File Info

Rev. e5061407062758ed338d4beee4c2afff09d3ec0e
Size 100,262 bytes
Time 2023-12-27 23:02:17
Author simphone
Log Message

openssl 1.1.1w

Content

#! /usr/bin/env perl
# Copyright 2016-2023 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html

#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# This module implements Poly1305 hash for x86_64.
#
# March 2015
#
# Initial release.
#
# December 2016
#
# Add AVX512F+VL+BW code path.
#
# November 2017
#
# Convert AVX512F+VL+BW code path to pure AVX512F, so that it can be
# executed even on Knights Landing. Trigger for modification was
# observation that AVX512 code paths can negatively affect overall
# Skylake-X system performance. Since we are likely to suppress
# AVX512F capability flag [at least on Skylake-X], conversion serves
# as kind of "investment protection". Note that next *lake processor,
# Cannolake, has AVX512IFMA code path to execute...
#
# Numbers are cycles per processed byte with poly1305_blocks alone,
# measured with rdtsc at fixed clock frequency.
#
#		IALU/gcc-4.8(*)	AVX(**)		AVX2	AVX-512
# P4		4.46/+120%	-
# Core 2	2.41/+90%	-
# Westmere	1.88/+120%	-
# Sandy Bridge	1.39/+140%	1.10
# Haswell	1.14/+175%	1.11		0.65
# Skylake[-X]	1.13/+120%	0.96		0.51	[0.35]
# Silvermont	2.83/+95%	-
# Knights L	3.60/?		1.65		1.10	0.41(***)
# Goldmont	1.70/+180%	-
# VIA Nano	1.82/+150%	-
# Sledgehammer	1.38/+160%	-
# Bulldozer	2.30/+130%	0.97
# Ryzen		1.15/+200%	1.08		1.18
#
# (*)	improvement coefficients relative to clang are more modest and
#	are ~50% on most processors, in both cases we are comparing to
#	__int128 code;
# (**)	SSE2 implementation was attempted, but among non-AVX processors
#	it was faster than integer-only code only on older Intel P4 and
#	Core processors, 50-30%, less newer processor is, but slower on
#	contemporary ones, for example almost 2x slower on Atom, and as
#	former are naturally disappearing, SSE2 is deemed unnecessary;
# (***)	strangely enough performance seems to vary from core to core,
#	listed result is best case;

$flavour = shift;
$output  = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }

$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";

if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
		=~ /GNU assembler version ([2-9]\.[0-9]+)/) {
	$avx = ($1>=2.19) + ($1>=2.22) + ($1>=2.25) + ($1>=2.26);
}

if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
	   `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) {
	$avx = ($1>=2.09) + ($1>=2.10) + 2 * ($1>=2.12);
	$avx += 2 if ($1==2.11 && $2>=8);
}

if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
	   `ml64 2>&1` =~ /Version ([0-9]+)\./) {
	$avx = ($1>=10) + ($1>=12);
}

if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) {
	$avx = ($2>=3.0) + ($2>3.0);
}

open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
*STDOUT=*OUT;

my ($ctx,$inp,$len,$padbit)=("%rdi","%rsi","%rdx","%rcx");
my ($mac,$nonce)=($inp,$len);	# *_emit arguments
my ($d1,$d2,$d3, $r0,$r1,$s1)=map("%r$_",(8..13));
my ($h0,$h1,$h2)=("%r14","%rbx","%rbp");

sub poly1305_iteration {
# input:	copy of $r1 in %rax, $h0-$h2, $r0-$r1
# output:	$h0-$h2 *= $r0-$r1
$code.=<<___;
	mulq	$h0			# h0*r1
	mov	%rax,$d2
	 mov	$r0,%rax
	mov	%rdx,$d3

	mulq	$h0			# h0*r0
	mov	%rax,$h0		# future $h0
	 mov	$r0,%rax
	mov	%rdx,$d1

	mulq	$h1			# h1*r0
	add	%rax,$d2
	 mov	$s1,%rax
	adc	%rdx,$d3

	mulq	$h1			# h1*s1
	 mov	$h2,$h1			# borrow $h1
	add	%rax,$h0
	adc	%rdx,$d1

	imulq	$s1,$h1			# h2*s1
	add	$h1,$d2
	 mov	$d1,$h1
	adc	\$0,$d3

	imulq	$r0,$h2			# h2*r0
	add	$d2,$h1
	mov	\$-4,%rax		# mask value
	adc	$h2,$d3

	and	$d3,%rax		# last reduction step
	mov	$d3,$h2
	shr	\$2,$d3
	and	\$3,$h2
	add	$d3,%rax
	add	%rax,$h0
	adc	\$0,$h1
	adc	\$0,$h2
___
}

########################################################################
# Layout of opaque area is following.
#
#	unsigned __int64 h[3];		# current hash value base 2^64
#	unsigned __int64 r[2];		# key value base 2^64

$code.=<<___;
.text

.extern	OPENSSL_ia32cap_P

.globl	poly1305_init
.hidden	poly1305_init
.globl	poly1305_blocks
.hidden	poly1305_blocks
.globl	poly1305_emit
.hidden	poly1305_emit

.type	poly1305_init,\@function,3
.align	32
poly1305_init:
.cfi_startproc
	xor	%rax,%rax
	mov	%rax,0($ctx)		# initialize hash value
	mov	%rax,8($ctx)
	mov	%rax,16($ctx)

	cmp	\$0,$inp
	je	.Lno_key

	lea	poly1305_blocks(%rip),%r10
	lea	poly1305_emit(%rip),%r11
___
$code.=<<___	if ($avx);
	mov	OPENSSL_ia32cap_P+4(%rip),%r9
	lea	poly1305_blocks_avx(%rip),%rax
	lea	poly1305_emit_avx(%rip),%rcx
	bt	\$`60-32`,%r9		# AVX?
	cmovc	%rax,%r10
	cmovc	%rcx,%r11
___
$code.=<<___	if ($avx>1);
	lea	poly1305_blocks_avx2(%rip),%rax
	bt	\$`5+32`,%r9		# AVX2?
	cmovc	%rax,%r10
___
$code.=<<___	if ($avx>3 && !$win64);
	mov	\$`(1<<31|1<<21|1<<16)`,%rax
	shr	\$32,%r9
	and	%rax,%r9
	cmp	%rax,%r9
	je	.Linit_base2_44
___
$code.=<<___;
	mov	\$0x0ffffffc0fffffff,%rax
	mov	\$0x0ffffffc0ffffffc,%rcx
	and	0($inp),%rax
	and	8($inp),%rcx
	mov	%rax,24($ctx)
	mov	%rcx,32($ctx)
___
$code.=<<___	if ($flavour !~ /elf32/);
	mov	%r10,0(%rdx)
	mov	%r11,8(%rdx)
___
$code.=<<___	if ($flavour =~ /elf32/);
	mov	%r10d,0(%rdx)
	mov	%r11d,4(%rdx)
___
$code.=<<___;
	mov	\$1,%eax
.Lno_key:
	ret
.cfi_endproc
.size	poly1305_init,.-poly1305_init

.type	poly1305_blocks,\@function,4
.align	32
poly1305_blocks:
.cfi_startproc
.Lblocks:
	shr	\$4,$len
	jz	.Lno_data		# too short

	push	%rbx
.cfi_push	%rbx
	push	%rbp
.cfi_push	%rbp
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15
.Lblocks_body:

	mov	$len,%r15		# reassign $len

	mov	24($ctx),$r0		# load r
	mov	32($ctx),$s1

	mov	0($ctx),$h0		# load hash value
	mov	8($ctx),$h1
	mov	16($ctx),$h2

	mov	$s1,$r1
	shr	\$2,$s1
	mov	$r1,%rax
	add	$r1,$s1			# s1 = r1 + (r1 >> 2)
	jmp	.Loop

.align	32
.Loop:
	add	0($inp),$h0		# accumulate input
	adc	8($inp),$h1
	lea	16($inp),$inp
	adc	$padbit,$h2
___
	&poly1305_iteration();
$code.=<<___;
	mov	$r1,%rax
	dec	%r15			# len-=16
	jnz	.Loop

	mov	$h0,0($ctx)		# store hash value
	mov	$h1,8($ctx)
	mov	$h2,16($ctx)

	mov	0(%rsp),%r15
.cfi_restore	%r15
	mov	8(%rsp),%r14
.cfi_restore	%r14
	mov	16(%rsp),%r13
.cfi_restore	%r13
	mov	24(%rsp),%r12
.cfi_restore	%r12
	mov	32(%rsp),%rbp
.cfi_restore	%rbp
	mov	40(%rsp),%rbx
.cfi_restore	%rbx
	lea	48(%rsp),%rsp
.cfi_adjust_cfa_offset	-48
.Lno_data:
.Lblocks_epilogue:
	ret
.cfi_endproc
.size	poly1305_blocks,.-poly1305_blocks

.type	poly1305_emit,\@function,3
.align	32
poly1305_emit:
.cfi_startproc
.Lemit:
	mov	0($ctx),%r8	# load hash value
	mov	8($ctx),%r9
	mov	16($ctx),%r10

	mov	%r8,%rax
	add	\$5,%r8		# compare to modulus
	mov	%r9,%rcx
	adc	\$0,%r9
	adc	\$0,%r10
	shr	\$2,%r10	# did 130-bit value overflow?
	cmovnz	%r8,%rax
	cmovnz	%r9,%rcx

	add	0($nonce),%rax	# accumulate nonce
	adc	8($nonce),%rcx
	mov	%rax,0($mac)	# write result
	mov	%rcx,8($mac)

	ret
.cfi_endproc
.size	poly1305_emit,.-poly1305_emit
___
if ($avx) {

########################################################################
# Layout of opaque area is following.
#
#	unsigned __int32 h[5];		# current hash value base 2^26
#	unsigned __int32 is_base2_26;
#	unsigned __int64 r[2];		# key value base 2^64
#	unsigned __int64 pad;
#	struct { unsigned __int32 r^2, r^1, r^4, r^3; } r[9];
#
# where r^n are base 2^26 digits of degrees of multiplier key. There are
# 5 digits, but last four are interleaved with multiples of 5, totalling
# in 9 elements: r0, r1, 5*r1, r2, 5*r2, r3, 5*r3, r4, 5*r4.

my ($H0,$H1,$H2,$H3,$H4, $T0,$T1,$T2,$T3,$T4, $D0,$D1,$D2,$D3,$D4, $MASK) =
    map("%xmm$_",(0..15));

$code.=<<___;
.type	__poly1305_block,\@abi-omnipotent
.align	32
__poly1305_block:
.cfi_startproc
___
	&poly1305_iteration();
$code.=<<___;
	ret
.cfi_endproc
.size	__poly1305_block,.-__poly1305_block

.type	__poly1305_init_avx,\@abi-omnipotent
.align	32
__poly1305_init_avx:
.cfi_startproc
	mov	$r0,$h0
	mov	$r1,$h1
	xor	$h2,$h2

	lea	48+64($ctx),$ctx	# size optimization

	mov	$r1,%rax
	call	__poly1305_block	# r^2

	mov	\$0x3ffffff,%eax	# save interleaved r^2 and r base 2^26
	mov	\$0x3ffffff,%edx
	mov	$h0,$d1
	and	$h0#d,%eax
	mov	$r0,$d2
	and	$r0#d,%edx
	mov	%eax,`16*0+0-64`($ctx)
	shr	\$26,$d1
	mov	%edx,`16*0+4-64`($ctx)
	shr	\$26,$d2

	mov	\$0x3ffffff,%eax
	mov	\$0x3ffffff,%edx
	and	$d1#d,%eax
	and	$d2#d,%edx
	mov	%eax,`16*1+0-64`($ctx)
	lea	(%rax,%rax,4),%eax	# *5
	mov	%edx,`16*1+4-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	mov	%eax,`16*2+0-64`($ctx)
	shr	\$26,$d1
	mov	%edx,`16*2+4-64`($ctx)
	shr	\$26,$d2

	mov	$h1,%rax
	mov	$r1,%rdx
	shl	\$12,%rax
	shl	\$12,%rdx
	or	$d1,%rax
	or	$d2,%rdx
	and	\$0x3ffffff,%eax
	and	\$0x3ffffff,%edx
	mov	%eax,`16*3+0-64`($ctx)
	lea	(%rax,%rax,4),%eax	# *5
	mov	%edx,`16*3+4-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	mov	%eax,`16*4+0-64`($ctx)
	mov	$h1,$d1
	mov	%edx,`16*4+4-64`($ctx)
	mov	$r1,$d2

	mov	\$0x3ffffff,%eax
	mov	\$0x3ffffff,%edx
	shr	\$14,$d1
	shr	\$14,$d2
	and	$d1#d,%eax
	and	$d2#d,%edx
	mov	%eax,`16*5+0-64`($ctx)
	lea	(%rax,%rax,4),%eax	# *5
	mov	%edx,`16*5+4-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	mov	%eax,`16*6+0-64`($ctx)
	shr	\$26,$d1
	mov	%edx,`16*6+4-64`($ctx)
	shr	\$26,$d2

	mov	$h2,%rax
	shl	\$24,%rax
	or	%rax,$d1
	mov	$d1#d,`16*7+0-64`($ctx)
	lea	($d1,$d1,4),$d1		# *5
	mov	$d2#d,`16*7+4-64`($ctx)
	lea	($d2,$d2,4),$d2		# *5
	mov	$d1#d,`16*8+0-64`($ctx)
	mov	$d2#d,`16*8+4-64`($ctx)

