struct elf_m68k_got *diff) |
| 1863 |
{ |
| 1864 |
struct elf_m68k_can_merge_gots_arg arg_; |
| 1865 |
|
| 1866 |
BFD_ASSERT (small->offset == (bfd_vma) -1); |
| 1867 |
|
| 1868 |
arg_.big = big; |
| 1869 |
arg_.diff = diff; |
| 1870 |
arg_.info = info; |
| 1871 |
arg_.error_p = FALSE; |
| 1872 |
htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_); |
| 1873 |
if (arg_.error_p) |
| 1874 |
{ |
| 1875 |
diff->offset = 0; |
| 1876 |
return FALSE; |
| 1877 |
} |
| 1878 |
|
| 1879 |
/* Check for overflow. */ |
| 1880 |
if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8] |
| 1881 |
> ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) |
| 1882 |
|| (big->n_slots[R_16] + arg_.diff->n_slots[R_16] |
| 1883 |
> ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))) |
| 1884 |
return FALSE; |
| 1885 |
|
| 1886 |
return TRUE; |
| 1887 |
} |
| 1888 |
|
| 1889 |
struct elf_m68k_merge_gots_arg |
| 1890 |
{ |
| 1891 |
/* The BIG got. */ |
| 1892 |
struct elf_m68k_got *big; |
| 1893 |
|
| 1894 |
/* Context where memory should be allocated. */ |
| 1895 |
struct bfd_link_info *info; |
| 1896 |
|
| 1897 |
/* Error flag. */ |
| 1898 |
bfd_boolean error_p; |
| 1899 |
}; |
| 1900 |
|
| 1901 |
/* Process a single entry from DIFF got. Add or update corresponding |
| 1902 |
entry in the BIG got. */ |
| 1903 |
|
| 1904 |
static int |
| 1905 |
elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg) |
| 1906 |
{ |
| 1907 |
const struct elf_m68k_got_entry *from; |
| 1908 |
struct elf_m68k_merge_gots_arg *arg; |
| 1909 |
struct elf_m68k_got_entry *to; |
| 1910 |
|
| 1911 |
from = (const struct elf_m68k_got_entry *) *entry_ptr; |
| 1912 |
arg = (struct elf_m68k_merge_gots_arg *) _arg; |
| 1913 |
|
| 1914 |
to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE, |
| 1915 |
arg->info); |
| 1916 |
if (to == NULL) |
| 1917 |
{ |
| 1918 |
arg->error_p = TRUE; |
| 1919 |
return 0; |
| 1920 |
} |
| 1921 |
|
| 1922 |
BFD_ASSERT (to->u.s1.refcount == 0); |
| 1923 |
/* All we need to merge is TYPE. */ |
| 1924 |
to->key_.type = from->key_.type; |
| 1925 |
|
| 1926 |
return 1; |
| 1927 |
} |
| 1928 |
|
| 1929 |
/* Merge data from DIFF to BIG. INFO is context where memory should be |
| 1930 |
allocated. */ |
| 1931 |
|
| 1932 |
static bfd_boolean |
| 1933 |
elf_m68k_merge_gots (struct elf_m68k_got *big, |
| 1934 |
struct elf_m68k_got *diff, |
| 1935 |
struct bfd_link_info *info) |
| 1936 |
{ |
| 1937 |
if (diff->entries != NULL) |
| 1938 |
/* DIFF is not empty. Merge it into BIG GOT. */ |
| 1939 |
{ |
| 1940 |
struct elf_m68k_merge_gots_arg arg_; |
| 1941 |
|
| 1942 |
/* Merge entries. */ |
| 1943 |
arg_.big = big; |
| 1944 |
arg_.info = info; |
| 1945 |
arg_.error_p = FALSE; |
| 1946 |
htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_); |
| 1947 |
if (arg_.error_p) |
| 1948 |
return FALSE; |
| 1949 |
|
| 1950 |
/* Merge counters. */ |
| 1951 |
big->n_slots[R_8] += diff->n_slots[R_8]; |
| 1952 |
big->n_slots[R_16] += diff->n_slots[R_16]; |
| 1953 |
big->n_slots[R_32] += diff->n_slots[R_32]; |
| 1954 |
big->local_n_slots += diff->local_n_slots; |
| 1955 |
} |
| 1956 |
else |
| 1957 |
/* DIFF is empty. */ |
| 1958 |
{ |
| 1959 |
BFD_ASSERT (diff->n_slots[R_8] == 0); |
| 1960 |
BFD_ASSERT (diff->n_slots[R_16] == 0); |
| 1961 |
BFD_ASSERT (diff->n_slots[R_32] == 0); |
| 1962 |
BFD_ASSERT (diff->local_n_slots == 0); |
| 1963 |
} |
| 1964 |
|
| 1965 |
BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p |
| 1966 |
|| ((big->n_slots[R_8] |
| 1967 |
<= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) |
| 1968 |
&& (big->n_slots[R_16] |
| 1969 |
<= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))); |
| 1970 |
|
| 1971 |
return TRUE; |
| 1972 |
} |
| 1973 |
|
| 1974 |
struct elf_m68k_finalize_got_offsets_arg |
| 1975 |
{ |
| 1976 |
/* Ranges of the offsets for GOT entries. |
| 1977 |
R_x entries receive offsets between offset1[R_x] and offset2[R_x]. |
| 1978 |
R_x is R_8, R_16 and R_32. */ |
| 1979 |
bfd_vma *offset1; |
| 1980 |
bfd_vma *offset2; |
| 1981 |
|
| 1982 |
/* Mapping from global symndx to global symbols. |
| 1983 |
This is used to build lists of got entries for global symbols. */ |
| 1984 |
struct elf_m68k_link_hash_entry **symndx2h; |
| 1985 |
|
| 1986 |
bfd_vma n_ldm_entries; |
| 1987 |
}; |
| 1988 |
|
| 1989 |
/* Assign ENTRY an offset. Build list of GOT entries for global symbols |
| 1990 |
along the way. */ |
| 1991 |
|
| 1992 |
static int |
| 1993 |
elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg) |
| 1994 |
{ |
| 1995 |
struct elf_m68k_got_entry *entry; |
| 1996 |
struct elf_m68k_finalize_got_offsets_arg *arg; |
| 1997 |
|
| 1998 |
enum elf_m68k_got_offset_size got_offset_size; |
| 1999 |
bfd_vma entry_size; |
| 2000 |
|
| 2001 |
entry = (struct elf_m68k_got_entry *) *entry_ptr; |
| 2002 |
arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg; |
| 2003 |
|
| 2004 |
/* This should be a fresh entry created in elf_m68k_can_merge_gots. */ |
| 2005 |
BFD_ASSERT (entry->u.s1.refcount == 0); |
| 2006 |
|
| 2007 |
/* Get GOT offset size for the entry . */ |
| 2008 |
got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type); |
| 2009 |
|
| 2010 |
/* Calculate entry size in bytes. */ |
| 2011 |
entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type); |
| 2012 |
|
| 2013 |
/* Check if we should switch to negative range of the offsets. */ |
| 2014 |
if (arg->offset1[got_offset_size] + entry_size |
| 2015 |
> arg->offset2[got_offset_size]) |
| 2016 |
{ |
| 2017 |
/* Verify that this is the only switch to negative range for |
| 2018 |
got_offset_size. If this assertion fails, then we've miscalculated |
| 2019 |
range for got_offset_size entries in |
| 2020 |
elf_m68k_finalize_got_offsets. */ |
| 2021 |
BFD_ASSERT (arg->offset2[got_offset_size] |
| 2022 |
!= arg->offset2[-(int) got_offset_size - 1]); |
| 2023 |
|
| 2024 |
/* Switch. */ |
| 2025 |
arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1]; |
| 2026 |
arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1]; |
| 2027 |
|
| 2028 |
/* Verify that now we have enough room for the entry. */ |
| 2029 |
BFD_ASSERT (arg->offset1[got_offset_size] + entry_size |
| 2030 |
<= arg->offset2[got_offset_size]); |
| 2031 |
} |
| 2032 |
|
| 2033 |
/* Assign offset to entry. */ |
| 2034 |
entry->u.s2.offset = arg->offset1[got_offset_size]; |
| 2035 |
arg->offset1[got_offset_size] += entry_size; |
| 2036 |
|
| 2037 |
if (entry->key_.bfd == NULL) |
| 2038 |
/* Hook up this entry into the list of got_entries of H. */ |
| 2039 |
{ |
| 2040 |
struct elf_m68k_link_hash_entry *h; |
| 2041 |
|
| 2042 |
h = arg->symndx2h[entry->key_.symndx]; |
| 2043 |
if (h != NULL) |
| 2044 |
{ |
| 2045 |
entry->u.s2.next = h->glist; |
| 2046 |
h->glist = entry; |
| 2047 |
} |
| 2048 |
else |
| 2049 |
/* This should be the entry for TLS_LDM relocation then. */ |
| 2050 |
{ |
| 2051 |
BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type) |
| 2052 |
== R_68K_TLS_LDM32) |
| 2053 |
&& entry->key_.symndx == 0); |
| 2054 |
|
| 2055 |
++arg->n_ldm_entries; |
| 2056 |
} |
| 2057 |
} |
| 2058 |
else |
| 2059 |
/* This entry is for local symbol. */ |
| 2060 |
entry->u.s2.next = NULL; |
| 2061 |
|
| 2062 |
return 1; |
| 2063 |
} |
| 2064 |
|
| 2065 |
/* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we |
| 2066 |
should use negative offsets. |
| 2067 |
Build list of GOT entries for global symbols along the way. |
| 2068 |
SYMNDX2H is mapping from global symbol indices to actual |
| 2069 |
global symbols. |
| 2070 |
Return offset at which next GOT should start. */ |
| 2071 |
|
| 2072 |
static void |
| 2073 |
elf_m68k_finalize_got_offsets (struct elf_m68k_got *got, |
| 2074 |
bfd_boolean use_neg_got_offsets_p, |
| 2075 |
struct elf_m68k_link_hash_entry **symndx2h, |
| 2076 |
bfd_vma *final_offset, bfd_vma *n_ldm_entries) |
| 2077 |
{ |
| 2078 |
struct elf_m68k_finalize_got_offsets_arg arg_; |
| 2079 |
bfd_vma offset1_[2 * R_LAST]; |
| 2080 |
bfd_vma offset2_[2 * R_LAST]; |
| 2081 |
int i; |
| 2082 |
bfd_vma start_offset; |
| 2083 |
|
| 2084 |
BFD_ASSERT (got->offset != (bfd_vma) -1); |
| 2085 |
|
| 2086 |
/* We set entry offsets relative to the .got section (and not the |
| 2087 |
start of a particular GOT), so that we can use them in |
| 2088 |
finish_dynamic_symbol without needing to know the GOT which they come |
| 2089 |
from. */ |
| 2090 |
|
| 2091 |
/* Put offset1 in the middle of offset1_, same for offset2. */ |
| 2092 |
arg_.offset1 = offset1_ + R_LAST; |
| 2093 |
arg_.offset2 = offset2_ + R_LAST; |
| 2094 |
|
| 2095 |
start_offset = got->offset; |
| 2096 |
|
| 2097 |
if (use_neg_got_offsets_p) |
| 2098 |
/* Setup both negative and positive ranges for R_8, R_16 and R_32. */ |
| 2099 |
i = -(int) R_32 - 1; |
| 2100 |
else |
| 2101 |
/* Setup positives ranges for R_8, R_16 and R_32. */ |
| 2102 |
i = (int) R_8; |
| 2103 |
|
| 2104 |
for (; i <= (int) R_32; ++i) |
| 2105 |
{ |
| 2106 |
int j; |
| 2107 |
size_t n; |
| 2108 |
|
| 2109 |
/* Set beginning of the range of offsets I. */ |
| 2110 |
arg_.offset1[i] = start_offset; |
| 2111 |
|
| 2112 |
/* Calculate number of slots that require I offsets. */ |
| 2113 |
j = (i >= 0) ? i : -i - 1; |
| 2114 |
n = (j >= 1) ? got->n_slots[j - 1] : 0; |
| 2115 |
n = got->n_slots[j] - n; |
| 2116 |
|
| 2117 |
if (use_neg_got_offsets_p && n != 0) |
| 2118 |
{ |
| 2119 |
if (i < 0) |
| 2120 |
/* We first fill the positive side of the range, so we might |
| 2121 |
end up with one empty slot at that side when we can't fit |
| 2122 |
whole 2-slot entry. Account for that at negative side of |
| 2123 |
the interval with one additional entry. */ |
| 2124 |
n = n / 2 + 1; |
| 2125 |
else |
| 2126 |
/* When the number of slots is odd, make positive side of the |
| 2127 |
range one entry bigger. */ |
| 2128 |
n = (n + 1) / 2; |
| 2129 |
} |
| 2130 |
|
| 2131 |
/* N is the number of slots that require I offsets. |
| 2132 |
Calculate length of the range for I offsets. */ |
| 2133 |
n = 4 * n; |
| 2134 |
|
| 2135 |
/* Set end of the range. */ |
| 2136 |
arg_.offset2[i] = start_offset + n; |
| 2137 |
|
| 2138 |
start_offset = arg_.offset2[i]; |
| 2139 |
} |
| 2140 |
|
| 2141 |
if (!use_neg_got_offsets_p) |
| 2142 |
/* Make sure that if we try to switch to negative offsets in |
| 2143 |
elf_m68k_finalize_got_offsets_1, the assert therein will catch |
| 2144 |
the bug. */ |
| 2145 |
for (i = R_8; i <= R_32; ++i) |
| 2146 |
arg_.offset2[-i - 1] = arg_.offset2[i]; |
| 2147 |
|
| 2148 |
/* Setup got->offset. offset1[R_8] is either in the middle or at the |
| 2149 |
beginning of GOT depending on use_neg_got_offsets_p. */ |
| 2150 |
got->offset = arg_.offset1[R_8]; |
| 2151 |
|
| 2152 |
arg_.symndx2h = symndx2h; |
| 2153 |
arg_.n_ldm_entries = 0; |
| 2154 |
|
| 2155 |
/* Assign offsets. */ |
| 2156 |
htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_); |
| 2157 |
|
| 2158 |
/* Check offset ranges we have actually assigned. */ |
| 2159 |
for (i = (int) R_8; i <= (int) R_32; ++i) |
| 2160 |
BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4); |
| 2161 |
|
| 2162 |
*final_offset = start_offset; |
| 2163 |
*n_ldm_entries = arg_.n_ldm_entries; |
| 2164 |
} |
| 2165 |
|
| 2166 |
struct elf_m68k_partition_multi_got_arg |
| 2167 |
{ |
| 2168 |
/* The GOT we are adding entries to. Aka big got. */ |
| 2169 |
struct elf_m68k_got *current_got; |
| 2170 |
|
| 2171 |
/* Offset to assign the next CURRENT_GOT. */ |
| 2172 |
bfd_vma offset; |
| 2173 |
|
| 2174 |
/* Context where memory should be allocated. */ |
| 2175 |
struct bfd_link_info *info; |
| 2176 |
|
| 2177 |
/* Total number of slots in the .got section. |
| 2178 |
This is used to calculate size of the .got and .rela.got sections. */ |
| 2179 |
bfd_vma n_slots; |
| 2180 |
|
| 2181 |
/* Difference in numbers of allocated slots in the .got section |
| 2182 |
and necessary relocations in the .rela.got section. |
| 2183 |
This is used to calculate size of the .rela.got section. */ |
| 2184 |
bfd_vma slots_relas_diff; |
| 2185 |
|
| 2186 |
/* Error flag. */ |
| 2187 |
bfd_boolean error_p; |
| 2188 |
|
| 2189 |
/* Mapping from global symndx to global symbols. |
| 2190 |
This is used to build lists of got entries for global symbols. */ |
| 2191 |
struct elf_m68k_link_hash_entry **symndx2h; |
| 2192 |
}; |
| 2193 |
|
| 2194 |
static void |
| 2195 |
elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg) |
| 2196 |
{ |
| 2197 |
bfd_vma n_ldm_entries; |
| 2198 |
|
| 2199 |
elf_m68k_finalize_got_offsets (arg->current_got, |
| 2200 |
(elf_m68k_hash_table (arg->info) |
| 2201 |
->use_neg_got_offsets_p), |
| 2202 |
arg->symndx2h, |
| 2203 |
&arg->offset, &n_ldm_entries); |
| 2204 |
|
| 2205 |
arg->n_slots += arg->current_got->n_slots[R_32]; |
| 2206 |
|
| 2207 |
if (!arg->info->shared) |
| 2208 |
/* If we are generating a shared object, we need to |
| 2209 |
output a R_68K_RELATIVE reloc so that the dynamic |
| 2210 |
linker can adjust this GOT entry. Overwise we |
| 2211 |
don't need space in .rela.got for local symbols. */ |
| 2212 |
arg->slots_relas_diff += arg->current_got->local_n_slots; |
| 2213 |
|
| 2214 |
/* @LDM relocations require a 2-slot GOT entry, but only |
| 2215 |
one relocation. Account for that. */ |
| 2216 |
arg->slots_relas_diff += n_ldm_entries; |
| 2217 |
|
| 2218 |
BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots); |
| 2219 |
} |
| 2220 |
|
| 2221 |
|
| 2222 |
/* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT |
| 2223 |
or start a new CURRENT_GOT. */ |
| 2224 |
|
| 2225 |
static int |
| 2226 |
elf_m68k_partition_multi_got_1 (void **_entry, void *_arg) |
| 2227 |
{ |
| 2228 |
struct elf_m68k_bfd2got_entry *entry; |
| 2229 |
struct elf_m68k_partition_multi_got_arg *arg; |
| 2230 |
struct elf_m68k_got *got; |
| 2231 |
struct elf_m68k_got diff_; |
| 2232 |
struct elf_m68k_got *diff; |
| 2233 |
|
| 2234 |
entry = (struct elf_m68k_bfd2got_entry *) *_entry; |
| 2235 |
arg = (struct elf_m68k_partition_multi_got_arg *) _arg; |
| 2236 |
|
| 2237 |
got = entry->got; |
| 2238 |
BFD_ASSERT (got != NULL); |
| 2239 |
BFD_ASSERT (got->offset == (bfd_vma) -1); |
| 2240 |
|
| 2241 |
diff = NULL; |
| 2242 |
|
| 2243 |
if (arg->current_got != NULL) |
| 2244 |
/* Construct diff. */ |
| 2245 |
{ |
| 2246 |
diff = &diff_; |
| 2247 |
elf_m68k_init_got (diff); |
| 2248 |
|
| 2249 |
if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff)) |
| 2250 |
{ |
| 2251 |
if (diff->offset == 0) |
| 2252 |
/* Offset set to 0 in the diff_ indicates an error. */ |
| 2253 |
{ |
| 2254 |
arg->error_p = TRUE; |
| 2255 |
goto final_return; |
| 2256 |
} |
| 2257 |
|
| 2258 |
if (elf_m68k_hash_table (arg->info)->allow_multigot_p) |
| 2259 |
{ |
| 2260 |
elf_m68k_clear_got (diff); |
| 2261 |
/* Schedule to finish up current_got and start new one. */ |
| 2262 |
diff = NULL; |
| 2263 |
} |
| 2264 |
/* else |
| 2265 |
Merge GOTs no matter what. If big GOT overflows, |
| 2266 |
we'll fail in relocate_section due to truncated relocations. |
| 2267 |
|
| 2268 |
??? May be fail earlier? E.g., in can_merge_gots. */ |
| 2269 |
} |
| 2270 |
} |
| 2271 |
else |
| 2272 |
/* Diff of got against empty current_got is got itself. */ |
| 2273 |
{ |
| 2274 |
/* Create empty current_got to put subsequent GOTs to. */ |
| 2275 |
arg->current_got = elf_m68k_create_empty_got (arg->info); |
| 2276 |
if (arg->current_got == NULL) |
| 2277 |
{ |
| 2278 |
arg->error_p = TRUE; |
| 2279 |
goto final_return; |
| 2280 |
} |
| 2281 |
|
| 2282 |
arg->current_got->offset = arg->offset; |
| 2283 |
|