	mov	$r1,%rax
	call	__poly1305_block	# r^3

	mov	\$0x3ffffff,%eax	# save r^3 base 2^26
	mov	$h0,$d1
	and	$h0#d,%eax
	shr	\$26,$d1
	mov	%eax,`16*0+12-64`($ctx)

	mov	\$0x3ffffff,%edx
	and	$d1#d,%edx
	mov	%edx,`16*1+12-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	shr	\$26,$d1
	mov	%edx,`16*2+12-64`($ctx)

	mov	$h1,%rax
	shl	\$12,%rax
	or	$d1,%rax
	and	\$0x3ffffff,%eax
	mov	%eax,`16*3+12-64`($ctx)
	lea	(%rax,%rax,4),%eax	# *5
	mov	$h1,$d1
	mov	%eax,`16*4+12-64`($ctx)

	mov	\$0x3ffffff,%edx
	shr	\$14,$d1
	and	$d1#d,%edx
	mov	%edx,`16*5+12-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	shr	\$26,$d1
	mov	%edx,`16*6+12-64`($ctx)

	mov	$h2,%rax
	shl	\$24,%rax
	or	%rax,$d1
	mov	$d1#d,`16*7+12-64`($ctx)
	lea	($d1,$d1,4),$d1		# *5
	mov	$d1#d,`16*8+12-64`($ctx)

	mov	$r1,%rax
	call	__poly1305_block	# r^4

	mov	\$0x3ffffff,%eax	# save r^4 base 2^26
	mov	$h0,$d1
	and	$h0#d,%eax
	shr	\$26,$d1
	mov	%eax,`16*0+8-64`($ctx)

	mov	\$0x3ffffff,%edx
	and	$d1#d,%edx
	mov	%edx,`16*1+8-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	shr	\$26,$d1
	mov	%edx,`16*2+8-64`($ctx)

	mov	$h1,%rax
	shl	\$12,%rax
	or	$d1,%rax
	and	\$0x3ffffff,%eax
	mov	%eax,`16*3+8-64`($ctx)
	lea	(%rax,%rax,4),%eax	# *5
	mov	$h1,$d1
	mov	%eax,`16*4+8-64`($ctx)

	mov	\$0x3ffffff,%edx
	shr	\$14,$d1
	and	$d1#d,%edx
	mov	%edx,`16*5+8-64`($ctx)
	lea	(%rdx,%rdx,4),%edx	# *5
	shr	\$26,$d1
	mov	%edx,`16*6+8-64`($ctx)

	mov	$h2,%rax
	shl	\$24,%rax
	or	%rax,$d1
	mov	$d1#d,`16*7+8-64`($ctx)
	lea	($d1,$d1,4),$d1		# *5
	mov	$d1#d,`16*8+8-64`($ctx)

	lea	-48-64($ctx),$ctx	# size [de-]optimization
	ret
.cfi_endproc
.size	__poly1305_init_avx,.-__poly1305_init_avx

.type	poly1305_blocks_avx,\@function,4
.align	32
poly1305_blocks_avx:
.cfi_startproc
	mov	20($ctx),%r8d		# is_base2_26
	cmp	\$128,$len
	jae	.Lblocks_avx
	test	%r8d,%r8d
	jz	.Lblocks

.Lblocks_avx:
	and	\$-16,$len
	jz	.Lno_data_avx

	vzeroupper

	test	%r8d,%r8d
	jz	.Lbase2_64_avx

	test	\$31,$len
	jz	.Leven_avx

	push	%rbx
.cfi_push	%rbx
	push	%rbp
.cfi_push	%rbp
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15
.Lblocks_avx_body:

	mov	$len,%r15		# reassign $len

	mov	0($ctx),$d1		# load hash value
	mov	8($ctx),$d2
	mov	16($ctx),$h2#d

	mov	24($ctx),$r0		# load r
	mov	32($ctx),$s1

	################################# base 2^26 -> base 2^64
	mov	$d1#d,$h0#d
	and	\$`-1*(1<<31)`,$d1
	mov	$d2,$r1			# borrow $r1
	mov	$d2#d,$h1#d
	and	\$`-1*(1<<31)`,$d2

	shr	\$6,$d1
	shl	\$52,$r1
	add	$d1,$h0
	shr	\$12,$h1
	shr	\$18,$d2
	add	$r1,$h0
	adc	$d2,$h1

	mov	$h2,$d1
	shl	\$40,$d1
	shr	\$24,$h2
	add	$d1,$h1
	adc	\$0,$h2			# can be partially reduced...

	mov	\$-4,$d2		# ... so reduce
	mov	$h2,$d1
	and	$h2,$d2
	shr	\$2,$d1
	and	\$3,$h2
	add	$d2,$d1			# =*5
	add	$d1,$h0
	adc	\$0,$h1
	adc	\$0,$h2

	mov	$s1,$r1
	mov	$s1,%rax
	shr	\$2,$s1
	add	$r1,$s1			# s1 = r1 + (r1 >> 2)

	add	0($inp),$h0		# accumulate input
	adc	8($inp),$h1
	lea	16($inp),$inp
	adc	$padbit,$h2

	call	__poly1305_block

	test	$padbit,$padbit		# if $padbit is zero,
	jz	.Lstore_base2_64_avx	# store hash in base 2^64 format

	################################# base 2^64 -> base 2^26
	mov	$h0,%rax
	mov	$h0,%rdx
	shr	\$52,$h0
	mov	$h1,$r0
	mov	$h1,$r1
	shr	\$26,%rdx
	and	\$0x3ffffff,%rax	# h[0]
	shl	\$12,$r0
	and	\$0x3ffffff,%rdx	# h[1]
	shr	\$14,$h1
	or	$r0,$h0
	shl	\$24,$h2
	and	\$0x3ffffff,$h0		# h[2]
	shr	\$40,$r1
	and	\$0x3ffffff,$h1		# h[3]
	or	$r1,$h2			# h[4]

	sub	\$16,%r15
	jz	.Lstore_base2_26_avx

	vmovd	%rax#d,$H0
	vmovd	%rdx#d,$H1
	vmovd	$h0#d,$H2
	vmovd	$h1#d,$H3
	vmovd	$h2#d,$H4
	jmp	.Lproceed_avx

.align	32
.Lstore_base2_64_avx:
	mov	$h0,0($ctx)
	mov	$h1,8($ctx)
	mov	$h2,16($ctx)		# note that is_base2_26 is zeroed
	jmp	.Ldone_avx

.align	16
.Lstore_base2_26_avx:
	mov	%rax#d,0($ctx)		# store hash value base 2^26
	mov	%rdx#d,4($ctx)
	mov	$h0#d,8($ctx)
	mov	$h1#d,12($ctx)
	mov	$h2#d,16($ctx)
.align	16
.Ldone_avx:
	mov	0(%rsp),%r15
.cfi_restore	%r15
	mov	8(%rsp),%r14
.cfi_restore	%r14
	mov	16(%rsp),%r13
.cfi_restore	%r13
	mov	24(%rsp),%r12
.cfi_restore	%r12
	mov	32(%rsp),%rbp
.cfi_restore	%rbp
	mov	40(%rsp),%rbx
.cfi_restore	%rbx
	lea	48(%rsp),%rsp
.cfi_adjust_cfa_offset	-48
.Lno_data_avx:
.Lblocks_avx_epilogue:
	ret
.cfi_endproc

.align	32
.Lbase2_64_avx:
.cfi_startproc
	push	%rbx
.cfi_push	%rbx
	push	%rbp
.cfi_push	%rbp
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15
.Lbase2_64_avx_body:

	mov	$len,%r15		# reassign $len

	mov	24($ctx),$r0		# load r
	mov	32($ctx),$s1

	mov	0($ctx),$h0		# load hash value
	mov	8($ctx),$h1
	mov	16($ctx),$h2#d

	mov	$s1,$r1
	mov	$s1,%rax
	shr	\$2,$s1
	add	$r1,$s1			# s1 = r1 + (r1 >> 2)

	test	\$31,$len
	jz	.Linit_avx

	add	0($inp),$h0		# accumulate input
	adc	8($inp),$h1
	lea	16($inp),$inp
	adc	$padbit,$h2
	sub	\$16,%r15

	call	__poly1305_block

.Linit_avx:
	################################# base 2^64 -> base 2^26
	mov	$h0,%rax
	mov	$h0,%rdx
	shr	\$52,$h0
	mov	$h1,$d1
	mov	$h1,$d2
	shr	\$26,%rdx
	and	\$0x3ffffff,%rax	# h[0]
	shl	\$12,$d1
	and	\$0x3ffffff,%rdx	# h[1]
	shr	\$14,$h1
	or	$d1,$h0
	shl	\$24,$h2
	and	\$0x3ffffff,$h0		# h[2]
	shr	\$40,$d2
	and	\$0x3ffffff,$h1		# h[3]
	or	$d2,$h2			# h[4]

	vmovd	%rax#d,$H0
	vmovd	%rdx#d,$H1
	vmovd	$h0#d,$H2
	vmovd	$h1#d,$H3
	vmovd	$h2#d,$H4
	movl	\$1,20($ctx)		# set is_base2_26

	call	__poly1305_init_avx

.Lproceed_avx:
	mov	%r15,$len

	mov	0(%rsp),%r15
.cfi_restore	%r15
	mov	8(%rsp),%r14
.cfi_restore	%r14
	mov	16(%rsp),%r13
.cfi_restore	%r13
	mov	24(%rsp),%r12
.cfi_restore	%r12
	mov	32(%rsp),%rbp
.cfi_restore	%rbp
	mov	40(%rsp),%rbx
.cfi_restore	%rbx
	lea	48(%rsp),%rax
	lea	48(%rsp),%rsp
.cfi_adjust_cfa_offset	-48
.Lbase2_64_avx_epilogue:
	jmp	.Ldo_avx
.cfi_endproc

.align	32
.Leven_avx:
.cfi_startproc
	vmovd		4*0($ctx),$H0		# load hash value
	vmovd		4*1($ctx),$H1
	vmovd		4*2($ctx),$H2
	vmovd		4*3($ctx),$H3
	vmovd		4*4($ctx),$H4

.Ldo_avx:
___
$code.=<<___	if (!$win64);
	lea		-0x58(%rsp),%r11
.cfi_def_cfa		%r11,0x60
	sub		\$0x178,%rsp
___
$code.=<<___	if ($win64);
	lea		-0xf8(%rsp),%r11
	sub		\$0x218,%rsp
	vmovdqa		%xmm6,0x50(%r11)
	vmovdqa		%xmm7,0x60(%r11)
	vmovdqa		%xmm8,0x70(%r11)
	vmovdqa		%xmm9,0x80(%r11)
	vmovdqa		%xmm10,0x90(%r11)
	vmovdqa		%xmm11,0xa0(%r11)
	vmovdqa		%xmm12,0xb0(%r11)
	vmovdqa		%xmm13,0xc0(%r11)
	vmovdqa		%xmm14,0xd0(%r11)
	vmovdqa		%xmm15,0xe0(%r11)
.Ldo_avx_body:
___
$code.=<<___;
	sub		\$64,$len
	lea		-32($inp),%rax
	cmovc		%rax,$inp

	vmovdqu		`16*3`($ctx),$D4	# preload r0^2
	lea		`16*3+64`($ctx),$ctx	# size optimization
	lea		.Lconst(%rip),%rcx

	################################################################
	# load input
	vmovdqu		16*2($inp),$T0
	vmovdqu		16*3($inp),$T1
	vmovdqa		64(%rcx),$MASK		# .Lmask26

	vpsrldq		\$6,$T0,$T2		# splat input
	vpsrldq		\$6,$T1,$T3
	vpunpckhqdq	$T1,$T0,$T4		# 4
	vpunpcklqdq	$T1,$T0,$T0		# 0:1
	vpunpcklqdq	$T3,$T2,$T3		# 2:3

	vpsrlq		\$40,$T4,$T4		# 4
	vpsrlq		\$26,$T0,$T1
	vpand		$MASK,$T0,$T0		# 0
	vpsrlq		\$4,$T3,$T2
	vpand		$MASK,$T1,$T1		# 1
	vpsrlq		\$30,$T3,$T3
	vpand		$MASK,$T2,$T2		# 2
	vpand		$MASK,$T3,$T3		# 3
	vpor		32(%rcx),$T4,$T4	# padbit, yes, always

	jbe		.Lskip_loop_avx

	# expand and copy pre-calculated table to stack
	vmovdqu		`16*1-64`($ctx),$D1
	vmovdqu		`16*2-64`($ctx),$D2
	vpshufd		\$0xEE,$D4,$D3		# 34xx -> 3434
	vpshufd		\$0x44,$D4,$D0		# xx12 -> 1212
	vmovdqa		$D3,-0x90(%r11)
	vmovdqa		$D0,0x00(%rsp)
	vpshufd		\$0xEE,$D1,$D4
	vmovdqu		`16*3-64`($ctx),$D0
	vpshufd		\$0x44,$D1,$D1
	vmovdqa		$D4,-0x80(%r11)
	vmovdqa		$D1,0x10(%rsp)
	vpshufd		\$0xEE,$D2,$D3
	vmovdqu		`16*4-64`($ctx),$D1
	vpshufd		\$0x44,$D2,$D2
	vmovdqa		$D3,-0x70(%r11)
	vmovdqa		$D2,0x20(%rsp)
	vpshufd		\$0xEE,$D0,$D4
	vmovdqu		`16*5-64`($ctx),$D2
	vpshufd		\$0x44,$D0,$D0
	vmovdqa		$D4,-0x60(%r11)
	vmovdqa		$D0,0x30(%rsp)
	vpshufd		\$0xEE,$D1,$D3
	vmovdqu		`16*6-64`($ctx),$D0
	vpshufd		\$0x44,$D1,$D1
	vmovdqa		$D3,-0x50(%r11)
	vmovdqa		$D1,0x40(%rsp)
	vpshufd		\$0xEE,$D2,$D4
	vmovdqu		`16*7-64`($ctx),$D1
	vpshufd		\$0x44,$D2,$D2
	vmovdqa		$D4,-0x40(%r11)
	vmovdqa		$D2,0x50(%rsp)
	vpshufd		\$0xEE,$D0,$D3
	vmovdqu		`16*8-64`($ctx),$D2
	vpshufd		\$0x44,$D0,$D0
	vmovdqa		$D3,-0x30(%r11)
	vmovdqa		$D0,0x60(%rsp)
	vpshufd		\$0xEE,$D1,$D4
	vpshufd		\$0x44,$D1,$D1
	vmovdqa		$D4,-0x20(%r11)
	vmovdqa		$D1,0x70(%rsp)
	vpshufd		\$0xEE,$D2,$D3
	 vmovdqa	0x00(%rsp),$D4		# preload r0^2
	vpshufd		\$0x44,$D2,$D2
	vmovdqa		$D3,-0x10(%r11)
	vmovdqa		$D2,0x80(%rsp)