| 2284 |
diff = got; |
| 2285 |
} |
| 2286 |
|
| 2287 |
if (diff != NULL) |
| 2288 |
{ |
| 2289 |
if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info)) |
| 2290 |
{ |
| 2291 |
arg->error_p = TRUE; |
| 2292 |
goto final_return; |
| 2293 |
} |
| 2294 |
|
| 2295 |
/* Now we can free GOT. */ |
| 2296 |
elf_m68k_clear_got (got); |
| 2297 |
|
| 2298 |
entry->got = arg->current_got; |
| 2299 |
} |
| 2300 |
else |
| 2301 |
{ |
| 2302 |
/* Finish up current_got. */ |
| 2303 |
elf_m68k_partition_multi_got_2 (arg); |
| 2304 |
|
| 2305 |
/* Schedule to start a new current_got. */ |
| 2306 |
arg->current_got = NULL; |
| 2307 |
|
| 2308 |
/* Retry. */ |
| 2309 |
if (!elf_m68k_partition_multi_got_1 (_entry, _arg)) |
| 2310 |
{ |
| 2311 |
BFD_ASSERT (arg->error_p); |
| 2312 |
goto final_return; |
| 2313 |
} |
| 2314 |
} |
| 2315 |
|
| 2316 |
final_return: |
| 2317 |
if (diff != NULL) |
| 2318 |
elf_m68k_clear_got (diff); |
| 2319 |
|
| 2320 |
return arg->error_p == FALSE ? 1 : 0; |
| 2321 |
} |
| 2322 |
|
| 2323 |
/* Helper function to build symndx2h mapping. */ |
| 2324 |
|
| 2325 |
static bfd_boolean |
| 2326 |
elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h, |
| 2327 |
void *_arg) |
| 2328 |
{ |
| 2329 |
struct elf_m68k_link_hash_entry *h; |
| 2330 |
|
| 2331 |
h = elf_m68k_hash_entry (_h); |
| 2332 |
|
| 2333 |
if (h->got_entry_key != 0) |
| 2334 |
/* H has at least one entry in the GOT. */ |
| 2335 |
{ |
| 2336 |
struct elf_m68k_partition_multi_got_arg *arg; |
| 2337 |
|
| 2338 |
arg = (struct elf_m68k_partition_multi_got_arg *) _arg; |
| 2339 |
|
| 2340 |
BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL); |
| 2341 |
arg->symndx2h[h->got_entry_key] = h; |
| 2342 |
} |
| 2343 |
|
| 2344 |
return TRUE; |
| 2345 |
} |
| 2346 |
|
| 2347 |
/* Merge GOTs of some BFDs, assign offsets to GOT entries and build |
| 2348 |
lists of GOT entries for global symbols. |
| 2349 |
Calculate sizes of .got and .rela.got sections. */ |
| 2350 |
|
| 2351 |
static bfd_boolean |
| 2352 |
elf_m68k_partition_multi_got (struct bfd_link_info *info) |
| 2353 |
{ |
| 2354 |
struct elf_m68k_multi_got *multi_got; |
| 2355 |
struct elf_m68k_partition_multi_got_arg arg_; |
| 2356 |
|
| 2357 |
multi_got = elf_m68k_multi_got (info); |
| 2358 |
|
| 2359 |
arg_.current_got = NULL; |
| 2360 |
arg_.offset = 0; |
| 2361 |
arg_.info = info; |
| 2362 |
arg_.n_slots = 0; |
| 2363 |
arg_.slots_relas_diff = 0; |
| 2364 |
arg_.error_p = FALSE; |
| 2365 |
|
| 2366 |
if (multi_got->bfd2got != NULL) |
| 2367 |
{ |
| 2368 |
/* Initialize symndx2h mapping. */ |
| 2369 |
{ |
| 2370 |
arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx |
| 2371 |
* sizeof (*arg_.symndx2h)); |
| 2372 |
if (arg_.symndx2h == NULL) |
| 2373 |
return FALSE; |
| 2374 |
|
| 2375 |
elf_link_hash_traverse (elf_hash_table (info), |
| 2376 |
elf_m68k_init_symndx2h_1, &arg_); |
| 2377 |
} |
| 2378 |
|
| 2379 |
/* Partition. */ |
| 2380 |
htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1, |
| 2381 |
&arg_); |
| 2382 |
if (arg_.error_p) |
| 2383 |
{ |
| 2384 |
free (arg_.symndx2h); |
| 2385 |
arg_.symndx2h = NULL; |
| 2386 |
|
| 2387 |
return FALSE; |
| 2388 |
} |
| 2389 |
|
| 2390 |
/* Finish up last current_got. */ |
| 2391 |
elf_m68k_partition_multi_got_2 (&arg_); |
| 2392 |
|
| 2393 |
free (arg_.symndx2h); |
| 2394 |
} |
| 2395 |
|
| 2396 |
if (elf_hash_table (info)->dynobj != NULL) |
| 2397 |
/* Set sizes of .got and .rela.got sections. */ |
| 2398 |
{ |
| 2399 |
asection *s; |
| 2400 |
|
| 2401 |
s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".got"); |
| 2402 |
if (s != NULL) |
| 2403 |
s->size = arg_.offset; |
| 2404 |
else |
| 2405 |
BFD_ASSERT (arg_.offset == 0); |
| 2406 |
|
| 2407 |
BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots); |
| 2408 |
arg_.n_slots -= arg_.slots_relas_diff; |
| 2409 |
|
| 2410 |
s = bfd_get_section_by_name (elf_hash_table (info)->dynobj, ".rela.got"); |
| 2411 |
if (s != NULL) |
| 2412 |
s->size = arg_.n_slots * sizeof (Elf32_External_Rela); |
| 2413 |
else |
| 2414 |
BFD_ASSERT (arg_.n_slots == 0); |
| 2415 |
} |
| 2416 |
else |
| 2417 |
BFD_ASSERT (multi_got->bfd2got == NULL); |
| 2418 |
|
| 2419 |
return TRUE; |
| 2420 |
} |
| 2421 |
|
| 2422 |
/* Specialized version of elf_m68k_get_got_entry that returns pointer |
| 2423 |
to hashtable slot, thus allowing removal of entry via |
| 2424 |
elf_m68k_remove_got_entry. */ |
| 2425 |
|
| 2426 |
static struct elf_m68k_got_entry ** |
| 2427 |
elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got, |
| 2428 |
struct elf_m68k_got_entry_key *key) |
| 2429 |
{ |
| 2430 |
void **ptr; |
| 2431 |
struct elf_m68k_got_entry entry_; |
| 2432 |
struct elf_m68k_got_entry **entry_ptr; |
| 2433 |
|
| 2434 |
entry_.key_ = *key; |
| 2435 |
ptr = htab_find_slot (got->entries, &entry_, NO_INSERT); |
| 2436 |
BFD_ASSERT (ptr != NULL); |
| 2437 |
|
| 2438 |
entry_ptr = (struct elf_m68k_got_entry **) ptr; |
| 2439 |
|
| 2440 |
return entry_ptr; |
| 2441 |
} |
| 2442 |
|
| 2443 |
/* Remove entry pointed to by ENTRY_PTR from GOT. */ |
| 2444 |
|
| 2445 |
static void |
| 2446 |
elf_m68k_remove_got_entry (struct elf_m68k_got *got, |
| 2447 |
struct elf_m68k_got_entry **entry_ptr) |
| 2448 |
{ |
| 2449 |
struct elf_m68k_got_entry *entry; |
| 2450 |
|
| 2451 |
entry = *entry_ptr; |
| 2452 |
|
| 2453 |
/* Check that offsets have not been finalized yet. */ |
| 2454 |
BFD_ASSERT (got->offset == (bfd_vma) -1); |
| 2455 |
/* Check that this entry is indeed unused. */ |
| 2456 |
BFD_ASSERT (entry->u.s1.refcount == 0); |
| 2457 |
|
| 2458 |
elf_m68k_remove_got_entry_type (got, entry->key_.type); |
| 2459 |
|
| 2460 |
if (entry->key_.bfd != NULL) |
| 2461 |
got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type); |
| 2462 |
|
| 2463 |
BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots); |
| 2464 |
|
| 2465 |
htab_clear_slot (got->entries, (void **) entry_ptr); |
| 2466 |
} |
| 2467 |
|
| 2468 |
/* Copy any information related to dynamic linking from a pre-existing |
| 2469 |
symbol to a newly created symbol. Also called to copy flags and |
| 2470 |
other back-end info to a weakdef, in which case the symbol is not |
| 2471 |
newly created and plt/got refcounts and dynamic indices should not |
| 2472 |
be copied. */ |
| 2473 |
|
| 2474 |
static void |
| 2475 |
elf_m68k_copy_indirect_symbol (struct bfd_link_info *info, |
| 2476 |
struct elf_link_hash_entry *_dir, |
| 2477 |
struct elf_link_hash_entry *_ind) |
| 2478 |
{ |
| 2479 |
struct elf_m68k_link_hash_entry *dir; |
| 2480 |
struct elf_m68k_link_hash_entry *ind; |
| 2481 |
|
| 2482 |
_bfd_elf_link_hash_copy_indirect (info, _dir, _ind); |
| 2483 |
|
| 2484 |
if (_ind->root.type != bfd_link_hash_indirect) |
| 2485 |
return; |
| 2486 |
|
| 2487 |
dir = elf_m68k_hash_entry (_dir); |
| 2488 |
ind = elf_m68k_hash_entry (_ind); |
| 2489 |
|
| 2490 |
/* We might have a direct symbol already having entries in the GOTs. |
| 2491 |
Update its key only in case indirect symbol has GOT entries and |
| 2492 |
assert that both indirect and direct symbols don't have GOT entries |
| 2493 |
at the same time. */ |
| 2494 |
if (ind->got_entry_key != 0) |
| 2495 |
{ |
| 2496 |
BFD_ASSERT (dir->got_entry_key == 0); |
| 2497 |
/* Assert that GOTs aren't partioned yet. */ |
| 2498 |
BFD_ASSERT (ind->glist == NULL); |
| 2499 |
|
| 2500 |
dir->got_entry_key = ind->got_entry_key; |
| 2501 |
ind->got_entry_key = 0; |
| 2502 |
} |
| 2503 |
} |
| 2504 |
|
| 2505 |
/* Look through the relocs for a section during the first phase, and |
| 2506 |
allocate space in the global offset table or procedure linkage |
| 2507 |
table. */ |
| 2508 |
|
| 2509 |
static bfd_boolean |
| 2510 |
elf_m68k_check_relocs (abfd, info, sec, relocs) |
| 2511 |
bfd *abfd; |
| 2512 |
struct bfd_link_info *info; |
| 2513 |
asection *sec; |
| 2514 |
const Elf_Internal_Rela *relocs; |
| 2515 |
{ |
| 2516 |
bfd *dynobj; |
| 2517 |
Elf_Internal_Shdr *symtab_hdr; |
| 2518 |
struct elf_link_hash_entry **sym_hashes; |
| 2519 |
const Elf_Internal_Rela *rel; |
| 2520 |
const Elf_Internal_Rela *rel_end; |
| 2521 |
asection *sgot; |
| 2522 |
asection *srelgot; |
| 2523 |
asection *sreloc; |
| 2524 |
struct elf_m68k_got *got; |
| 2525 |
|
| 2526 |
if (info->relocatable) |
| 2527 |
return TRUE; |
| 2528 |
|
| 2529 |
dynobj = elf_hash_table (info)->dynobj; |
| 2530 |
symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| 2531 |
sym_hashes = elf_sym_hashes (abfd); |
| 2532 |
|
| 2533 |
sgot = NULL; |
| 2534 |
srelgot = NULL; |
| 2535 |
sreloc = NULL; |
| 2536 |
|
| 2537 |
got = NULL; |
| 2538 |
|
| 2539 |
rel_end = relocs + sec->reloc_count; |
| 2540 |
for (rel = relocs; rel < rel_end; rel++) |
| 2541 |
{ |
| 2542 |
unsigned long r_symndx; |
| 2543 |
struct elf_link_hash_entry *h; |
| 2544 |
|
| 2545 |
r_symndx = ELF32_R_SYM (rel->r_info); |
| 2546 |
|
| 2547 |
if (r_symndx < symtab_hdr->sh_info) |
| 2548 |
h = NULL; |
| 2549 |
else |
| 2550 |
{ |
| 2551 |
h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| 2552 |
while (h->root.type == bfd_link_hash_indirect |
| 2553 |
|| h->root.type == bfd_link_hash_warning) |
| 2554 |
h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 2555 |
} |
| 2556 |
|
| 2557 |
switch (ELF32_R_TYPE (rel->r_info)) |
| 2558 |
{ |
| 2559 |
case R_68K_GOT8: |
| 2560 |
case R_68K_GOT16: |
| 2561 |
case R_68K_GOT32: |
| 2562 |
if (h != NULL |
| 2563 |
&& strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) |
| 2564 |
break; |
| 2565 |
/* Fall through. */ |
| 2566 |
|
| 2567 |
/* Relative GOT relocations. */ |
| 2568 |
case R_68K_GOT8O: |
| 2569 |
case R_68K_GOT16O: |
| 2570 |
case R_68K_GOT32O: |
| 2571 |
/* Fall through. */ |
| 2572 |
|
| 2573 |
/* TLS relocations. */ |
| 2574 |
case R_68K_TLS_GD8: |
| 2575 |
case R_68K_TLS_GD16: |
| 2576 |
case R_68K_TLS_GD32: |
| 2577 |
case R_68K_TLS_LDM8: |
| 2578 |
case R_68K_TLS_LDM16: |
| 2579 |
case R_68K_TLS_LDM32: |
| 2580 |
case R_68K_TLS_IE8: |
| 2581 |
case R_68K_TLS_IE16: |
| 2582 |
case R_68K_TLS_IE32: |
| 2583 |
|
| 2584 |
/* This symbol requires a global offset table entry. */ |
| 2585 |
|
| 2586 |
if (dynobj == NULL) |
| 2587 |
{ |
| 2588 |
/* Create the .got section. */ |
| 2589 |
elf_hash_table (info)->dynobj = dynobj = abfd; |
| 2590 |
if (!_bfd_elf_create_got_section (dynobj, info)) |
| 2591 |
return FALSE; |
| 2592 |
} |
| 2593 |
|
| 2594 |
if (sgot == NULL) |
| 2595 |
{ |
| 2596 |
sgot = bfd_get_section_by_name (dynobj, ".got"); |
| 2597 |
BFD_ASSERT (sgot != NULL); |
| 2598 |
} |
| 2599 |
|
| 2600 |
if (srelgot == NULL |
| 2601 |
&& (h != NULL || info->shared)) |
| 2602 |
{ |
| 2603 |
srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); |
| 2604 |
if (srelgot == NULL) |
| 2605 |
{ |
| 2606 |
srelgot = bfd_make_section_with_flags (dynobj, |
| 2607 |
".rela.got", |
| 2608 |
(SEC_ALLOC |
| 2609 |
| SEC_LOAD |
| 2610 |
| SEC_HAS_CONTENTS |
| 2611 |
| SEC_IN_MEMORY |
| 2612 |
| SEC_LINKER_CREATED |
| 2613 |
| SEC_READONLY)); |
| 2614 |
if (srelgot == NULL |
| 2615 |
|| !bfd_set_section_alignment (dynobj, srelgot, 2)) |
| 2616 |
return FALSE; |
| 2617 |
} |
| 2618 |
} |
| 2619 |
|
| 2620 |
if (got == NULL) |
| 2621 |
{ |
| 2622 |
struct elf_m68k_bfd2got_entry *bfd2got_entry; |
| 2623 |
|
| 2624 |
bfd2got_entry |
| 2625 |
= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), |
| 2626 |
abfd, FIND_OR_CREATE, info); |
| 2627 |
if (bfd2got_entry == NULL) |
| 2628 |
return FALSE; |
| 2629 |
|
| 2630 |
got = bfd2got_entry->got; |
| 2631 |
BFD_ASSERT (got != NULL); |
| 2632 |
} |
| 2633 |
|
| 2634 |
{ |
| 2635 |
struct elf_m68k_got_entry *got_entry; |
| 2636 |
|
| 2637 |
/* Add entry to got. */ |
| 2638 |
got_entry = elf_m68k_add_entry_to_got (got, h, abfd, |
| 2639 |
ELF32_R_TYPE (rel->r_info), |
| 2640 |
r_symndx, info); |
| 2641 |
if (got_entry == NULL) |
| 2642 |
return FALSE; |
| 2643 |
|
| 2644 |
if (got_entry->u.s1.refcount == 1) |
| 2645 |
{ |
| 2646 |
/* Make sure this symbol is output as a dynamic symbol. */ |
| 2647 |
if (h != NULL |
| 2648 |
&& h->dynindx == -1 |
| 2649 |
&& !h->forced_local) |
| 2650 |
{ |
| 2651 |
if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
| 2652 |
return FALSE; |
| 2653 |
} |
| 2654 |
} |
| 2655 |
} |
| 2656 |
|
| 2657 |
break; |
| 2658 |
|
| 2659 |
case R_68K_PLT8: |
| 2660 |
case R_68K_PLT16: |
| 2661 |
case R_68K_PLT32: |
| 2662 |
/* This symbol requires a procedure linkage table entry. We |
| 2663 |
actually build the entry in adjust_dynamic_symbol, |
| 2664 |
because this might be a case of linking PIC code which is |
| 2665 |
never referenced by a dynamic object, in which case we |
| 2666 |
don't need to generate a procedure linkage table entry |
| 2667 |
after all. */ |
| 2668 |
|
| 2669 |
/* If this is a local symbol, we resolve it directly without |
| 2670 |
creating a procedure linkage table entry. */ |
| 2671 |
if (h == NULL) |
| 2672 |
continue; |
| 2673 |
|
| 2674 |
h->needs_plt = 1; |
| 2675 |
h->plt.refcount++; |
| 2676 |
break; |
| 2677 |
|
| 2678 |
case R_68K_PLT8O: |
| 2679 |
case R_68K_PLT16O: |
| 2680 |
case R_68K_PLT32O: |
| 2681 |
/* This symbol requires a procedure linkage table entry. */ |
| 2682 |
|
| 2683 |
if (h == NULL) |
| 2684 |
{ |
| 2685 |
/* It does not make sense to have this relocation for a |
| 2686 |
local symbol. FIXME: does it? How to handle it if |
| 2687 |
it does make sense? */ |
| 2688 |
bfd_set_error (bfd_error_bad_value); |
| 2689 |
return FALSE; |
| 2690 |
} |
| 2691 |
|
| 2692 |
/* Make sure this symbol is output as a dynamic symbol. */ |
| 2693 |
if (h->dynindx == -1 |
| 2694 |
&& !h->forced_local) |
| 2695 |
{ |
| 2696 |
if (!bfd_elf_link_record_dynamic_symbol (info, h)) |
| 2697 |
return FALSE; |
| 2698 |
} |
| 2699 |
|
| 2700 |
h->needs_plt = 1; |
| 2701 |
h->plt.refcount++; |
| 2702 |
break; |
| 2703 |
|
| 2704 |
case R_68K_PC8: |
| 2705 |
case R_68K_PC16: |
| 2706 |
case R_68K_PC32: |
| 2707 |
/* If we are creating a shared library and this is not a local |
| 2708 |
symbol, we need to copy the reloc into the shared library. |
| 2709 |
However when linking with -Bsymbolic and this is a global |
| 2710 |
symbol which is defined in an object we are including in the |
| 2711 |
link (i.e., DEF_REGULAR is set), then we can resolve the |
| 2712 |
reloc directly. At this point we have not seen all the input |
| 2713 |
files, so it is possible that DEF_REGULAR is not set now but |
| 2714 |
will be set later (it is never cleared). We account for that |
| 2715 |
possibility below by storing information in the |
| 2716 |
pcrel_relocs_copied field of the hash table entry. */ |
| 2717 |
if (!(info->shared |
| 2718 |
&& (sec->flags & SEC_ALLOC) != 0 |
| 2719 |
&& h != NULL |
| 2720 |
&& (!info->symbolic |
| 2721 |
|| h->root.type == bfd_link_hash_defweak |
| 2722 |
|| !h->def_regular))) |
| 2723 |
{ |
| 2724 |
if (h != NULL) |
| 2725 |
{ |
| 2726 |
/* Make sure a plt entry is created for this symbol if |
| 2727 |
it turns out to be a function defined by a dynamic |
| 2728 |
object. */ |
| 2729 |
h->plt.refcount++; |
| 2730 |
} |
| 2731 |
break; |
| 2732 |
} |
| 2733 |
/* Fall through. */ |
| 2734 |
case R_68K_8: |
| 2735 |
case R_68K_16: |
| 2736 |
case R_68K_32: |
| 2737 |
if (h != NULL) |
| 2738 |
{ |
| 2739 |
/* Make sure a plt entry is created for this symbol if it |
| 2740 |
turns out to be a function defined by a dynamic object. */ |
| 2741 |
h->plt.refcount++; |
| 2742 |
} |
| 2743 |
|
| 2744 |
/* If we are creating a shared library, we need to copy the |
| 2745 |
reloc into the shared library. */ |