	jmp		.Loop_avx

.align	32
.Loop_avx:
	################################################################
	# ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2
	# ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^3+inp[7]*r
	#   \___________________/
	# ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2+inp[8])*r^2
	# ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^4+inp[7]*r^2+inp[9])*r
	#   \___________________/ \____________________/
	#
	# Note that we start with inp[2:3]*r^2. This is because it
	# doesn't depend on reduction in previous iteration.
	################################################################
	# d4 = h4*r0 + h3*r1   + h2*r2   + h1*r3   + h0*r4
	# d3 = h3*r0 + h2*r1   + h1*r2   + h0*r3   + h4*5*r4
	# d2 = h2*r0 + h1*r1   + h0*r2   + h4*5*r3 + h3*5*r4
	# d1 = h1*r0 + h0*r1   + h4*5*r2 + h3*5*r3 + h2*5*r4
	# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4
	#
	# though note that $Tx and $Hx are "reversed" in this section,
	# and $D4 is preloaded with r0^2...

	vpmuludq	$T0,$D4,$D0		# d0 = h0*r0
	vpmuludq	$T1,$D4,$D1		# d1 = h1*r0
	  vmovdqa	$H2,0x20(%r11)				# offload hash
	vpmuludq	$T2,$D4,$D2		# d3 = h2*r0
	 vmovdqa	0x10(%rsp),$H2		# r1^2
	vpmuludq	$T3,$D4,$D3		# d3 = h3*r0
	vpmuludq	$T4,$D4,$D4		# d4 = h4*r0

	  vmovdqa	$H0,0x00(%r11)				#
	vpmuludq	0x20(%rsp),$T4,$H0	# h4*s1
	  vmovdqa	$H1,0x10(%r11)				#
	vpmuludq	$T3,$H2,$H1		# h3*r1
	vpaddq		$H0,$D0,$D0		# d0 += h4*s1
	vpaddq		$H1,$D4,$D4		# d4 += h3*r1
	  vmovdqa	$H3,0x30(%r11)				#
	vpmuludq	$T2,$H2,$H0		# h2*r1
	vpmuludq	$T1,$H2,$H1		# h1*r1
	vpaddq		$H0,$D3,$D3		# d3 += h2*r1
	 vmovdqa	0x30(%rsp),$H3		# r2^2
	vpaddq		$H1,$D2,$D2		# d2 += h1*r1
	  vmovdqa	$H4,0x40(%r11)				#
	vpmuludq	$T0,$H2,$H2		# h0*r1
	 vpmuludq	$T2,$H3,$H0		# h2*r2
	vpaddq		$H2,$D1,$D1		# d1 += h0*r1

	 vmovdqa	0x40(%rsp),$H4		# s2^2
	vpaddq		$H0,$D4,$D4		# d4 += h2*r2
	vpmuludq	$T1,$H3,$H1		# h1*r2
	vpmuludq	$T0,$H3,$H3		# h0*r2
	vpaddq		$H1,$D3,$D3		# d3 += h1*r2
	 vmovdqa	0x50(%rsp),$H2		# r3^2
	vpaddq		$H3,$D2,$D2		# d2 += h0*r2
	vpmuludq	$T4,$H4,$H0		# h4*s2
	vpmuludq	$T3,$H4,$H4		# h3*s2
	vpaddq		$H0,$D1,$D1		# d1 += h4*s2
	 vmovdqa	0x60(%rsp),$H3		# s3^2
	vpaddq		$H4,$D0,$D0		# d0 += h3*s2

	 vmovdqa	0x80(%rsp),$H4		# s4^2
	vpmuludq	$T1,$H2,$H1		# h1*r3
	vpmuludq	$T0,$H2,$H2		# h0*r3
	vpaddq		$H1,$D4,$D4		# d4 += h1*r3
	vpaddq		$H2,$D3,$D3		# d3 += h0*r3
	vpmuludq	$T4,$H3,$H0		# h4*s3
	vpmuludq	$T3,$H3,$H1		# h3*s3
	vpaddq		$H0,$D2,$D2		# d2 += h4*s3
	 vmovdqu	16*0($inp),$H0				# load input
	vpaddq		$H1,$D1,$D1		# d1 += h3*s3
	vpmuludq	$T2,$H3,$H3		# h2*s3
	 vpmuludq	$T2,$H4,$T2		# h2*s4
	vpaddq		$H3,$D0,$D0		# d0 += h2*s3

	 vmovdqu	16*1($inp),$H1				#
	vpaddq		$T2,$D1,$D1		# d1 += h2*s4
	vpmuludq	$T3,$H4,$T3		# h3*s4
	vpmuludq	$T4,$H4,$T4		# h4*s4
	 vpsrldq	\$6,$H0,$H2				# splat input
	vpaddq		$T3,$D2,$D2		# d2 += h3*s4
	vpaddq		$T4,$D3,$D3		# d3 += h4*s4
	 vpsrldq	\$6,$H1,$H3				#
	vpmuludq	0x70(%rsp),$T0,$T4	# h0*r4
	vpmuludq	$T1,$H4,$T0		# h1*s4
	 vpunpckhqdq	$H1,$H0,$H4		# 4
	vpaddq		$T4,$D4,$D4		# d4 += h0*r4
	 vmovdqa	-0x90(%r11),$T4		# r0^4
	vpaddq		$T0,$D0,$D0		# d0 += h1*s4

	vpunpcklqdq	$H1,$H0,$H0		# 0:1
	vpunpcklqdq	$H3,$H2,$H3		# 2:3

	#vpsrlq		\$40,$H4,$H4		# 4
	vpsrldq		\$`40/8`,$H4,$H4	# 4
	vpsrlq		\$26,$H0,$H1
	vpand		$MASK,$H0,$H0		# 0
	vpsrlq		\$4,$H3,$H2
	vpand		$MASK,$H1,$H1		# 1
	vpand		0(%rcx),$H4,$H4		# .Lmask24
	vpsrlq		\$30,$H3,$H3
	vpand		$MASK,$H2,$H2		# 2
	vpand		$MASK,$H3,$H3		# 3
	vpor		32(%rcx),$H4,$H4	# padbit, yes, always

	vpaddq		0x00(%r11),$H0,$H0	# add hash value
	vpaddq		0x10(%r11),$H1,$H1
	vpaddq		0x20(%r11),$H2,$H2
	vpaddq		0x30(%r11),$H3,$H3
	vpaddq		0x40(%r11),$H4,$H4

	lea		16*2($inp),%rax
	lea		16*4($inp),$inp
	sub		\$64,$len
	cmovc		%rax,$inp

	################################################################
	# Now we accumulate (inp[0:1]+hash)*r^4
	################################################################
	# d4 = h4*r0 + h3*r1   + h2*r2   + h1*r3   + h0*r4
	# d3 = h3*r0 + h2*r1   + h1*r2   + h0*r3   + h4*5*r4
	# d2 = h2*r0 + h1*r1   + h0*r2   + h4*5*r3 + h3*5*r4
	# d1 = h1*r0 + h0*r1   + h4*5*r2 + h3*5*r3 + h2*5*r4
	# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4

	vpmuludq	$H0,$T4,$T0		# h0*r0
	vpmuludq	$H1,$T4,$T1		# h1*r0
	vpaddq		$T0,$D0,$D0
	vpaddq		$T1,$D1,$D1
	 vmovdqa	-0x80(%r11),$T2		# r1^4
	vpmuludq	$H2,$T4,$T0		# h2*r0
	vpmuludq	$H3,$T4,$T1		# h3*r0
	vpaddq		$T0,$D2,$D2
	vpaddq		$T1,$D3,$D3
	vpmuludq	$H4,$T4,$T4		# h4*r0
	 vpmuludq	-0x70(%r11),$H4,$T0	# h4*s1
	vpaddq		$T4,$D4,$D4

	vpaddq		$T0,$D0,$D0		# d0 += h4*s1
	vpmuludq	$H2,$T2,$T1		# h2*r1
	vpmuludq	$H3,$T2,$T0		# h3*r1
	vpaddq		$T1,$D3,$D3		# d3 += h2*r1
	 vmovdqa	-0x60(%r11),$T3		# r2^4
	vpaddq		$T0,$D4,$D4		# d4 += h3*r1
	vpmuludq	$H1,$T2,$T1		# h1*r1
	vpmuludq	$H0,$T2,$T2		# h0*r1
	vpaddq		$T1,$D2,$D2		# d2 += h1*r1
	vpaddq		$T2,$D1,$D1		# d1 += h0*r1

	 vmovdqa	-0x50(%r11),$T4		# s2^4
	vpmuludq	$H2,$T3,$T0		# h2*r2
	vpmuludq	$H1,$T3,$T1		# h1*r2
	vpaddq		$T0,$D4,$D4		# d4 += h2*r2
	vpaddq		$T1,$D3,$D3		# d3 += h1*r2
	 vmovdqa	-0x40(%r11),$T2		# r3^4
	vpmuludq	$H0,$T3,$T3		# h0*r2
	vpmuludq	$H4,$T4,$T0		# h4*s2
	vpaddq		$T3,$D2,$D2		# d2 += h0*r2
	vpaddq		$T0,$D1,$D1		# d1 += h4*s2
	 vmovdqa	-0x30(%r11),$T3		# s3^4
	vpmuludq	$H3,$T4,$T4		# h3*s2
	 vpmuludq	$H1,$T2,$T1		# h1*r3
	vpaddq		$T4,$D0,$D0		# d0 += h3*s2

	 vmovdqa	-0x10(%r11),$T4		# s4^4
	vpaddq		$T1,$D4,$D4		# d4 += h1*r3
	vpmuludq	$H0,$T2,$T2		# h0*r3
	vpmuludq	$H4,$T3,$T0		# h4*s3
	vpaddq		$T2,$D3,$D3		# d3 += h0*r3
	vpaddq		$T0,$D2,$D2		# d2 += h4*s3
	 vmovdqu	16*2($inp),$T0				# load input
	vpmuludq	$H3,$T3,$T2		# h3*s3
	vpmuludq	$H2,$T3,$T3		# h2*s3
	vpaddq		$T2,$D1,$D1		# d1 += h3*s3
	 vmovdqu	16*3($inp),$T1				#
	vpaddq		$T3,$D0,$D0		# d0 += h2*s3

	vpmuludq	$H2,$T4,$H2		# h2*s4
	vpmuludq	$H3,$T4,$H3		# h3*s4
	 vpsrldq	\$6,$T0,$T2				# splat input
	vpaddq		$H2,$D1,$D1		# d1 += h2*s4
	vpmuludq	$H4,$T4,$H4		# h4*s4
	 vpsrldq	\$6,$T1,$T3				#
	vpaddq		$H3,$D2,$H2		# h2 = d2 + h3*s4
	vpaddq		$H4,$D3,$H3		# h3 = d3 + h4*s4
	vpmuludq	-0x20(%r11),$H0,$H4	# h0*r4
	vpmuludq	$H1,$T4,$H0
	 vpunpckhqdq	$T1,$T0,$T4		# 4
	vpaddq		$H4,$D4,$H4		# h4 = d4 + h0*r4
	vpaddq		$H0,$D0,$H0		# h0 = d0 + h1*s4

	vpunpcklqdq	$T1,$T0,$T0		# 0:1
	vpunpcklqdq	$T3,$T2,$T3		# 2:3

	#vpsrlq		\$40,$T4,$T4		# 4
	vpsrldq		\$`40/8`,$T4,$T4	# 4
	vpsrlq		\$26,$T0,$T1
	 vmovdqa	0x00(%rsp),$D4		# preload r0^2
	vpand		$MASK,$T0,$T0		# 0
	vpsrlq		\$4,$T3,$T2
	vpand		$MASK,$T1,$T1		# 1
	vpand		0(%rcx),$T4,$T4		# .Lmask24
	vpsrlq		\$30,$T3,$T3
	vpand		$MASK,$T2,$T2		# 2
	vpand		$MASK,$T3,$T3		# 3
	vpor		32(%rcx),$T4,$T4	# padbit, yes, always

	################################################################
	# lazy reduction as discussed in "NEON crypto" by D.J. Bernstein
	# and P. Schwabe