| 2746 |
if (info->shared |
| 2747 |
&& (sec->flags & SEC_ALLOC) != 0) |
| 2748 |
{ |
| 2749 |
/* When creating a shared object, we must copy these |
| 2750 |
reloc types into the output file. We create a reloc |
| 2751 |
section in dynobj and make room for this reloc. */ |
| 2752 |
if (sreloc == NULL) |
| 2753 |
{ |
| 2754 |
sreloc = _bfd_elf_make_dynamic_reloc_section |
| 2755 |
(sec, dynobj, 2, abfd, /*rela?*/ TRUE); |
| 2756 |
|
| 2757 |
if (sreloc == NULL) |
| 2758 |
return FALSE; |
| 2759 |
} |
| 2760 |
|
| 2761 |
if (sec->flags & SEC_READONLY |
| 2762 |
/* Don't set DF_TEXTREL yet for PC relative |
| 2763 |
relocations, they might be discarded later. */ |
| 2764 |
&& !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8 |
| 2765 |
|| ELF32_R_TYPE (rel->r_info) == R_68K_PC16 |
| 2766 |
|| ELF32_R_TYPE (rel->r_info) == R_68K_PC32)) |
| 2767 |
info->flags |= DF_TEXTREL; |
| 2768 |
|
| 2769 |
sreloc->size += sizeof (Elf32_External_Rela); |
| 2770 |
|
| 2771 |
/* We count the number of PC relative relocations we have |
| 2772 |
entered for this symbol, so that we can discard them |
| 2773 |
again if, in the -Bsymbolic case, the symbol is later |
| 2774 |
defined by a regular object, or, in the normal shared |
| 2775 |
case, the symbol is forced to be local. Note that this |
| 2776 |
function is only called if we are using an m68kelf linker |
| 2777 |
hash table, which means that h is really a pointer to an |
| 2778 |
elf_m68k_link_hash_entry. */ |
| 2779 |
if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8 |
| 2780 |
|| ELF32_R_TYPE (rel->r_info) == R_68K_PC16 |
| 2781 |
|| ELF32_R_TYPE (rel->r_info) == R_68K_PC32) |
| 2782 |
{ |
| 2783 |
struct elf_m68k_pcrel_relocs_copied *p; |
| 2784 |
struct elf_m68k_pcrel_relocs_copied **head; |
| 2785 |
|
| 2786 |
if (h != NULL) |
| 2787 |
{ |
| 2788 |
struct elf_m68k_link_hash_entry *eh |
| 2789 |
= elf_m68k_hash_entry (h); |
| 2790 |
head = &eh->pcrel_relocs_copied; |
| 2791 |
} |
| 2792 |
else |
| 2793 |
{ |
| 2794 |
asection *s; |
| 2795 |
void *vpp; |
| 2796 |
Elf_Internal_Sym *isym; |
| 2797 |
|
| 2798 |
isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache, |
| 2799 |
abfd, r_symndx); |
| 2800 |
if (isym == NULL) |
| 2801 |
return FALSE; |
| 2802 |
|
| 2803 |
s = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| 2804 |
if (s == NULL) |
| 2805 |
s = sec; |
| 2806 |
|
| 2807 |
vpp = &elf_section_data (s)->local_dynrel; |
| 2808 |
head = (struct elf_m68k_pcrel_relocs_copied **) vpp; |
| 2809 |
} |
| 2810 |
|
| 2811 |
for (p = *head; p != NULL; p = p->next) |
| 2812 |
if (p->section == sreloc) |
| 2813 |
break; |
| 2814 |
|
| 2815 |
if (p == NULL) |
| 2816 |
{ |
| 2817 |
p = ((struct elf_m68k_pcrel_relocs_copied *) |
| 2818 |
bfd_alloc (dynobj, (bfd_size_type) sizeof *p)); |
| 2819 |
if (p == NULL) |
| 2820 |
return FALSE; |
| 2821 |
p->next = *head; |
| 2822 |
*head = p; |
| 2823 |
p->section = sreloc; |
| 2824 |
p->count = 0; |
| 2825 |
} |
| 2826 |
|
| 2827 |
++p->count; |
| 2828 |
} |
| 2829 |
} |
| 2830 |
|
| 2831 |
break; |
| 2832 |
|
| 2833 |
/* This relocation describes the C++ object vtable hierarchy. |
| 2834 |
Reconstruct it for later use during GC. */ |
| 2835 |
case R_68K_GNU_VTINHERIT: |
| 2836 |
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| 2837 |
return FALSE; |
| 2838 |
break; |
| 2839 |
|
| 2840 |
/* This relocation describes which C++ vtable entries are actually |
| 2841 |
used. Record for later use during GC. */ |
| 2842 |
case R_68K_GNU_VTENTRY: |
| 2843 |
BFD_ASSERT (h != NULL); |
| 2844 |
if (h != NULL |
| 2845 |
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
| 2846 |
return FALSE; |
| 2847 |
break; |
| 2848 |
|
| 2849 |
default: |
| 2850 |
break; |
| 2851 |
} |
| 2852 |
} |
| 2853 |
|
| 2854 |
return TRUE; |
| 2855 |
} |
| 2856 |
|
| 2857 |
/* Return the section that should be marked against GC for a given |
| 2858 |
relocation. */ |
| 2859 |
|
| 2860 |
static asection * |
| 2861 |
elf_m68k_gc_mark_hook (asection *sec, |
| 2862 |
struct bfd_link_info *info, |
| 2863 |
Elf_Internal_Rela *rel, |
| 2864 |
struct elf_link_hash_entry *h, |
| 2865 |
Elf_Internal_Sym *sym) |
| 2866 |
{ |
| 2867 |
if (h != NULL) |
| 2868 |
switch (ELF32_R_TYPE (rel->r_info)) |
| 2869 |
{ |
| 2870 |
case R_68K_GNU_VTINHERIT: |
| 2871 |
case R_68K_GNU_VTENTRY: |
| 2872 |
return NULL; |
| 2873 |
} |
| 2874 |
|
| 2875 |
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); |
| 2876 |
} |
| 2877 |
|
| 2878 |
/* Update the got entry reference counts for the section being removed. */ |
| 2879 |
|
| 2880 |
static bfd_boolean |
| 2881 |
elf_m68k_gc_sweep_hook (bfd *abfd, |
| 2882 |
struct bfd_link_info *info, |
| 2883 |
asection *sec, |
| 2884 |
const Elf_Internal_Rela *relocs) |
| 2885 |
{ |
| 2886 |
Elf_Internal_Shdr *symtab_hdr; |
| 2887 |
struct elf_link_hash_entry **sym_hashes; |
| 2888 |
const Elf_Internal_Rela *rel, *relend; |
| 2889 |
bfd *dynobj; |
| 2890 |
asection *sgot; |
| 2891 |
asection *srelgot; |
| 2892 |
struct elf_m68k_got *got; |
| 2893 |
|
| 2894 |
if (info->relocatable) |
| 2895 |
return TRUE; |
| 2896 |
|
| 2897 |
dynobj = elf_hash_table (info)->dynobj; |
| 2898 |
if (dynobj == NULL) |
| 2899 |
return TRUE; |
| 2900 |
|
| 2901 |
symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| 2902 |
sym_hashes = elf_sym_hashes (abfd); |
| 2903 |
|
| 2904 |
sgot = bfd_get_section_by_name (dynobj, ".got"); |
| 2905 |
srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); |
| 2906 |
got = NULL; |
| 2907 |
|
| 2908 |
relend = relocs + sec->reloc_count; |
| 2909 |
for (rel = relocs; rel < relend; rel++) |
| 2910 |
{ |
| 2911 |
unsigned long r_symndx; |
| 2912 |
struct elf_link_hash_entry *h = NULL; |
| 2913 |
|
| 2914 |
r_symndx = ELF32_R_SYM (rel->r_info); |
| 2915 |
if (r_symndx >= symtab_hdr->sh_info) |
| 2916 |
{ |
| 2917 |
h = sym_hashes[r_symndx - symtab_hdr->sh_info]; |
| 2918 |
while (h->root.type == bfd_link_hash_indirect |
| 2919 |
|| h->root.type == bfd_link_hash_warning) |
| 2920 |
h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 2921 |
} |
| 2922 |
|
| 2923 |
switch (ELF32_R_TYPE (rel->r_info)) |
| 2924 |
{ |
| 2925 |
case R_68K_GOT8: |
| 2926 |
case R_68K_GOT16: |
| 2927 |
case R_68K_GOT32: |
| 2928 |
if (h != NULL |
| 2929 |
&& strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) |
| 2930 |
break; |
| 2931 |
|
| 2932 |
/* FALLTHRU */ |
| 2933 |
case R_68K_GOT8O: |
| 2934 |
case R_68K_GOT16O: |
| 2935 |
case R_68K_GOT32O: |
| 2936 |
/* Fall through. */ |
| 2937 |
|
| 2938 |
/* TLS relocations. */ |
| 2939 |
case R_68K_TLS_GD8: |
| 2940 |
case R_68K_TLS_GD16: |
| 2941 |
case R_68K_TLS_GD32: |
| 2942 |
case R_68K_TLS_LDM8: |
| 2943 |
case R_68K_TLS_LDM16: |
| 2944 |
case R_68K_TLS_LDM32: |
| 2945 |
case R_68K_TLS_IE8: |
| 2946 |
case R_68K_TLS_IE16: |
| 2947 |
case R_68K_TLS_IE32: |
| 2948 |
|
| 2949 |
if (got == NULL) |
| 2950 |
{ |
| 2951 |
got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), |
| 2952 |
abfd, MUST_FIND, NULL)->got; |
| 2953 |
BFD_ASSERT (got != NULL); |
| 2954 |
} |
| 2955 |
|
| 2956 |
{ |
| 2957 |
struct elf_m68k_got_entry_key key_; |
| 2958 |
struct elf_m68k_got_entry **got_entry_ptr; |
| 2959 |
struct elf_m68k_got_entry *got_entry; |
| 2960 |
|
| 2961 |
elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx, |
| 2962 |
ELF32_R_TYPE (rel->r_info)); |
| 2963 |
got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_); |
| 2964 |
|
| 2965 |
got_entry = *got_entry_ptr; |
| 2966 |
|
| 2967 |
if (got_entry->u.s1.refcount > 0) |
| 2968 |
{ |
| 2969 |
--got_entry->u.s1.refcount; |
| 2970 |
|
| 2971 |
if (got_entry->u.s1.refcount == 0) |
| 2972 |
/* We don't need the .got entry any more. */ |
| 2973 |
elf_m68k_remove_got_entry (got, got_entry_ptr); |