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	vpaddq		$D0,$D1,$H1		# h0 -> h1

	vpsrlq		\$26,$H4,$D0
	vpand		$MASK,$H4,$H4

	vpsrlq		\$26,$H1,$D1
	vpand		$MASK,$H1,$H1
	vpaddq		$D1,$H2,$H2		# h1 -> h2

	vpaddq		$D0,$H0,$H0
	vpsllq		\$2,$D0,$D0
	vpaddq		$D0,$H0,$H0		# h4 -> h0

	vpsrlq		\$26,$H2,$D2
	vpand		$MASK,$H2,$H2
	vpaddq		$D2,$H3,$H3		# h2 -> h3

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	ja		.Loop_avx

.Lskip_loop_avx:
	################################################################
	# multiply (inp[0:1]+hash) or inp[2:3] by r^2:r^1

	vpshufd		\$0x10,$D4,$D4		# r0^n, xx12 -> x1x2
	add		\$32,$len
	jnz		.Long_tail_avx

	vpaddq		$H2,$T2,$T2
	vpaddq		$H0,$T0,$T0
	vpaddq		$H1,$T1,$T1
	vpaddq		$H3,$T3,$T3
	vpaddq		$H4,$T4,$T4

.Long_tail_avx:
	vmovdqa		$H2,0x20(%r11)
	vmovdqa		$H0,0x00(%r11)
	vmovdqa		$H1,0x10(%r11)
	vmovdqa		$H3,0x30(%r11)
	vmovdqa		$H4,0x40(%r11)

	# d4 = h4*r0 + h3*r1   + h2*r2   + h1*r3   + h0*r4
	# d3 = h3*r0 + h2*r1   + h1*r2   + h0*r3   + h4*5*r4
	# d2 = h2*r0 + h1*r1   + h0*r2   + h4*5*r3 + h3*5*r4
	# d1 = h1*r0 + h0*r1   + h4*5*r2 + h3*5*r3 + h2*5*r4
	# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4

	vpmuludq	$T2,$D4,$D2		# d2 = h2*r0
	vpmuludq	$T0,$D4,$D0		# d0 = h0*r0
	 vpshufd	\$0x10,`16*1-64`($ctx),$H2		# r1^n
	vpmuludq	$T1,$D4,$D1		# d1 = h1*r0
	vpmuludq	$T3,$D4,$D3		# d3 = h3*r0
	vpmuludq	$T4,$D4,$D4		# d4 = h4*r0

	vpmuludq	$T3,$H2,$H0		# h3*r1
	vpaddq		$H0,$D4,$D4		# d4 += h3*r1
	 vpshufd	\$0x10,`16*2-64`($ctx),$H3		# s1^n
	vpmuludq	$T2,$H2,$H1		# h2*r1
	vpaddq		$H1,$D3,$D3		# d3 += h2*r1
	 vpshufd	\$0x10,`16*3-64`($ctx),$H4		# r2^n
	vpmuludq	$T1,$H2,$H0		# h1*r1
	vpaddq		$H0,$D2,$D2		# d2 += h1*r1
	vpmuludq	$T0,$H2,$H2		# h0*r1
	vpaddq		$H2,$D1,$D1		# d1 += h0*r1
	vpmuludq	$T4,$H3,$H3		# h4*s1
	vpaddq		$H3,$D0,$D0		# d0 += h4*s1

	 vpshufd	\$0x10,`16*4-64`($ctx),$H2		# s2^n
	vpmuludq	$T2,$H4,$H1		# h2*r2
	vpaddq		$H1,$D4,$D4		# d4 += h2*r2
	vpmuludq	$T1,$H4,$H0		# h1*r2
	vpaddq		$H0,$D3,$D3		# d3 += h1*r2
	 vpshufd	\$0x10,`16*5-64`($ctx),$H3		# r3^n
	vpmuludq	$T0,$H4,$H4		# h0*r2
	vpaddq		$H4,$D2,$D2		# d2 += h0*r2
	vpmuludq	$T4,$H2,$H1		# h4*s2
	vpaddq		$H1,$D1,$D1		# d1 += h4*s2
	 vpshufd	\$0x10,`16*6-64`($ctx),$H4		# s3^n
	vpmuludq	$T3,$H2,$H2		# h3*s2
	vpaddq		$H2,$D0,$D0		# d0 += h3*s2

	vpmuludq	$T1,$H3,$H0		# h1*r3
	vpaddq		$H0,$D4,$D4		# d4 += h1*r3
	vpmuludq	$T0,$H3,$H3		# h0*r3
	vpaddq		$H3,$D3,$D3		# d3 += h0*r3
	 vpshufd	\$0x10,`16*7-64`($ctx),$H2		# r4^n
	vpmuludq	$T4,$H4,$H1		# h4*s3
	vpaddq		$H1,$D2,$D2		# d2 += h4*s3
	 vpshufd	\$0x10,`16*8-64`($ctx),$H3		# s4^n
	vpmuludq	$T3,$H4,$H0		# h3*s3
	vpaddq		$H0,$D1,$D1		# d1 += h3*s3
	vpmuludq	$T2,$H4,$H4		# h2*s3
	vpaddq		$H4,$D0,$D0		# d0 += h2*s3

	vpmuludq	$T0,$H2,$H2		# h0*r4
	vpaddq		$H2,$D4,$D4		# h4 = d4 + h0*r4
	vpmuludq	$T4,$H3,$H1		# h4*s4
	vpaddq		$H1,$D3,$D3		# h3 = d3 + h4*s4
	vpmuludq	$T3,$H3,$H0		# h3*s4
	vpaddq		$H0,$D2,$D2		# h2 = d2 + h3*s4
	vpmuludq	$T2,$H3,$H1		# h2*s4
	vpaddq		$H1,$D1,$D1		# h1 = d1 + h2*s4
	vpmuludq	$T1,$H3,$H3		# h1*s4
	vpaddq		$H3,$D0,$D0		# h0 = d0 + h1*s4

	jz		.Lshort_tail_avx

	vmovdqu		16*0($inp),$H0		# load input
	vmovdqu		16*1($inp),$H1

	vpsrldq		\$6,$H0,$H2		# splat input
	vpsrldq		\$6,$H1,$H3
	vpunpckhqdq	$H1,$H0,$H4		# 4
	vpunpcklqdq	$H1,$H0,$H0		# 0:1
	vpunpcklqdq	$H3,$H2,$H3		# 2:3

	vpsrlq		\$40,$H4,$H4		# 4
	vpsrlq		\$26,$H0,$H1
	vpand		$MASK,$H0,$H0		# 0
	vpsrlq		\$4,$H3,$H2
	vpand		$MASK,$H1,$H1		# 1
	vpsrlq		\$30,$H3,$H3
	vpand		$MASK,$H2,$H2		# 2
	vpand		$MASK,$H3,$H3		# 3
	vpor		32(%rcx),$H4,$H4	# padbit, yes, always

	vpshufd		\$0x32,`16*0-64`($ctx),$T4	# r0^n, 34xx -> x3x4
	vpaddq		0x00(%r11),$H0,$H0
	vpaddq		0x10(%r11),$H1,$H1
	vpaddq		0x20(%r11),$H2,$H2
	vpaddq		0x30(%r11),$H3,$H3
	vpaddq		0x40(%r11),$H4,$H4

	################################################################
	# multiply (inp[0:1]+hash) by r^4:r^3 and accumulate

	vpmuludq	$H0,$T4,$T0		# h0*r0
	vpaddq		$T0,$D0,$D0		# d0 += h0*r0
	vpmuludq	$H1,$T4,$T1		# h1*r0
	vpaddq		$T1,$D1,$D1		# d1 += h1*r0
	vpmuludq	$H2,$T4,$T0		# h2*r0
	vpaddq		$T0,$D2,$D2		# d2 += h2*r0
	 vpshufd	\$0x32,`16*1-64`($ctx),$T2		# r1^n
	vpmuludq	$H3,$T4,$T1		# h3*r0
	vpaddq		$T1,$D3,$D3		# d3 += h3*r0
	vpmuludq	$H4,$T4,$T4		# h4*r0
	vpaddq		$T4,$D4,$D4		# d4 += h4*r0

	vpmuludq	$H3,$T2,$T0		# h3*r1
	vpaddq		$T0,$D4,$D4		# d4 += h3*r1
	 vpshufd	\$0x32,`16*2-64`($ctx),$T3		# s1
	vpmuludq	$H2,$T2,$T1		# h2*r1
	vpaddq		$T1,$D3,$D3		# d3 += h2*r1
	 vpshufd	\$0x32,`16*3-64`($ctx),$T4		# r2
	vpmuludq	$H1,$T2,$T0		# h1*r1
	vpaddq		$T0,$D2,$D2		# d2 += h1*r1
	vpmuludq	$H0,$T2,$T2		# h0*r1
	vpaddq		$T2,$D1,$D1		# d1 += h0*r1
	vpmuludq	$H4,$T3,$T3		# h4*s1
	vpaddq		$T3,$D0,$D0		# d0 += h4*s1

	 vpshufd	\$0x32,`16*4-64`($ctx),$T2		# s2
	vpmuludq	$H2,$T4,$T1		# h2*r2
	vpaddq		$T1,$D4,$D4		# d4 += h2*r2
	vpmuludq	$H1,$T4,$T0		# h1*r2
	vpaddq		$T0,$D3,$D3		# d3 += h1*r2
	 vpshufd	\$0x32,`16*5-64`($ctx),$T3		# r3
	vpmuludq	$H0,$T4,$T4		# h0*r2
	vpaddq		$T4,$D2,$D2		# d2 += h0*r2
	vpmuludq	$H4,$T2,$T1		# h4*s2
	vpaddq		$T1,$D1,$D1		# d1 += h4*s2
	 vpshufd	\$0x32,`16*6-64`($ctx),$T4		# s3
	vpmuludq	$H3,$T2,$T2		# h3*s2
	vpaddq		$T2,$D0,$D0		# d0 += h3*s2

	vpmuludq	$H1,$T3,$T0		# h1*r3
	vpaddq		$T0,$D4,$D4		# d4 += h1*r3
	vpmuludq	$H0,$T3,$T3		# h0*r3
	vpaddq		$T3,$D3,$D3		# d3 += h0*r3
	 vpshufd	\$0x32,`16*7-64`($ctx),$T2		# r4
	vpmuludq	$H4,$T4,$T1		# h4*s3
	vpaddq		$T1,$D2,$D2		# d2 += h4*s3
	 vpshufd	\$0x32,`16*8-64`($ctx),$T3		# s4
	vpmuludq	$H3,$T4,$T0		# h3*s3
	vpaddq		$T0,$D1,$D1		# d1 += h3*s3
	vpmuludq	$H2,$T4,$T4		# h2*s3
	vpaddq		$T4,$D0,$D0		# d0 += h2*s3

	vpmuludq	$H0,$T2,$T2		# h0*r4
	vpaddq		$T2,$D4,$D4		# d4 += h0*r4
	vpmuludq	$H4,$T3,$T1		# h4*s4
	vpaddq		$T1,$D3,$D3		# d3 += h4*s4
	vpmuludq	$H3,$T3,$T0		# h3*s4
	vpaddq		$T0,$D2,$D2		# d2 += h3*s4
	vpmuludq	$H2,$T3,$T1		# h2*s4
	vpaddq		$T1,$D1,$D1		# d1 += h2*s4
	vpmuludq	$H1,$T3,$T3		# h1*s4
	vpaddq		$T3,$D0,$D0		# d0 += h1*s4

.Lshort_tail_avx:
	################################################################
	# horizontal addition

	vpsrldq		\$8,$D4,$T4
	vpsrldq		\$8,$D3,$T3
	vpsrldq		\$8,$D1,$T1
	vpsrldq		\$8,$D0,$T0
	vpsrldq		\$8,$D2,$T2
	vpaddq		$T3,$D3,$D3
	vpaddq		$T4,$D4,$D4
	vpaddq		$T0,$D0,$D0
	vpaddq		$T1,$D1,$D1
	vpaddq		$T2,$D2,$D2

	################################################################
	# lazy reduction

	vpsrlq		\$26,$D3,$H3
	vpand		$MASK,$D3,$D3
	vpaddq		$H3,$D4,$D4		# h3 -> h4

	vpsrlq		\$26,$D0,$H0
	vpand		$MASK,$D0,$D0
	vpaddq		$H0,$D1,$D1		# h0 -> h1

	vpsrlq		\$26,$D4,$H4
	vpand		$MASK,$D4,$D4

	vpsrlq		\$26,$D1,$H1
	vpand		$MASK,$D1,$D1
	vpaddq		$H1,$D2,$D2		# h1 -> h2

	vpaddq		$H4,$D0,$D0
	vpsllq		\$2,$H4,$H4
	vpaddq		$H4,$D0,$D0		# h4 -> h0

	vpsrlq		\$26,$D2,$H2
	vpand		$MASK,$D2,$D2
	vpaddq		$H2,$D3,$D3		# h2 -> h3

	vpsrlq		\$26,$D0,$H0
	vpand		$MASK,$D0,$D0
	vpaddq		$H0,$D1,$D1		# h0 -> h1

	vpsrlq		\$26,$D3,$H3
	vpand		$MASK,$D3,$D3
	vpaddq		$H3,$D4,$D4		# h3 -> h4

	vmovd		$D0,`4*0-48-64`($ctx)	# save partially reduced
	vmovd		$D1,`4*1-48-64`($ctx)
	vmovd		$D2,`4*2-48-64`($ctx)
	vmovd		$D3,`4*3-48-64`($ctx)
	vmovd		$D4,`4*4-48-64`($ctx)
___
$code.=<<___	if ($win64);
	vmovdqa		0x50(%r11),%xmm6
	vmovdqa		0x60(%r11),%xmm7
	vmovdqa		0x70(%r11),%xmm8
	vmovdqa		0x80(%r11),%xmm9
	vmovdqa		0x90(%r11),%xmm10
	vmovdqa		0xa0(%r11),%xmm11
	vmovdqa		0xb0(%r11),%xmm12
	vmovdqa		0xc0(%r11),%xmm13
	vmovdqa		0xd0(%r11),%xmm14
	vmovdqa		0xe0(%r11),%xmm15
	lea		0xf8(%r11),%rsp
.Ldo_avx_epilogue:
___
$code.=<<___	if (!$win64);
	lea		0x58(%r11),%rsp
.cfi_def_cfa		%rsp,8
___
$code.=<<___;
	vzeroupper
	ret
.cfi_endproc
.size	poly1305_blocks_avx,.-poly1305_blocks_avx

.type	poly1305_emit_avx,\@function,3
.align	32
poly1305_emit_avx:
.cfi_startproc
	cmpl	\$0,20($ctx)	# is_base2_26?
	je	.Lemit

	mov	0($ctx),%eax	# load hash value base 2^26
	mov	4($ctx),%ecx
	mov	8($ctx),%r8d
	mov	12($ctx),%r11d
	mov	16($ctx),%r10d

	shl	\$26,%rcx	# base 2^26 -> base 2^64
	mov	%r8,%r9
	shl	\$52,%r8
	add	%rcx,%rax
	shr	\$12,%r9
	add	%rax,%r8	# h0
	adc	\$0,%r9

	shl	\$14,%r11
	mov	%r10,%rax
	shr	\$24,%r10
	add	%r11,%r9
	shl	\$40,%rax
	add	%rax,%r9	# h1
	adc	\$0,%r10	# h2

	mov	%r10,%rax	# could be partially reduced, so reduce
	mov	%r10,%rcx
	and	\$3,%r10
	shr	\$2,%rax
	and	\$-4,%rcx
	add	%rcx,%rax
	add	%rax,%r8
	adc	\$0,%r9
	adc	\$0,%r10

	mov	%r8,%rax
	add	\$5,%r8		# compare to modulus
	mov	%r9,%rcx
	adc	\$0,%r9
	adc	\$0,%r10
	shr	\$2,%r10	# did 130-bit value overflow?
	cmovnz	%r8,%rax
	cmovnz	%r9,%rcx

	add	0($nonce),%rax	# accumulate nonce
	adc	8($nonce),%rcx
	mov	%rax,0($mac)	# write result
	mov	%rcx,8($mac)

	ret
.cfi_endproc
.size	poly1305_emit_avx,.-poly1305_emit_avx
___

if ($avx>1) {
my ($H0,$H1,$H2,$H3,$H4, $MASK, $T4,$T0,$T1,$T2,$T3, $D0,$D1,$D2,$D3,$D4) =
    map("%ymm$_",(0..15));
my $S4=$MASK;

$code.=<<___;
.type	poly1305_blocks_avx2,\@function,4
.align	32
poly1305_blocks_avx2:
.cfi_startproc
	mov	20($ctx),%r8d		# is_base2_26
	cmp	\$128,$len
	jae	.Lblocks_avx2
	test	%r8d,%r8d
	jz	.Lblocks

.Lblocks_avx2:
	and	\$-16,$len
	jz	.Lno_data_avx2

	vzeroupper

	test	%r8d,%r8d
	jz	.Lbase2_64_avx2

	test	\$63,$len
	jz	.Leven_avx2

	push	%rbx
.cfi_push	%rbx
	push	%rbp
.cfi_push	%rbp
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15
.Lblocks_avx2_body:

	mov	$len,%r15		# reassign $len

	mov	0($ctx),$d1		# load hash value
	mov	8($ctx),$d2
	mov	16($ctx),$h2#d

	mov	24($ctx),$r0		# load r
	mov	32($ctx),$s1

	################################# base 2^26 -> base 2^64
	mov	$d1#d,$h0#d
	and	\$`-1*(1<<31)`,$d1
	mov	$d2,$r1			# borrow $r1
	mov	$d2#d,$h1#d
	and	\$`-1*(1<<31)`,$d2

	shr	\$6,$d1
	shl	\$52,$r1
	add	$d1,$h0
	shr	\$12,$h1
	shr	\$18,$d2
	add	$r1,$h0
	adc	$d2,$h1

	mov	$h2,$d1
	shl	\$40,$d1
	shr	\$24,$h2
	add	$d1,$h1
	adc	\$0,$h2			# can be partially reduced...

	mov	\$-4,$d2		# ... so reduce
	mov	$h2,$d1
	and	$h2,$d2
	shr	\$2,$d1
	and	\$3,$h2
	add	$d2,$d1			# =*5
	add	$d1,$h0
	adc	\$0,$h1
	adc	\$0,$h2

	mov	$s1,$r1
	mov	$s1,%rax
	shr	\$2,$s1
	add	$r1,$s1			# s1 = r1 + (r1 >> 2)

.Lbase2_26_pre_avx2:
	add	0($inp),$h0		# accumulate input
	adc	8($inp),$h1
	lea	16($inp),$inp
	adc	$padbit,$h2
	sub	\$16,%r15

	call	__poly1305_block
	mov	$r1,%rax

	test	\$63,%r15
	jnz	.Lbase2_26_pre_avx2

	test	$padbit,$padbit		# if $padbit is zero,
	jz	.Lstore_base2_64_avx2	# store hash in base 2^64 format

	################################# base 2^64 -> base 2^26
	mov	$h0,%rax
	mov	$h0,%rdx
	shr	\$52,$h0
	mov	$h1,$r0
	mov	$h1,$r1
	shr	\$26,%rdx
	and	\$0x3ffffff,%rax	# h[0]
	shl	\$12,$r0
	and	\$0x3ffffff,%rdx	# h[1]
	shr	\$14,$h1
	or	$r0,$h0
	shl	\$24,$h2
	and	\$0x3ffffff,$h0		# h[2]
	shr	\$40,$r1
	and	\$0x3ffffff,$h1		# h[3]
	or	$r1,$h2			# h[4]

	test	%r15,%r15
	jz	.Lstore_base2_26_avx2

	vmovd	%rax#d,%x#$H0
	vmovd	%rdx#d,%x#$H1
	vmovd	$h0#d,%x#$H2
	vmovd	$h1#d,%x#$H3
	vmovd	$h2#d,%x#$H4
	jmp	.Lproceed_avx2

.align	32
.Lstore_base2_64_avx2:
	mov	$h0,0($ctx)
	mov	$h1,8($ctx)
	mov	$h2,16($ctx)		# note that is_base2_26 is zeroed
	jmp	.Ldone_avx2

.align	16
.Lstore_base2_26_avx2:
	mov	%rax#d,0($ctx)		# store hash value base 2^26
	mov	%rdx#d,4($ctx)
	mov	$h0#d,8($ctx)
	mov	$h1#d,12($ctx)
	mov	$h2#d,16($ctx)
.align	16
.Ldone_avx2:
	mov	0(%rsp),%r15
.cfi_restore	%r15
	mov	8(%rsp),%r14
.cfi_restore	%r14
	mov	16(%rsp),%r13
.cfi_restore	%r13
	mov	24(%rsp),%r12
.cfi_restore	%r12
	mov	32(%rsp),%rbp
.cfi_restore	%rbp
	mov	40(%rsp),%rbx
.cfi_restore	%rbx
	lea	48(%rsp),%rsp
.cfi_adjust_cfa_offset	-48
.Lno_data_avx2:
.Lblocks_avx2_epilogue:
	ret
.cfi_endproc

.align	32
.Lbase2_64_avx2:
.cfi_startproc
	push	%rbx
.cfi_push	%rbx
	push	%rbp
.cfi_push	%rbp
	push	%r12
.cfi_push	%r12
	push	%r13
.cfi_push	%r13
	push	%r14
.cfi_push	%r14
	push	%r15
.cfi_push	%r15
.Lbase2_64_avx2_body:

	mov	$len,%r15		# reassign $len

	mov	24($ctx),$r0		# load r
	mov	32($ctx),$s1

	mov	0($ctx),$h0		# load hash value
	mov	8($ctx),$h1
	mov	16($ctx),$h2#d

	mov	$s1,$r1
	mov	$s1,%rax
	shr	\$2,$s1
	add	$r1,$s1			# s1 = r1 + (r1 >> 2)

	test	\$63,$len
	jz	.Linit_avx2

.Lbase2_64_pre_avx2:
	add	0($inp),$h0		# accumulate input
	adc	8($inp),$h1
	lea	16($inp),$inp
	adc	$padbit,$h2
	sub	\$16,%r15

	call	__poly1305_block
	mov	$r1,%rax

	test	\$63,%r15
	jnz	.Lbase2_64_pre_avx2

.Linit_avx2:
	################################# base 2^64 -> base 2^26
	mov	$h0,%rax
	mov	$h0,%rdx
	shr	\$52,$h0
	mov	$h1,$d1
	mov	$h1,$d2
	shr	\$26,%rdx
	and	\$0x3ffffff,%rax	# h[0]
	shl	\$12,$d1
	and	\$0x3ffffff,%rdx	# h[1]
	shr	\$14,$h1
	or	$d1,$h0
	shl	\$24,$h2
	and	\$0x3ffffff,$h0		# h[2]
	shr	\$40,$d2
	and	\$0x3ffffff,$h1		# h[3]
	or	$d2,$h2			# h[4]

	vmovd	%rax#d,%x#$H0
	vmovd	%rdx#d,%x#$H1
	vmovd	$h0#d,%x#$H2
	vmovd	$h1#d,%x#$H3
	vmovd	$h2#d,%x#$H4
	movl	\$1,20($ctx)		# set is_base2_26

	call	__poly1305_init_avx

.Lproceed_avx2:
	mov	%r15,$len			# restore $len
	mov	OPENSSL_ia32cap_P+8(%rip),%r10d
	mov	\$`(1<<31|1<<30|1<<16)`,%r11d

	mov	0(%rsp),%r15
.cfi_restore	%r15
	mov	8(%rsp),%r14
.cfi_restore	%r14
	mov	16(%rsp),%r13
.cfi_restore	%r13
	mov	24(%rsp),%r12
.cfi_restore	%r12
	mov	32(%rsp),%rbp
.cfi_restore	%rbp
	mov	40(%rsp),%rbx
.cfi_restore	%rbx
	lea	48(%rsp),%rax
	lea	48(%rsp),%rsp
.cfi_adjust_cfa_offset	-48
.Lbase2_64_avx2_epilogue:
	jmp	.Ldo_avx2
.cfi_endproc

.align	32
.Leven_avx2:
.cfi_startproc
	mov		OPENSSL_ia32cap_P+8(%rip),%r10d
	vmovd		4*0($ctx),%x#$H0	# load hash value base 2^26
	vmovd		4*1($ctx),%x#$H1
	vmovd		4*2($ctx),%x#$H2
	vmovd		4*3($ctx),%x#$H3
	vmovd		4*4($ctx),%x#$H4

.Ldo_avx2:
___
$code.=<<___		if ($avx>2);
	cmp		\$512,$len
	jb		.Lskip_avx512
	and		%r11d,%r10d
	test		\$`1<<16`,%r10d		# check for AVX512F
	jnz		.Lblocks_avx512
.Lskip_avx512:
___
$code.=<<___	if (!$win64);
	lea		-8(%rsp),%r11
.cfi_def_cfa		%r11,16
	sub		\$0x128,%rsp
___
$code.=<<___	if ($win64);
	lea		-0xf8(%rsp),%r11
	sub		\$0x1c8,%rsp
	vmovdqa		%xmm6,0x50(%r11)
	vmovdqa		%xmm7,0x60(%r11)
	vmovdqa		%xmm8,0x70(%r11)
	vmovdqa		%xmm9,0x80(%r11)
	vmovdqa		%xmm10,0x90(%r11)
	vmovdqa		%xmm11,0xa0(%r11)
	vmovdqa		%xmm12,0xb0(%r11)
	vmovdqa		%xmm13,0xc0(%r11)
	vmovdqa		%xmm14,0xd0(%r11)
	vmovdqa		%xmm15,0xe0(%r11)
.Ldo_avx2_body:
___
$code.=<<___;
	lea		.Lconst(%rip),%rcx
	lea		48+64($ctx),$ctx	# size optimization
	vmovdqa		96(%rcx),$T0		# .Lpermd_avx2

	# expand and copy pre-calculated table to stack
	vmovdqu		`16*0-64`($ctx),%x#$T2
	and		\$-512,%rsp
	vmovdqu		`16*1-64`($ctx),%x#$T3
	vmovdqu		`16*2-64`($ctx),%x#$T4
	vmovdqu		`16*3-64`($ctx),%x#$D0
	vmovdqu		`16*4-64`($ctx),%x#$D1
	vmovdqu		`16*5-64`($ctx),%x#$D2
	lea		0x90(%rsp),%rax		# size optimization
	vmovdqu		`16*6-64`($ctx),%x#$D3
	vpermd		$T2,$T0,$T2		# 00003412 -> 14243444
	vmovdqu		`16*7-64`($ctx),%x#$D4
	vpermd		$T3,$T0,$T3
	vmovdqu		`16*8-64`($ctx),%x#$MASK
	vpermd		$T4,$T0,$T4
	vmovdqa		$T2,0x00(%rsp)
	vpermd		$D0,$T0,$D0
	vmovdqa		$T3,0x20-0x90(%rax)
	vpermd		$D1,$T0,$D1
	vmovdqa		$T4,0x40-0x90(%rax)
	vpermd		$D2,$T0,$D2
	vmovdqa		$D0,0x60-0x90(%rax)
	vpermd		$D3,$T0,$D3
	vmovdqa		$D1,0x80-0x90(%rax)
	vpermd		$D4,$T0,$D4
	vmovdqa		$D2,0xa0-0x90(%rax)
	vpermd		$MASK,$T0,$MASK
	vmovdqa		$D3,0xc0-0x90(%rax)
	vmovdqa		$D4,0xe0-0x90(%rax)
	vmovdqa		$MASK,0x100-0x90(%rax)
	vmovdqa		64(%rcx),$MASK		# .Lmask26