| 2974 |
} |
| 2975 |
} |
| 2976 |
break; |
| 2977 |
|
| 2978 |
case R_68K_PLT8: |
| 2979 |
case R_68K_PLT16: |
| 2980 |
case R_68K_PLT32: |
| 2981 |
case R_68K_PLT8O: |
| 2982 |
case R_68K_PLT16O: |
| 2983 |
case R_68K_PLT32O: |
| 2984 |
case R_68K_PC8: |
| 2985 |
case R_68K_PC16: |
| 2986 |
case R_68K_PC32: |
| 2987 |
case R_68K_8: |
| 2988 |
case R_68K_16: |
| 2989 |
case R_68K_32: |
| 2990 |
if (h != NULL) |
| 2991 |
{ |
| 2992 |
if (h->plt.refcount > 0) |
| 2993 |
--h->plt.refcount; |
| 2994 |
} |
| 2995 |
break; |
| 2996 |
|
| 2997 |
default: |
| 2998 |
break; |
| 2999 |
} |
| 3000 |
} |
| 3001 |
|
| 3002 |
return TRUE; |
| 3003 |
} |
| 3004 |
|
| 3005 |
/* Return the type of PLT associated with OUTPUT_BFD. */ |
| 3006 |
|
| 3007 |
static const struct elf_m68k_plt_info * |
| 3008 |
elf_m68k_get_plt_info (bfd *output_bfd) |
| 3009 |
{ |
| 3010 |
unsigned int features; |
| 3011 |
|
| 3012 |
features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd)); |
| 3013 |
if (features & cpu32) |
| 3014 |
return &elf_cpu32_plt_info; |
| 3015 |
if (features & mcfisa_b) |
| 3016 |
return &elf_isab_plt_info; |
| 3017 |
if (features & mcfisa_c) |
| 3018 |
return &elf_isac_plt_info; |
| 3019 |
return &elf_m68k_plt_info; |
| 3020 |
} |
| 3021 |
|
| 3022 |
/* This function is called after all the input files have been read, |
| 3023 |
and the input sections have been assigned to output sections. |
| 3024 |
It's a convenient place to determine the PLT style. */ |
| 3025 |
|
| 3026 |
static bfd_boolean |
| 3027 |
elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info) |
| 3028 |
{ |
| 3029 |
/* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got |
| 3030 |
sections. */ |
| 3031 |
if (!elf_m68k_partition_multi_got (info)) |
| 3032 |
return FALSE; |
| 3033 |
|
| 3034 |
elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd); |
| 3035 |
return TRUE; |
| 3036 |
} |
| 3037 |
|
| 3038 |
/* Adjust a symbol defined by a dynamic object and referenced by a |
| 3039 |
regular object. The current definition is in some section of the |
| 3040 |
dynamic object, but we're not including those sections. We have to |
| 3041 |
change the definition to something the rest of the link can |
| 3042 |
understand. */ |
| 3043 |
|
| 3044 |
static bfd_boolean |
| 3045 |
elf_m68k_adjust_dynamic_symbol (info, h) |
| 3046 |
struct bfd_link_info *info; |
| 3047 |
struct elf_link_hash_entry *h; |
| 3048 |
{ |
| 3049 |
struct elf_m68k_link_hash_table *htab; |
| 3050 |
bfd *dynobj; |
| 3051 |
asection *s; |
| 3052 |
|
| 3053 |
htab = elf_m68k_hash_table (info); |
| 3054 |
dynobj = elf_hash_table (info)->dynobj; |
| 3055 |
|
| 3056 |
/* Make sure we know what is going on here. */ |
| 3057 |
BFD_ASSERT (dynobj != NULL |
| 3058 |
&& (h->needs_plt |
| 3059 |
|| h->u.weakdef != NULL |
| 3060 |
|| (h->def_dynamic |
| 3061 |
&& h->ref_regular |
| 3062 |
&& !h->def_regular))); |
| 3063 |
|
| 3064 |
/* If this is a function, put it in the procedure linkage table. We |
| 3065 |
will fill in the contents of the procedure linkage table later, |
| 3066 |
when we know the address of the .got section. */ |
| 3067 |
if (h->type == STT_FUNC |
| 3068 |
|| h->needs_plt) |
| 3069 |
{ |
| 3070 |
if ((h->plt.refcount <= 0 |
| 3071 |
|| SYMBOL_CALLS_LOCAL (info, h) |
| 3072 |
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT |
| 3073 |
&& h->root.type == bfd_link_hash_undefweak)) |
| 3074 |
/* We must always create the plt entry if it was referenced |
| 3075 |
by a PLTxxO relocation. In this case we already recorded |
| 3076 |
it as a dynamic symbol. */ |
| 3077 |
&& h->dynindx == -1) |
| 3078 |
{ |
| 3079 |
/* This case can occur if we saw a PLTxx reloc in an input |
| 3080 |
file, but the symbol was never referred to by a dynamic |
| 3081 |
object, or if all references were garbage collected. In |
| 3082 |
such a case, we don't actually need to build a procedure |
| 3083 |
linkage table, and we can just do a PCxx reloc instead. */ |
| 3084 |
h->plt.offset = (bfd_vma) -1; |
| 3085 |
h->needs_plt = 0; |
| 3086 |
return TRUE; |
| 3087 |
} |
| 3088 |
|
| 3089 |
/* Make sure this symbol is output as a dynamic symbol. */ |
| 3090 |
if (h->dynindx == -1 |
| 3091 |
&& !h->forced_local) |
| 3092 |
{ |
| 3093 |
if (! bfd_elf_link_record_dynamic_symbol (info, h)) |
| 3094 |
return FALSE; |
| 3095 |
} |
| 3096 |
|
| 3097 |
s = bfd_get_section_by_name (dynobj, ".plt"); |
| 3098 |
BFD_ASSERT (s != NULL); |
| 3099 |
|
| 3100 |
/* If this is the first .plt entry, make room for the special |
| 3101 |
first entry. */ |
| 3102 |
if (s->size == 0) |
| 3103 |
s->size = htab->plt_info->size; |
| 3104 |
|
| 3105 |
/* If this symbol is not defined in a regular file, and we are |
| 3106 |
not generating a shared library, then set the symbol to this |
| 3107 |
location in the .plt. This is required to make function |
| 3108 |
pointers compare as equal between the normal executable and |
| 3109 |
the shared library. */ |
| 3110 |
if (!info->shared |
| 3111 |
&& !h->def_regular) |
| 3112 |
{ |
| 3113 |
h->root.u.def.section = s; |
| 3114 |
h->root.u.def.value = s->size; |
| 3115 |
} |
| 3116 |
|
| 3117 |
h->plt.offset = s->size; |
| 3118 |
|
| 3119 |
/* Make room for this entry. */ |
| 3120 |
s->size += htab->plt_info->size; |
| 3121 |
|
| 3122 |
/* We also need to make an entry in the .got.plt section, which |
| 3123 |
will be placed in the .got section by the linker script. */ |
| 3124 |
s = bfd_get_section_by_name (dynobj, ".got.plt"); |
| 3125 |
BFD_ASSERT (s != NULL); |
| 3126 |
s->size += 4; |
| 3127 |
|
| 3128 |
/* We also need to make an entry in the .rela.plt section. */ |
| 3129 |
s = bfd_get_section_by_name (dynobj, ".rela.plt"); |
| 3130 |
BFD_ASSERT (s != NULL); |
| 3131 |
s->size += sizeof (Elf32_External_Rela); |
| 3132 |
|
| 3133 |
return TRUE; |
| 3134 |
} |
| 3135 |
|
| 3136 |
/* Reinitialize the plt offset now that it is not used as a reference |
| 3137 |
count any more. */ |
| 3138 |
h->plt.offset = (bfd_vma) -1; |
| 3139 |
|
| 3140 |
/* If this is a weak symbol, and there is a real definition, the |
| 3141 |
processor independent code will have arranged for us to see the |
| 3142 |
real definition first, and we can just use the same value. */ |
| 3143 |
if (h->u.weakdef != NULL) |
| 3144 |
{ |
| 3145 |
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
| 3146 |
|| h->u.weakdef->root.type == bfd_link_hash_defweak); |
| 3147 |
h->root.u.def.section = h->u.weakdef->root.u.def.section; |
| 3148 |
h->root.u.def.value = h->u.weakdef->root.u.def.value; |
| 3149 |
return TRUE; |
| 3150 |
} |
| 3151 |
|
| 3152 |
/* This is a reference to a symbol defined by a dynamic object which |
| 3153 |
is not a function. */ |
| 3154 |
|
| 3155 |
/* If we are creating a shared library, we must presume that the |
| 3156 |
only references to the symbol are via the global offset table. |
| 3157 |
For such cases we need not do anything here; the relocations will |
| 3158 |
be handled correctly by relocate_section. */ |
| 3159 |
if (info->shared) |
| 3160 |
return TRUE; |
| 3161 |
|
| 3162 |
if (h->size == 0) |
| 3163 |
{ |
| 3164 |
(*_bfd_error_handler) (_("dynamic variable `%s' is zero size"), |
| 3165 |
h->root.root.string); |
| 3166 |
return TRUE; |
| 3167 |
} |
| 3168 |
|
| 3169 |
/* We must allocate the symbol in our .dynbss section, which will |
| 3170 |
become part of the .bss section of the executable. There will be |
| 3171 |
an entry for this symbol in the .dynsym section. The dynamic |
| 3172 |
object will contain position independent code, so all references |
| 3173 |
from the dynamic object to this symbol will go through the global |
| 3174 |
offset table. The dynamic linker will use the .dynsym entry to |
| 3175 |