	################################################################
	# load input
	vmovdqu		16*0($inp),%x#$T0
	vmovdqu		16*1($inp),%x#$T1
	vinserti128	\$1,16*2($inp),$T0,$T0
	vinserti128	\$1,16*3($inp),$T1,$T1
	lea		16*4($inp),$inp

	vpsrldq		\$6,$T0,$T2		# splat input
	vpsrldq		\$6,$T1,$T3
	vpunpckhqdq	$T1,$T0,$T4		# 4
	vpunpcklqdq	$T3,$T2,$T2		# 2:3
	vpunpcklqdq	$T1,$T0,$T0		# 0:1

	vpsrlq		\$30,$T2,$T3
	vpsrlq		\$4,$T2,$T2
	vpsrlq		\$26,$T0,$T1
	vpsrlq		\$40,$T4,$T4		# 4
	vpand		$MASK,$T2,$T2		# 2
	vpand		$MASK,$T0,$T0		# 0
	vpand		$MASK,$T1,$T1		# 1
	vpand		$MASK,$T3,$T3		# 3
	vpor		32(%rcx),$T4,$T4	# padbit, yes, always

	vpaddq		$H2,$T2,$H2		# accumulate input
	sub		\$64,$len
	jz		.Ltail_avx2
	jmp		.Loop_avx2

.align	32
.Loop_avx2:
	################################################################
	# ((inp[0]*r^4+inp[4])*r^4+inp[ 8])*r^4
	# ((inp[1]*r^4+inp[5])*r^4+inp[ 9])*r^3
	# ((inp[2]*r^4+inp[6])*r^4+inp[10])*r^2
	# ((inp[3]*r^4+inp[7])*r^4+inp[11])*r^1
	#   \________/\__________/
	################################################################
	#vpaddq		$H2,$T2,$H2		# accumulate input
	vpaddq		$H0,$T0,$H0
	vmovdqa		`32*0`(%rsp),$T0	# r0^4
	vpaddq		$H1,$T1,$H1
	vmovdqa		`32*1`(%rsp),$T1	# r1^4
	vpaddq		$H3,$T3,$H3
	vmovdqa		`32*3`(%rsp),$T2	# r2^4
	vpaddq		$H4,$T4,$H4
	vmovdqa		`32*6-0x90`(%rax),$T3	# s3^4
	vmovdqa		`32*8-0x90`(%rax),$S4	# s4^4

	# d4 = h4*r0 + h3*r1   + h2*r2   + h1*r3   + h0*r4
	# d3 = h3*r0 + h2*r1   + h1*r2   + h0*r3   + h4*5*r4
	# d2 = h2*r0 + h1*r1   + h0*r2   + h4*5*r3 + h3*5*r4
	# d1 = h1*r0 + h0*r1   + h4*5*r2 + h3*5*r3 + h2*5*r4
	# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4
	#
	# however, as h2 is "chronologically" first one available pull
	# corresponding operations up, so it's
	#
	# d4 = h2*r2   + h4*r0 + h3*r1             + h1*r3   + h0*r4
	# d3 = h2*r1   + h3*r0           + h1*r2   + h0*r3   + h4*5*r4
	# d2 = h2*r0           + h1*r1   + h0*r2   + h4*5*r3 + h3*5*r4
	# d1 = h2*5*r4 + h1*r0 + h0*r1   + h4*5*r2 + h3*5*r3
	# d0 = h2*5*r3 + h0*r0 + h4*5*r1 + h3*5*r2           + h1*5*r4

	vpmuludq	$H2,$T0,$D2		# d2 = h2*r0
	vpmuludq	$H2,$T1,$D3		# d3 = h2*r1
	vpmuludq	$H2,$T2,$D4		# d4 = h2*r2
	vpmuludq	$H2,$T3,$D0		# d0 = h2*s3
	vpmuludq	$H2,$S4,$D1		# d1 = h2*s4

	vpmuludq	$H0,$T1,$T4		# h0*r1
	vpmuludq	$H1,$T1,$H2		# h1*r1, borrow $H2 as temp
	vpaddq		$T4,$D1,$D1		# d1 += h0*r1
	vpaddq		$H2,$D2,$D2		# d2 += h1*r1
	vpmuludq	$H3,$T1,$T4		# h3*r1
	vpmuludq	`32*2`(%rsp),$H4,$H2	# h4*s1
	vpaddq		$T4,$D4,$D4		# d4 += h3*r1
	vpaddq		$H2,$D0,$D0		# d0 += h4*s1
	 vmovdqa	`32*4-0x90`(%rax),$T1	# s2

	vpmuludq	$H0,$T0,$T4		# h0*r0
	vpmuludq	$H1,$T0,$H2		# h1*r0
	vpaddq		$T4,$D0,$D0		# d0 += h0*r0
	vpaddq		$H2,$D1,$D1		# d1 += h1*r0
	vpmuludq	$H3,$T0,$T4		# h3*r0
	vpmuludq	$H4,$T0,$H2		# h4*r0
	 vmovdqu	16*0($inp),%x#$T0	# load input
	vpaddq		$T4,$D3,$D3		# d3 += h3*r0
	vpaddq		$H2,$D4,$D4		# d4 += h4*r0
	 vinserti128	\$1,16*2($inp),$T0,$T0

	vpmuludq	$H3,$T1,$T4		# h3*s2
	vpmuludq	$H4,$T1,$H2		# h4*s2
	 vmovdqu	16*1($inp),%x#$T1
	vpaddq		$T4,$D0,$D0		# d0 += h3*s2
	vpaddq		$H2,$D1,$D1		# d1 += h4*s2
	 vmovdqa	`32*5-0x90`(%rax),$H2	# r3
	vpmuludq	$H1,$T2,$T4		# h1*r2
	vpmuludq	$H0,$T2,$T2		# h0*r2
	vpaddq		$T4,$D3,$D3		# d3 += h1*r2
	vpaddq		$T2,$D2,$D2		# d2 += h0*r2
	 vinserti128	\$1,16*3($inp),$T1,$T1
	 lea		16*4($inp),$inp

	vpmuludq	$H1,$H2,$T4		# h1*r3
	vpmuludq	$H0,$H2,$H2		# h0*r3
	 vpsrldq	\$6,$T0,$T2		# splat input
	vpaddq		$T4,$D4,$D4		# d4 += h1*r3
	vpaddq		$H2,$D3,$D3		# d3 += h0*r3
	vpmuludq	$H3,$T3,$T4		# h3*s3
	vpmuludq	$H4,$T3,$H2		# h4*s3
	 vpsrldq	\$6,$T1,$T3
	vpaddq		$T4,$D1,$D1		# d1 += h3*s3
	vpaddq		$H2,$D2,$D2		# d2 += h4*s3
	 vpunpckhqdq	$T1,$T0,$T4		# 4

	vpmuludq	$H3,$S4,$H3		# h3*s4
	vpmuludq	$H4,$S4,$H4		# h4*s4
	 vpunpcklqdq	$T1,$T0,$T0		# 0:1
	vpaddq		$H3,$D2,$H2		# h2 = d2 + h3*r4
	vpaddq		$H4,$D3,$H3		# h3 = d3 + h4*r4
	 vpunpcklqdq	$T3,$T2,$T3		# 2:3
	vpmuludq	`32*7-0x90`(%rax),$H0,$H4	# h0*r4
	vpmuludq	$H1,$S4,$H0		# h1*s4
	vmovdqa		64(%rcx),$MASK		# .Lmask26
	vpaddq		$H4,$D4,$H4		# h4 = d4 + h0*r4
	vpaddq		$H0,$D0,$H0		# h0 = d0 + h1*s4

	################################################################
	# lazy reduction (interleaved with tail of input splat)

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	vpaddq		$D0,$D1,$H1		# h0 -> h1

	vpsrlq		\$26,$H4,$D4
	vpand		$MASK,$H4,$H4

	 vpsrlq		\$4,$T3,$T2

	vpsrlq		\$26,$H1,$D1
	vpand		$MASK,$H1,$H1
	vpaddq		$D1,$H2,$H2		# h1 -> h2

	vpaddq		$D4,$H0,$H0
	vpsllq		\$2,$D4,$D4
	vpaddq		$D4,$H0,$H0		# h4 -> h0

	 vpand		$MASK,$T2,$T2		# 2
	 vpsrlq		\$26,$T0,$T1

	vpsrlq		\$26,$H2,$D2
	vpand		$MASK,$H2,$H2
	vpaddq		$D2,$H3,$H3		# h2 -> h3

	 vpaddq		$T2,$H2,$H2		# modulo-scheduled
	 vpsrlq		\$30,$T3,$T3

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	 vpsrlq		\$40,$T4,$T4		# 4

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	 vpand		$MASK,$T0,$T0		# 0
	 vpand		$MASK,$T1,$T1		# 1
	 vpand		$MASK,$T3,$T3		# 3
	 vpor		32(%rcx),$T4,$T4	# padbit, yes, always

	sub		\$64,$len
	jnz		.Loop_avx2

	.byte		0x66,0x90
.Ltail_avx2:
	################################################################
	# while above multiplications were by r^4 in all lanes, in last
	# iteration we multiply least significant lane by r^4 and most
	# significant one by r, so copy of above except that references
	# to the precomputed table are displaced by 4...

	#vpaddq		$H2,$T2,$H2		# accumulate input
	vpaddq		$H0,$T0,$H0
	vmovdqu		`32*0+4`(%rsp),$T0	# r0^4
	vpaddq		$H1,$T1,$H1
	vmovdqu		`32*1+4`(%rsp),$T1	# r1^4
	vpaddq		$H3,$T3,$H3
	vmovdqu		`32*3+4`(%rsp),$T2	# r2^4
	vpaddq		$H4,$T4,$H4
	vmovdqu		`32*6+4-0x90`(%rax),$T3	# s3^4
	vmovdqu		`32*8+4-0x90`(%rax),$S4	# s4^4

	vpmuludq	$H2,$T0,$D2		# d2 = h2*r0
	vpmuludq	$H2,$T1,$D3		# d3 = h2*r1
	vpmuludq	$H2,$T2,$D4		# d4 = h2*r2
	vpmuludq	$H2,$T3,$D0		# d0 = h2*s3
	vpmuludq	$H2,$S4,$D1		# d1 = h2*s4

	vpmuludq	$H0,$T1,$T4		# h0*r1
	vpmuludq	$H1,$T1,$H2		# h1*r1
	vpaddq		$T4,$D1,$D1		# d1 += h0*r1
	vpaddq		$H2,$D2,$D2		# d2 += h1*r1
	vpmuludq	$H3,$T1,$T4		# h3*r1
	vpmuludq	`32*2+4`(%rsp),$H4,$H2	# h4*s1
	vpaddq		$T4,$D4,$D4		# d4 += h3*r1
	vpaddq		$H2,$D0,$D0		# d0 += h4*s1

	vpmuludq	$H0,$T0,$T4		# h0*r0
	vpmuludq	$H1,$T0,$H2		# h1*r0
	vpaddq		$T4,$D0,$D0		# d0 += h0*r0
	 vmovdqu	`32*4+4-0x90`(%rax),$T1	# s2
	vpaddq		$H2,$D1,$D1		# d1 += h1*r0
	vpmuludq	$H3,$T0,$T4		# h3*r0
	vpmuludq	$H4,$T0,$H2		# h4*r0
	vpaddq		$T4,$D3,$D3		# d3 += h3*r0
	vpaddq		$H2,$D4,$D4		# d4 += h4*r0

	vpmuludq	$H3,$T1,$T4		# h3*s2
	vpmuludq	$H4,$T1,$H2		# h4*s2
	vpaddq		$T4,$D0,$D0		# d0 += h3*s2
	vpaddq		$H2,$D1,$D1		# d1 += h4*s2
	 vmovdqu	`32*5+4-0x90`(%rax),$H2	# r3
	vpmuludq	$H1,$T2,$T4		# h1*r2
	vpmuludq	$H0,$T2,$T2		# h0*r2
	vpaddq		$T4,$D3,$D3		# d3 += h1*r2
	vpaddq		$T2,$D2,$D2		# d2 += h0*r2

	vpmuludq	$H1,$H2,$T4		# h1*r3
	vpmuludq	$H0,$H2,$H2		# h0*r3
	vpaddq		$T4,$D4,$D4		# d4 += h1*r3
	vpaddq		$H2,$D3,$D3		# d3 += h0*r3
	vpmuludq	$H3,$T3,$T4		# h3*s3
	vpmuludq	$H4,$T3,$H2		# h4*s3
	vpaddq		$T4,$D1,$D1		# d1 += h3*s3
	vpaddq		$H2,$D2,$D2		# d2 += h4*s3

	vpmuludq	$H3,$S4,$H3		# h3*s4
	vpmuludq	$H4,$S4,$H4		# h4*s4
	vpaddq		$H3,$D2,$H2		# h2 = d2 + h3*r4
	vpaddq		$H4,$D3,$H3		# h3 = d3 + h4*r4
	vpmuludq	`32*7+4-0x90`(%rax),$H0,$H4		# h0*r4
	vpmuludq	$H1,$S4,$H0		# h1*s4
	vmovdqa		64(%rcx),$MASK		# .Lmask26
	vpaddq		$H4,$D4,$H4		# h4 = d4 + h0*r4
	vpaddq		$H0,$D0,$H0		# h0 = d0 + h1*s4