determine the address it must put in the global offset table, so |
| 3176 |
both the dynamic object and the regular object will refer to the |
| 3177 |
same memory location for the variable. */ |
| 3178 |
|
| 3179 |
s = bfd_get_section_by_name (dynobj, ".dynbss"); |
| 3180 |
BFD_ASSERT (s != NULL); |
| 3181 |
|
| 3182 |
/* We must generate a R_68K_COPY reloc to tell the dynamic linker to |
| 3183 |
copy the initial value out of the dynamic object and into the |
| 3184 |
runtime process image. We need to remember the offset into the |
| 3185 |
.rela.bss section we are going to use. */ |
| 3186 |
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) |
| 3187 |
{ |
| 3188 |
asection *srel; |
| 3189 |
|
| 3190 |
srel = bfd_get_section_by_name (dynobj, ".rela.bss"); |
| 3191 |
BFD_ASSERT (srel != NULL); |
| 3192 |
srel->size += sizeof (Elf32_External_Rela); |
| 3193 |
h->needs_copy = 1; |
| 3194 |
} |
| 3195 |
|
| 3196 |
return _bfd_elf_adjust_dynamic_copy (h, s); |
| 3197 |
} |
| 3198 |
|
| 3199 |
/* Set the sizes of the dynamic sections. */ |
| 3200 |
|
| 3201 |
static bfd_boolean |
| 3202 |
elf_m68k_size_dynamic_sections (output_bfd, info) |
| 3203 |
bfd *output_bfd ATTRIBUTE_UNUSED; |
| 3204 |
struct bfd_link_info *info; |
| 3205 |
{ |
| 3206 |
bfd *dynobj; |
| 3207 |
asection *s; |
| 3208 |
bfd_boolean plt; |
| 3209 |
bfd_boolean relocs; |
| 3210 |
|
| 3211 |
dynobj = elf_hash_table (info)->dynobj; |
| 3212 |
BFD_ASSERT (dynobj != NULL); |
| 3213 |
|
| 3214 |
if (elf_hash_table (info)->dynamic_sections_created) |
| 3215 |
{ |
| 3216 |
/* Set the contents of the .interp section to the interpreter. */ |
| 3217 |
if (info->executable) |
| 3218 |
{ |
| 3219 |
s = bfd_get_section_by_name (dynobj, ".interp"); |
| 3220 |
BFD_ASSERT (s != NULL); |
| 3221 |
s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
| 3222 |
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
| 3223 |
} |
| 3224 |
} |
| 3225 |
else |
| 3226 |
{ |
| 3227 |
/* We may have created entries in the .rela.got section. |
| 3228 |
However, if we are not creating the dynamic sections, we will |
| 3229 |
not actually use these entries. Reset the size of .rela.got, |
| 3230 |
which will cause it to get stripped from the output file |
| 3231 |
below. */ |
| 3232 |
s = bfd_get_section_by_name (dynobj, ".rela.got"); |
| 3233 |
if (s != NULL) |
| 3234 |
s->size = 0; |
| 3235 |
} |
| 3236 |
|
| 3237 |
/* If this is a -Bsymbolic shared link, then we need to discard all |
| 3238 |
PC relative relocs against symbols defined in a regular object. |
| 3239 |
For the normal shared case we discard the PC relative relocs |
| 3240 |
against symbols that have become local due to visibility changes. |
| 3241 |
We allocated space for them in the check_relocs routine, but we |
| 3242 |
will not fill them in in the relocate_section routine. */ |
| 3243 |
if (info->shared) |
| 3244 |
elf_link_hash_traverse (elf_hash_table (info), |
| 3245 |
elf_m68k_discard_copies, |
| 3246 |
(PTR) info); |
| 3247 |
|
| 3248 |
/* The check_relocs and adjust_dynamic_symbol entry points have |
| 3249 |
determined the sizes of the various dynamic sections. Allocate |
| 3250 |
memory for them. */ |
| 3251 |
plt = FALSE; |
| 3252 |
relocs = FALSE; |
| 3253 |
for (s = dynobj->sections; s != NULL; s = s->next) |
| 3254 |
{ |
| 3255 |
const char *name; |
| 3256 |
|
| 3257 |
if ((s->flags & SEC_LINKER_CREATED) == 0) |
| 3258 |
continue; |
| 3259 |
|
| 3260 |
/* It's OK to base decisions on the section name, because none |
| 3261 |
of the dynobj section names depend upon the input files. */ |
| 3262 |
name = bfd_get_section_name (dynobj, s); |
| 3263 |
|
| 3264 |
if (strcmp (name, ".plt") == 0) |
| 3265 |
{ |
| 3266 |
/* Remember whether there is a PLT. */ |
| 3267 |
plt = s->size != 0; |
| 3268 |
} |
| 3269 |
else if (CONST_STRNEQ (name, ".rela")) |
| 3270 |
{ |
| 3271 |
if (s->size != 0) |
| 3272 |
{ |
| 3273 |
relocs = TRUE; |
| 3274 |
|
| 3275 |
/* We use the reloc_count field as a counter if we need |
| 3276 |
to copy relocs into the output file. */ |
| 3277 |
s->reloc_count = 0; |
| 3278 |
} |
| 3279 |
} |
| 3280 |
else if (! CONST_STRNEQ (name, ".got") |
| 3281 |
&& strcmp (name, ".dynbss") != 0) |
| 3282 |
{ |
| 3283 |
/* It's not one of our sections, so don't allocate space. */ |
| 3284 |
continue; |
| 3285 |
} |
| 3286 |
|
| 3287 |
if (s->size == 0) |
| 3288 |
{ |
| 3289 |
/* If we don't need this section, strip it from the |
| 3290 |
output file. This is mostly to handle .rela.bss and |
| 3291 |
.rela.plt. We must create both sections in |
| 3292 |
create_dynamic_sections, because they must be created |
| 3293 |
before the linker maps input sections to output |
| 3294 |
sections. The linker does that before |
| 3295 |
adjust_dynamic_symbol is called, and it is that |
| 3296 |
function which decides whether anything needs to go |
| 3297 |
into these sections. */ |
| 3298 |
s->flags |= SEC_EXCLUDE; |
| 3299 |
continue; |
| 3300 |
} |
| 3301 |
|
| 3302 |
if ((s->flags & SEC_HAS_CONTENTS) == 0) |
| 3303 |
continue; |
| 3304 |
|
| 3305 |
/* Allocate memory for the section contents. */ |
| 3306 |
/* FIXME: This should be a call to bfd_alloc not bfd_zalloc. |
| 3307 |
Unused entries should be reclaimed before the section's contents |
| 3308 |
are written out, but at the moment this does not happen. Thus in |
| 3309 |
order to prevent writing out garbage, we initialise the section's |
| 3310 |
contents to zero. */ |
| 3311 |
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
| 3312 |
if (s->contents == NULL) |
| 3313 |
return FALSE; |
| 3314 |
} |
| 3315 |
|
| 3316 |
if (elf_hash_table (info)->dynamic_sections_created) |
| 3317 |
{ |
| 3318 |
/* Add some entries to the .dynamic section. We fill in the |
| 3319 |
values later, in elf_m68k_finish_dynamic_sections, but we |
| 3320 |
must add the entries now so that we get the correct size for |
| 3321 |
the .dynamic section. The DT_DEBUG entry is filled in by the |
| 3322 |
dynamic linker and used by the debugger. */ |
| 3323 |
#define add_dynamic_entry(TAG, VAL) \ |
| 3324 |
_bfd_elf_add_dynamic_entry (info, TAG, VAL) |
| 3325 |
|
| 3326 |
if (!info->shared) |
| 3327 |
{ |
| 3328 |
if (!add_dynamic_entry (DT_DEBUG, 0)) |
| 3329 |
return FALSE; |
| 3330 |
} |
| 3331 |
|
| 3332 |
if (plt) |
| 3333 |
{ |
| 3334 |
if (!add_dynamic_entry (DT_PLTGOT, 0) |
| 3335 |
|| !add_dynamic_entry (DT_PLTRELSZ, 0) |
| 3336 |
|| !add_dynamic_entry (DT_PLTREL, DT_RELA) |
| 3337 |
|| !add_dynamic_entry (DT_JMPREL, 0)) |
| 3338 |
return FALSE; |
| 3339 |
} |
| 3340 |
|
| 3341 |
if (relocs) |
| 3342 |
{ |
| 3343 |
if (!add_dynamic_entry (DT_RELA, 0) |
| 3344 |
|| !add_dynamic_entry (DT_RELASZ, 0) |
| 3345 |
|| !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) |
| 3346 |
return FALSE; |
| 3347 |
} |
| 3348 |
|
| 3349 |
if ((info->flags & DF_TEXTREL) != 0) |
| 3350 |
{ |
| 3351 |
if (!add_dynamic_entry (DT_TEXTREL, 0)) |
| 3352 |
return FALSE; |
| 3353 |
} |
| 3354 |
} |
| 3355 |
#undef add_dynamic_entry |
| 3356 |
|
| 3357 |
return TRUE; |
| 3358 |
} |
| 3359 |
|
| 3360 |
/* This function is called via elf_link_hash_traverse if we are |
| 3361 |
creating a shared object. In the -Bsymbolic case it discards the |
| 3362 |
space allocated to copy PC relative relocs against symbols which |
| 3363 |
are defined in regular objects. For the normal shared case, it |
| 3364 |
discards space for pc-relative relocs that have become local due to |
| 3365 |
symbol visibility changes. We allocated space for them in the |
| 3366 |
check_relocs routine, but we won't fill them in in the |
| 3367 |
relocate_section routine. |
| 3368 |
|
| 3369 |
We also check whether any of the remaining relocations apply |
| 3370 |
against a readonly section, and set the DF_TEXTREL flag in this |