	################################################################
	# horizontal addition

	vpsrldq		\$8,$D1,$T1
	vpsrldq		\$8,$H2,$T2
	vpsrldq		\$8,$H3,$T3
	vpsrldq		\$8,$H4,$T4
	vpsrldq		\$8,$H0,$T0
	vpaddq		$T1,$D1,$D1
	vpaddq		$T2,$H2,$H2
	vpaddq		$T3,$H3,$H3
	vpaddq		$T4,$H4,$H4
	vpaddq		$T0,$H0,$H0

	vpermq		\$0x2,$H3,$T3
	vpermq		\$0x2,$H4,$T4
	vpermq		\$0x2,$H0,$T0
	vpermq		\$0x2,$D1,$T1
	vpermq		\$0x2,$H2,$T2
	vpaddq		$T3,$H3,$H3
	vpaddq		$T4,$H4,$H4
	vpaddq		$T0,$H0,$H0
	vpaddq		$T1,$D1,$D1
	vpaddq		$T2,$H2,$H2

	################################################################
	# lazy reduction

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	vpaddq		$D0,$D1,$H1		# h0 -> h1

	vpsrlq		\$26,$H4,$D4
	vpand		$MASK,$H4,$H4

	vpsrlq		\$26,$H1,$D1
	vpand		$MASK,$H1,$H1
	vpaddq		$D1,$H2,$H2		# h1 -> h2

	vpaddq		$D4,$H0,$H0
	vpsllq		\$2,$D4,$D4
	vpaddq		$D4,$H0,$H0		# h4 -> h0

	vpsrlq		\$26,$H2,$D2
	vpand		$MASK,$H2,$H2
	vpaddq		$D2,$H3,$H3		# h2 -> h3

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	vmovd		%x#$H0,`4*0-48-64`($ctx)# save partially reduced
	vmovd		%x#$H1,`4*1-48-64`($ctx)
	vmovd		%x#$H2,`4*2-48-64`($ctx)
	vmovd		%x#$H3,`4*3-48-64`($ctx)
	vmovd		%x#$H4,`4*4-48-64`($ctx)
___
$code.=<<___	if ($win64);
	vmovdqa		0x50(%r11),%xmm6
	vmovdqa		0x60(%r11),%xmm7
	vmovdqa		0x70(%r11),%xmm8
	vmovdqa		0x80(%r11),%xmm9
	vmovdqa		0x90(%r11),%xmm10
	vmovdqa		0xa0(%r11),%xmm11
	vmovdqa		0xb0(%r11),%xmm12
	vmovdqa		0xc0(%r11),%xmm13
	vmovdqa		0xd0(%r11),%xmm14
	vmovdqa		0xe0(%r11),%xmm15
	lea		0xf8(%r11),%rsp
.Ldo_avx2_epilogue:
___
$code.=<<___	if (!$win64);
	lea		8(%r11),%rsp
.cfi_def_cfa		%rsp,8
___
$code.=<<___;
	vzeroupper
	ret
.cfi_endproc
.size	poly1305_blocks_avx2,.-poly1305_blocks_avx2
___
#######################################################################
if ($avx>2) {
# On entry we have input length divisible by 64. But since inner loop
# processes 128 bytes per iteration, cases when length is not divisible
# by 128 are handled by passing tail 64 bytes to .Ltail_avx2. For this
# reason stack layout is kept identical to poly1305_blocks_avx2. If not
# for this tail, we wouldn't have to even allocate stack frame...

my ($R0,$R1,$R2,$R3,$R4, $S1,$S2,$S3,$S4) = map("%zmm$_",(16..24));
my ($M0,$M1,$M2,$M3,$M4) = map("%zmm$_",(25..29));
my $PADBIT="%zmm30";

map(s/%y/%z/,($T4,$T0,$T1,$T2,$T3));		# switch to %zmm domain
map(s/%y/%z/,($D0,$D1,$D2,$D3,$D4));
map(s/%y/%z/,($H0,$H1,$H2,$H3,$H4));
map(s/%y/%z/,($MASK));

$code.=<<___;
.type	poly1305_blocks_avx512,\@function,4
.align	32
poly1305_blocks_avx512:
.cfi_startproc
.Lblocks_avx512:
	mov		\$15,%eax
	kmovw		%eax,%k2
___
$code.=<<___	if (!$win64);
	lea		-8(%rsp),%r11
.cfi_def_cfa		%r11,16
	sub		\$0x128,%rsp
___
$code.=<<___	if ($win64);
	lea		-0xf8(%rsp),%r11
	sub		\$0x1c8,%rsp
	vmovdqa		%xmm6,0x50(%r11)
	vmovdqa		%xmm7,0x60(%r11)
	vmovdqa		%xmm8,0x70(%r11)
	vmovdqa		%xmm9,0x80(%r11)
	vmovdqa		%xmm10,0x90(%r11)
	vmovdqa		%xmm11,0xa0(%r11)
	vmovdqa		%xmm12,0xb0(%r11)
	vmovdqa		%xmm13,0xc0(%r11)
	vmovdqa		%xmm14,0xd0(%r11)
	vmovdqa		%xmm15,0xe0(%r11)
.Ldo_avx512_body:
___
$code.=<<___;
	lea		.Lconst(%rip),%rcx
	lea		48+64($ctx),$ctx	# size optimization
	vmovdqa		96(%rcx),%y#$T2		# .Lpermd_avx2

	# expand pre-calculated table
	vmovdqu		`16*0-64`($ctx),%x#$D0	# will become expanded ${R0}
	and		\$-512,%rsp
	vmovdqu		`16*1-64`($ctx),%x#$D1	# will become ... ${R1}
	mov		\$0x20,%rax
	vmovdqu		`16*2-64`($ctx),%x#$T0	# ... ${S1}
	vmovdqu		`16*3-64`($ctx),%x#$D2	# ... ${R2}
	vmovdqu		`16*4-64`($ctx),%x#$T1	# ... ${S2}
	vmovdqu		`16*5-64`($ctx),%x#$D3	# ... ${R3}
	vmovdqu		`16*6-64`($ctx),%x#$T3	# ... ${S3}
	vmovdqu		`16*7-64`($ctx),%x#$D4	# ... ${R4}
	vmovdqu		`16*8-64`($ctx),%x#$T4	# ... ${S4}
	vpermd		$D0,$T2,$R0		# 00003412 -> 14243444
	vpbroadcastq	64(%rcx),$MASK		# .Lmask26
	vpermd		$D1,$T2,$R1
	vpermd		$T0,$T2,$S1
	vpermd		$D2,$T2,$R2
	vmovdqa64	$R0,0x00(%rsp){%k2}	# save in case $len%128 != 0
	 vpsrlq		\$32,$R0,$T0		# 14243444 -> 01020304
	vpermd		$T1,$T2,$S2
	vmovdqu64	$R1,0x00(%rsp,%rax){%k2}
	 vpsrlq		\$32,$R1,$T1
	vpermd		$D3,$T2,$R3
	vmovdqa64	$S1,0x40(%rsp){%k2}
	vpermd		$T3,$T2,$S3
	vpermd		$D4,$T2,$R4
	vmovdqu64	$R2,0x40(%rsp,%rax){%k2}
	vpermd		$T4,$T2,$S4
	vmovdqa64	$S2,0x80(%rsp){%k2}
	vmovdqu64	$R3,0x80(%rsp,%rax){%k2}
	vmovdqa64	$S3,0xc0(%rsp){%k2}
	vmovdqu64	$R4,0xc0(%rsp,%rax){%k2}
	vmovdqa64	$S4,0x100(%rsp){%k2}

	################################################################
	# calculate 5th through 8th powers of the key
	#
	# d0 = r0'*r0 + r1'*5*r4 + r2'*5*r3 + r3'*5*r2 + r4'*5*r1
	# d1 = r0'*r1 + r1'*r0   + r2'*5*r4 + r3'*5*r3 + r4'*5*r2
	# d2 = r0'*r2 + r1'*r1   + r2'*r0   + r3'*5*r4 + r4'*5*r3
	# d3 = r0'*r3 + r1'*r2   + r2'*r1   + r3'*r0   + r4'*5*r4
	# d4 = r0'*r4 + r1'*r3   + r2'*r2   + r3'*r1   + r4'*r0

	vpmuludq	$T0,$R0,$D0		# d0 = r0'*r0
	vpmuludq	$T0,$R1,$D1		# d1 = r0'*r1
	vpmuludq	$T0,$R2,$D2		# d2 = r0'*r2
	vpmuludq	$T0,$R3,$D3		# d3 = r0'*r3
	vpmuludq	$T0,$R4,$D4		# d4 = r0'*r4
	 vpsrlq		\$32,$R2,$T2

	vpmuludq	$T1,$S4,$M0
	vpmuludq	$T1,$R0,$M1
	vpmuludq	$T1,$R1,$M2
	vpmuludq	$T1,$R2,$M3
	vpmuludq	$T1,$R3,$M4
	 vpsrlq		\$32,$R3,$T3
	vpaddq		$M0,$D0,$D0		# d0 += r1'*5*r4
	vpaddq		$M1,$D1,$D1		# d1 += r1'*r0
	vpaddq		$M2,$D2,$D2		# d2 += r1'*r1
	vpaddq		$M3,$D3,$D3		# d3 += r1'*r2
	vpaddq		$M4,$D4,$D4		# d4 += r1'*r3

	vpmuludq	$T2,$S3,$M0
	vpmuludq	$T2,$S4,$M1
	vpmuludq	$T2,$R1,$M3
	vpmuludq	$T2,$R2,$M4
	vpmuludq	$T2,$R0,$M2
	 vpsrlq		\$32,$R4,$T4
	vpaddq		$M0,$D0,$D0		# d0 += r2'*5*r3
	vpaddq		$M1,$D1,$D1		# d1 += r2'*5*r4
	vpaddq		$M3,$D3,$D3		# d3 += r2'*r1
	vpaddq		$M4,$D4,$D4		# d4 += r2'*r2
	vpaddq		$M2,$D2,$D2		# d2 += r2'*r0

	vpmuludq	$T3,$S2,$M0
	vpmuludq	$T3,$R0,$M3
	vpmuludq	$T3,$R1,$M4
	vpmuludq	$T3,$S3,$M1
	vpmuludq	$T3,$S4,$M2
	vpaddq		$M0,$D0,$D0		# d0 += r3'*5*r2
	vpaddq		$M3,$D3,$D3		# d3 += r3'*r0
	vpaddq		$M4,$D4,$D4		# d4 += r3'*r1
	vpaddq		$M1,$D1,$D1		# d1 += r3'*5*r3
	vpaddq		$M2,$D2,$D2		# d2 += r3'*5*r4

	vpmuludq	$T4,$S4,$M3
	vpmuludq	$T4,$R0,$M4
	vpmuludq	$T4,$S1,$M0
	vpmuludq	$T4,$S2,$M1
	vpmuludq	$T4,$S3,$M2
	vpaddq		$M3,$D3,$D3		# d3 += r2'*5*r4
	vpaddq		$M4,$D4,$D4		# d4 += r2'*r0
	vpaddq		$M0,$D0,$D0		# d0 += r2'*5*r1
	vpaddq		$M1,$D1,$D1		# d1 += r2'*5*r2
	vpaddq		$M2,$D2,$D2		# d2 += r2'*5*r3

	################################################################
	# load input
	vmovdqu64	16*0($inp),%z#$T3
	vmovdqu64	16*4($inp),%z#$T4
	lea		16*8($inp),$inp

	################################################################
	# lazy reduction

	vpsrlq		\$26,$D3,$M3
	vpandq		$MASK,$D3,$D3
	vpaddq		$M3,$D4,$D4		# d3 -> d4

	vpsrlq		\$26,$D0,$M0
	vpandq		$MASK,$D0,$D0
	vpaddq		$M0,$D1,$D1		# d0 -> d1

	vpsrlq		\$26,$D4,$M4
	vpandq		$MASK,$D4,$D4

	vpsrlq		\$26,$D1,$M1
	vpandq		$MASK,$D1,$D1
	vpaddq		$M1,$D2,$D2		# d1 -> d2

	vpaddq		$M4,$D0,$D0
	vpsllq		\$2,$M4,$M4
	vpaddq		$M4,$D0,$D0		# d4 -> d0

	vpsrlq		\$26,$D2,$M2
	vpandq		$MASK,$D2,$D2
	vpaddq		$M2,$D3,$D3		# d2 -> d3

	vpsrlq		\$26,$D0,$M0
	vpandq		$MASK,$D0,$D0
	vpaddq		$M0,$D1,$D1		# d0 -> d1

	vpsrlq		\$26,$D3,$M3
	vpandq		$MASK,$D3,$D3
	vpaddq		$M3,$D4,$D4		# d3 -> d4

	################################################################
	# at this point we have 14243444 in $R0-$S4 and 05060708 in
	# $D0-$D4, ...

	vpunpcklqdq	$T4,$T3,$T0	# transpose input
	vpunpckhqdq	$T4,$T3,$T4

	# ... since input 64-bit lanes are ordered as 73625140, we could
	# "vperm" it to 76543210 (here and in each loop iteration), *or*
	# we could just flow along, hence the goal for $R0-$S4 is
	# 1858286838784888 ...