| 3371 |
case. */ |
| 3372 |
|
| 3373 |
static bfd_boolean |
| 3374 |
elf_m68k_discard_copies (h, inf) |
| 3375 |
struct elf_link_hash_entry *h; |
| 3376 |
PTR inf; |
| 3377 |
{ |
| 3378 |
struct bfd_link_info *info = (struct bfd_link_info *) inf; |
| 3379 |
struct elf_m68k_pcrel_relocs_copied *s; |
| 3380 |
|
| 3381 |
if (h->root.type == bfd_link_hash_warning) |
| 3382 |
h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| 3383 |
|
| 3384 |
if (!SYMBOL_CALLS_LOCAL (info, h)) |
| 3385 |
{ |
| 3386 |
if ((info->flags & DF_TEXTREL) == 0) |
| 3387 |
{ |
| 3388 |
/* Look for relocations against read-only sections. */ |
| 3389 |
for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied; |
| 3390 |
s != NULL; |
| 3391 |
s = s->next) |
| 3392 |
if ((s->section->flags & SEC_READONLY) != 0) |
| 3393 |
{ |
| 3394 |
info->flags |= DF_TEXTREL; |
| 3395 |
break; |
| 3396 |
} |
| 3397 |
} |
| 3398 |
|
| 3399 |
return TRUE; |
| 3400 |
} |
| 3401 |
|
| 3402 |
for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied; |
| 3403 |
s != NULL; |
| 3404 |
s = s->next) |
| 3405 |
s->section->size -= s->count * sizeof (Elf32_External_Rela); |
| 3406 |
|
| 3407 |
return TRUE; |
| 3408 |
} |
| 3409 |
|
| 3410 |
|
| 3411 |
/* Install relocation RELA. */ |
| 3412 |
|
| 3413 |
static void |
| 3414 |
elf_m68k_install_rela (bfd *output_bfd, |
| 3415 |
asection *srela, |
| 3416 |
Elf_Internal_Rela *rela) |
| 3417 |
{ |
| 3418 |
bfd_byte *loc; |
| 3419 |
|
| 3420 |
loc = srela->contents; |
| 3421 |
loc += srela->reloc_count++ * sizeof (Elf32_External_Rela); |
| 3422 |
bfd_elf32_swap_reloca_out (output_bfd, rela, loc); |
| 3423 |
} |
| 3424 |
|
| 3425 |
/* Return the base VMA address which should be subtracted from real addresses |
| 3426 |
when resolving @dtpoff relocation. |
| 3427 |
This is PT_TLS segment p_vaddr. */ |
| 3428 |
|
| 3429 |
static bfd_vma |
| 3430 |
dtpoff_base (struct bfd_link_info *info) |
| 3431 |
{ |
| 3432 |
/* If tls_sec is NULL, we should have signalled an error already. */ |
| 3433 |
if (elf_hash_table (info)->tls_sec == NULL) |
| 3434 |
return 0; |
| 3435 |
return elf_hash_table (info)->tls_sec->vma; |
| 3436 |
} |
| 3437 |
|
| 3438 |
/* Return the relocation value for @tpoff relocation |
| 3439 |
if STT_TLS virtual address is ADDRESS. */ |
| 3440 |
|
| 3441 |
static bfd_vma |
| 3442 |
tpoff (struct bfd_link_info *info, bfd_vma address) |
| 3443 |
{ |
| 3444 |
struct elf_link_hash_table *htab = elf_hash_table (info); |
| 3445 |
bfd_vma base; |
| 3446 |
|
| 3447 |
/* If tls_sec is NULL, we should have signalled an error already. */ |
| 3448 |
if (htab->tls_sec == NULL) |
| 3449 |
return 0; |
| 3450 |
base = align_power ((bfd_vma) 8, htab->tls_sec->alignment_power); |
| 3451 |
return address - htab->tls_sec->vma + base; |
| 3452 |
} |
| 3453 |
|
| 3454 |
/* Relocate an M68K ELF section. */ |
| 3455 |
|
| 3456 |
static bfd_boolean |
| 3457 |
elf_m68k_relocate_section (output_bfd, info, input_bfd, input_section, |
| 3458 |
contents, relocs, local_syms, local_sections) |
| 3459 |
bfd *output_bfd; |
| 3460 |
struct bfd_link_info *info; |
| 3461 |
bfd *input_bfd; |
| 3462 |
asection *input_section; |
| 3463 |
bfd_byte *contents; |
| 3464 |
Elf_Internal_Rela *relocs; |
| 3465 |
Elf_Internal_Sym *local_syms; |
| 3466 |
asection **local_sections; |
| 3467 |
{ |
| 3468 |
bfd *dynobj; |
| 3469 |
Elf_Internal_Shdr *symtab_hdr; |
| 3470 |
struct elf_link_hash_entry **sym_hashes; |
| 3471 |
asection *sgot; |
| 3472 |
asection *splt; |
| 3473 |
asection *sreloc; |
| 3474 |
struct elf_m68k_got *got; |
| 3475 |
Elf_Internal_Rela *rel; |
| 3476 |
Elf_Internal_Rela *relend; |
| 3477 |
|
| 3478 |
dynobj = elf_hash_table (info)->dynobj; |
| 3479 |
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| 3480 |
sym_hashes = elf_sym_hashes (input_bfd); |
| 3481 |
|
| 3482 |
sgot = NULL; |
| 3483 |
splt = NULL; |
| 3484 |
sreloc = NULL; |
| 3485 |
|
| 3486 |
got = NULL; |
| 3487 |
|
| 3488 |
rel = relocs; |
| 3489 |
relend = relocs + input_section->reloc_count; |
| 3490 |
for (; rel < relend; rel++) |
| 3491 |
{ |
| 3492 |
int r_type; |
| 3493 |
reloc_howto_type *howto; |
| 3494 |
unsigned long r_symndx; |
| 3495 |
struct elf_link_hash_entry *h; |
| 3496 |
Elf_Internal_Sym *sym; |
| 3497 |
asection *sec; |
| 3498 |
bfd_vma relocation; |
| 3499 |
bfd_boolean unresolved_reloc; |
| 3500 |
bfd_reloc_status_type r; |
| 3501 |
|
| 3502 |
r_type = ELF32_R_TYPE (rel->r_info); |
| 3503 |
if (r_type < 0 || r_type >= (int) R_68K_max) |
| 3504 |
{ |
| 3505 |
bfd_set_error (bfd_error_bad_value); |
| 3506 |
return FALSE; |
| 3507 |
} |
| 3508 |
howto = howto_table + r_type; |
| 3509 |
|
| 3510 |
r_symndx = ELF32_R_SYM (rel->r_info); |
| 3511 |
|
| 3512 |
h = NULL; |
| 3513 |
sym = NULL; |
| 3514 |
sec = NULL; |
| 3515 |
unresolved_reloc = FALSE; |
| 3516 |
|
| 3517 |
if (r_symndx < symtab_hdr->sh_info) |
| 3518 |
{ |
| 3519 |
sym = local_syms + r_symndx; |
| 3520 |
sec = local_sections[r_symndx]; |
| 3521 |
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
| 3522 |
} |
| 3523 |
else |
| 3524 |
{ |
| 3525 |
bfd_boolean warned; |
| 3526 |
|
| 3527 |
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
| 3528 |
r_symndx, symtab_hdr, sym_hashes, |
| 3529 |
h, sec, relocation, |
| 3530 |
unresolved_reloc, warned); |
| 3531 |
} |
| 3532 |
|
| 3533 |
if (sec != NULL && elf_discarded_section (sec)) |
| 3534 |
{ |
| 3535 |
/* For relocs against symbols from removed linkonce sections, |
| 3536 |
or sections discarded by a linker script, we just want the |
| 3537 |
section contents zeroed. Avoid any special processing. */ |
| 3538 |
_bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); |
| 3539 |
rel->r_info = 0; |
| 3540 |
rel->r_addend = 0; |
| 3541 |
continue; |
| 3542 |
} |
| 3543 |
|
| 3544 |
if (info->relocatable) |
| 3545 |
continue; |
| 3546 |
|
| 3547 |
switch (r_type) |
| 3548 |
{ |
| 3549 |
case R_68K_GOT8: |
| 3550 |
case R_68K_GOT16: |
| 3551 |
case R_68K_GOT32: |
| 3552 |
/* Relocation is to the address of the entry for this symbol |
| 3553 |
in the global offset table. */ |
| 3554 |
if (h != NULL |
| 3555 |
&& strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) |
| 3556 |
{ |
| 3557 |
if (elf_m68k_hash_table (info)->local_gp_p) |
| 3558 |
{ |
| 3559 |
bfd_vma sgot_output_offset; |
| 3560 |
bfd_vma got_offset; |
| 3561 |
|
| 3562 |
if (sgot == NULL) |
| 3563 |
{ |
| 3564 |
sgot = bfd_get_section_by_name (dynobj, ".got"); |
| 3565 |
|
| 3566 |
if (sgot != NULL) |
| 3567 |
sgot_output_offset = sgot->output_offset; |
| 3568 |
else |
| 3569 |
/* In this case we have a reference to |
| 3570 |
_GLOBAL_OFFSET_TABLE_, but the GOT itself is |
| 3571 |
empty. |
| 3572 |
??? Issue a warning? */ |
| 3573 |
sgot_output_offset = 0; |
| 3574 |
} |
| 3575 |
else |
| 3576 |
sgot_output_offset = sgot->output_offset; |
| 3577 |
|
| 3578 |
if (got == NULL) |
| 3579 |
{ |
| 3580 |
struct elf_m68k_bfd2got_entry *bfd2got_entry; |
| 3581 |
|
| 3582 |
bfd2got_entry |
| 3583 |
= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), |
| 3584 |
input_bfd, SEARCH, NULL); |
| 3585 |
|
| 3586 |
if (bfd2got_entry != NULL) |
| 3587 |
{ |
| 3588 |
got = bfd2got_entry->got; |
| 3589 |
BFD_ASSERT (got != NULL); |
| 3590 |
|
| 3591 |
got_offset = got->offset; |
| 3592 |
} |
| 3593 |
else |
| 3594 |
/* In this case we have a reference to |
| 3595 |
_GLOBAL_OFFSET_TABLE_, but no other references |
| 3596 |
accessing any GOT entries. |
| 3597 |
??? Issue a warning? */ |
| 3598 |
got_offset = 0; |
| 3599 |
} |
| 3600 |
else |
| 3601 |
got_offset = got->offset; |
| 3602 |
|
| 3603 |
/* Adjust GOT pointer to point to the GOT |
| 3604 |
assigned to input_bfd. */ |
| 3605 |
rel->r_addend += sgot_output_offset + got_offset; |
| 3606 |
} |