	vmovdqa32	128(%rcx),$M0		# .Lpermd_avx512:
	mov		\$0x7777,%eax
	kmovw		%eax,%k1

	vpermd		$R0,$M0,$R0		# 14243444 -> 1---2---3---4---
	vpermd		$R1,$M0,$R1
	vpermd		$R2,$M0,$R2
	vpermd		$R3,$M0,$R3
	vpermd		$R4,$M0,$R4

	vpermd		$D0,$M0,${R0}{%k1}	# 05060708 -> 1858286838784888
	vpermd		$D1,$M0,${R1}{%k1}
	vpermd		$D2,$M0,${R2}{%k1}
	vpermd		$D3,$M0,${R3}{%k1}
	vpermd		$D4,$M0,${R4}{%k1}

	vpslld		\$2,$R1,$S1		# *5
	vpslld		\$2,$R2,$S2
	vpslld		\$2,$R3,$S3
	vpslld		\$2,$R4,$S4
	vpaddd		$R1,$S1,$S1
	vpaddd		$R2,$S2,$S2
	vpaddd		$R3,$S3,$S3
	vpaddd		$R4,$S4,$S4

	vpbroadcastq	32(%rcx),$PADBIT	# .L129

	vpsrlq		\$52,$T0,$T2		# splat input
	vpsllq		\$12,$T4,$T3
	vporq		$T3,$T2,$T2
	vpsrlq		\$26,$T0,$T1
	vpsrlq		\$14,$T4,$T3
	vpsrlq		\$40,$T4,$T4		# 4
	vpandq		$MASK,$T2,$T2		# 2
	vpandq		$MASK,$T0,$T0		# 0
	#vpandq		$MASK,$T1,$T1		# 1
	#vpandq		$MASK,$T3,$T3		# 3
	#vporq		$PADBIT,$T4,$T4		# padbit, yes, always

	vpaddq		$H2,$T2,$H2		# accumulate input
	sub		\$192,$len
	jbe		.Ltail_avx512
	jmp		.Loop_avx512

.align	32
.Loop_avx512:
	################################################################
	# ((inp[0]*r^8+inp[ 8])*r^8+inp[16])*r^8
	# ((inp[1]*r^8+inp[ 9])*r^8+inp[17])*r^7
	# ((inp[2]*r^8+inp[10])*r^8+inp[18])*r^6
	# ((inp[3]*r^8+inp[11])*r^8+inp[19])*r^5
	# ((inp[4]*r^8+inp[12])*r^8+inp[20])*r^4
	# ((inp[5]*r^8+inp[13])*r^8+inp[21])*r^3
	# ((inp[6]*r^8+inp[14])*r^8+inp[22])*r^2
	# ((inp[7]*r^8+inp[15])*r^8+inp[23])*r^1
	#   \________/\___________/
	################################################################
	#vpaddq		$H2,$T2,$H2		# accumulate input

	# d4 = h4*r0 + h3*r1   + h2*r2   + h1*r3   + h0*r4
	# d3 = h3*r0 + h2*r1   + h1*r2   + h0*r3   + h4*5*r4
	# d2 = h2*r0 + h1*r1   + h0*r2   + h4*5*r3 + h3*5*r4
	# d1 = h1*r0 + h0*r1   + h4*5*r2 + h3*5*r3 + h2*5*r4
	# d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4
	#
	# however, as h2 is "chronologically" first one available pull
	# corresponding operations up, so it's
	#
	# d3 = h2*r1   + h0*r3 + h1*r2   + h3*r0 + h4*5*r4
	# d4 = h2*r2   + h0*r4 + h1*r3   + h3*r1 + h4*r0
	# d0 = h2*5*r3 + h0*r0 + h1*5*r4         + h3*5*r2 + h4*5*r1
	# d1 = h2*5*r4 + h0*r1           + h1*r0 + h3*5*r3 + h4*5*r2
	# d2 = h2*r0           + h0*r2   + h1*r1 + h3*5*r4 + h4*5*r3

	vpmuludq	$H2,$R1,$D3		# d3 = h2*r1
	 vpaddq		$H0,$T0,$H0
	vpmuludq	$H2,$R2,$D4		# d4 = h2*r2
	 vpandq		$MASK,$T1,$T1		# 1
	vpmuludq	$H2,$S3,$D0		# d0 = h2*s3
	 vpandq		$MASK,$T3,$T3		# 3
	vpmuludq	$H2,$S4,$D1		# d1 = h2*s4
	 vporq		$PADBIT,$T4,$T4		# padbit, yes, always
	vpmuludq	$H2,$R0,$D2		# d2 = h2*r0
	 vpaddq		$H1,$T1,$H1		# accumulate input
	 vpaddq		$H3,$T3,$H3
	 vpaddq		$H4,$T4,$H4

	  vmovdqu64	16*0($inp),$T3		# load input
	  vmovdqu64	16*4($inp),$T4
	  lea		16*8($inp),$inp
	vpmuludq	$H0,$R3,$M3
	vpmuludq	$H0,$R4,$M4
	vpmuludq	$H0,$R0,$M0
	vpmuludq	$H0,$R1,$M1
	vpaddq		$M3,$D3,$D3		# d3 += h0*r3
	vpaddq		$M4,$D4,$D4		# d4 += h0*r4
	vpaddq		$M0,$D0,$D0		# d0 += h0*r0
	vpaddq		$M1,$D1,$D1		# d1 += h0*r1

	vpmuludq	$H1,$R2,$M3
	vpmuludq	$H1,$R3,$M4
	vpmuludq	$H1,$S4,$M0
	vpmuludq	$H0,$R2,$M2
	vpaddq		$M3,$D3,$D3		# d3 += h1*r2
	vpaddq		$M4,$D4,$D4		# d4 += h1*r3
	vpaddq		$M0,$D0,$D0		# d0 += h1*s4
	vpaddq		$M2,$D2,$D2		# d2 += h0*r2

	  vpunpcklqdq	$T4,$T3,$T0		# transpose input
	  vpunpckhqdq	$T4,$T3,$T4

	vpmuludq	$H3,$R0,$M3
	vpmuludq	$H3,$R1,$M4
	vpmuludq	$H1,$R0,$M1
	vpmuludq	$H1,$R1,$M2
	vpaddq		$M3,$D3,$D3		# d3 += h3*r0
	vpaddq		$M4,$D4,$D4		# d4 += h3*r1
	vpaddq		$M1,$D1,$D1		# d1 += h1*r0
	vpaddq		$M2,$D2,$D2		# d2 += h1*r1

	vpmuludq	$H4,$S4,$M3
	vpmuludq	$H4,$R0,$M4
	vpmuludq	$H3,$S2,$M0
	vpmuludq	$H3,$S3,$M1
	vpaddq		$M3,$D3,$D3		# d3 += h4*s4
	vpmuludq	$H3,$S4,$M2
	vpaddq		$M4,$D4,$D4		# d4 += h4*r0
	vpaddq		$M0,$D0,$D0		# d0 += h3*s2
	vpaddq		$M1,$D1,$D1		# d1 += h3*s3
	vpaddq		$M2,$D2,$D2		# d2 += h3*s4

	vpmuludq	$H4,$S1,$M0
	vpmuludq	$H4,$S2,$M1
	vpmuludq	$H4,$S3,$M2
	vpaddq		$M0,$D0,$H0		# h0 = d0 + h4*s1
	vpaddq		$M1,$D1,$H1		# h1 = d2 + h4*s2
	vpaddq		$M2,$D2,$H2		# h2 = d3 + h4*s3

	################################################################
	# lazy reduction (interleaved with input splat)

	 vpsrlq		\$52,$T0,$T2		# splat input
	 vpsllq		\$12,$T4,$T3

	vpsrlq		\$26,$D3,$H3
	vpandq		$MASK,$D3,$D3
	vpaddq		$H3,$D4,$H4		# h3 -> h4

	 vporq		$T3,$T2,$T2

	vpsrlq		\$26,$H0,$D0
	vpandq		$MASK,$H0,$H0
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	 vpandq		$MASK,$T2,$T2		# 2

	vpsrlq		\$26,$H4,$D4
	vpandq		$MASK,$H4,$H4

	vpsrlq		\$26,$H1,$D1
	vpandq		$MASK,$H1,$H1
	vpaddq		$D1,$H2,$H2		# h1 -> h2

	vpaddq		$D4,$H0,$H0
	vpsllq		\$2,$D4,$D4
	vpaddq		$D4,$H0,$H0		# h4 -> h0

	 vpaddq		$T2,$H2,$H2		# modulo-scheduled
	 vpsrlq		\$26,$T0,$T1

	vpsrlq		\$26,$H2,$D2
	vpandq		$MASK,$H2,$H2
	vpaddq		$D2,$D3,$H3		# h2 -> h3

	 vpsrlq		\$14,$T4,$T3

	vpsrlq		\$26,$H0,$D0
	vpandq		$MASK,$H0,$H0
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	 vpsrlq		\$40,$T4,$T4		# 4

	vpsrlq		\$26,$H3,$D3
	vpandq		$MASK,$H3,$H3
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	 vpandq		$MASK,$T0,$T0		# 0
	 #vpandq	$MASK,$T1,$T1		# 1
	 #vpandq	$MASK,$T3,$T3		# 3
	 #vporq		$PADBIT,$T4,$T4		# padbit, yes, always

	sub		\$128,$len
	ja		.Loop_avx512

.Ltail_avx512:
	################################################################
	# while above multiplications were by r^8 in all lanes, in last
	# iteration we multiply least significant lane by r^8 and most
	# significant one by r, that's why table gets shifted...

	vpsrlq		\$32,$R0,$R0		# 0105020603070408
	vpsrlq		\$32,$R1,$R1
	vpsrlq		\$32,$R2,$R2
	vpsrlq		\$32,$S3,$S3
	vpsrlq		\$32,$S4,$S4
	vpsrlq		\$32,$R3,$R3
	vpsrlq		\$32,$R4,$R4
	vpsrlq		\$32,$S1,$S1
	vpsrlq		\$32,$S2,$S2

	################################################################
	# load either next or last 64 byte of input
	lea		($inp,$len),$inp

	#vpaddq		$H2,$T2,$H2		# accumulate input
	vpaddq		$H0,$T0,$H0

	vpmuludq	$H2,$R1,$D3		# d3 = h2*r1
	vpmuludq	$H2,$R2,$D4		# d4 = h2*r2
	vpmuludq	$H2,$S3,$D0		# d0 = h2*s3
	 vpandq		$MASK,$T1,$T1		# 1
	vpmuludq	$H2,$S4,$D1		# d1 = h2*s4
	 vpandq		$MASK,$T3,$T3		# 3
	vpmuludq	$H2,$R0,$D2		# d2 = h2*r0
	 vporq		$PADBIT,$T4,$T4		# padbit, yes, always
	 vpaddq		$H1,$T1,$H1		# accumulate input
	 vpaddq		$H3,$T3,$H3
	 vpaddq		$H4,$T4,$H4

	  vmovdqu	16*0($inp),%x#$T0
	vpmuludq	$H0,$R3,$M3
	vpmuludq	$H0,$R4,$M4
	vpmuludq	$H0,$R0,$M0
	vpmuludq	$H0,$R1,$M1
	vpaddq		$M3,$D3,$D3		# d3 += h0*r3
	vpaddq		$M4,$D4,$D4		# d4 += h0*r4
	vpaddq		$M0,$D0,$D0		# d0 += h0*r0
	vpaddq		$M1,$D1,$D1		# d1 += h0*r1

	  vmovdqu	16*1($inp),%x#$T1
	vpmuludq	$H1,$R2,$M3
	vpmuludq	$H1,$R3,$M4
	vpmuludq	$H1,$S4,$M0
	vpmuludq	$H0,$R2,$M2
	vpaddq		$M3,$D3,$D3		# d3 += h1*r2
	vpaddq		$M4,$D4,$D4		# d4 += h1*r3
	vpaddq		$M0,$D0,$D0		# d0 += h1*s4
	vpaddq		$M2,$D2,$D2		# d2 += h0*r2

	  vinserti128	\$1,16*2($inp),%y#$T0,%y#$T0
	vpmuludq	$H3,$R0,$M3
	vpmuludq	$H3,$R1,$M4
	vpmuludq	$H1,$R0,$M1
	vpmuludq	$H1,$R1,$M2
	vpaddq		$M3,$D3,$D3		# d3 += h3*r0
	vpaddq		$M4,$D4,$D4		# d4 += h3*r1
	vpaddq		$M1,$D1,$D1		# d1 += h1*r0
	vpaddq		$M2,$D2,$D2		# d2 += h1*r1

	  vinserti128	\$1,16*3($inp),%y#$T1,%y#$T1
	vpmuludq	$H4,$S4,$M3
	vpmuludq	$H4,$R0,$M4
	vpmuludq	$H3,$S2,$M0
	vpmuludq	$H3,$S3,$M1
	vpmuludq	$H3,$S4,$M2
	vpaddq		$M3,$D3,$H3		# h3 = d3 + h4*s4
	vpaddq		$M4,$D4,$D4		# d4 += h4*r0
	vpaddq		$M0,$D0,$D0		# d0 += h3*s2
	vpaddq		$M1,$D1,$D1		# d1 += h3*s3
	vpaddq		$M2,$D2,$D2		# d2 += h3*s4

	vpmuludq	$H4,$S1,$M0
	vpmuludq	$H4,$S2,$M1
	vpmuludq	$H4,$S3,$M2
	vpaddq		$M0,$D0,$H0		# h0 = d0 + h4*s1
	vpaddq		$M1,$D1,$H1		# h1 = d2 + h4*s2
	vpaddq		$M2,$D2,$H2		# h2 = d3 + h4*s3

	################################################################
	# horizontal addition

	mov		\$1,%eax
	vpermq		\$0xb1,$H3,$D3
	vpermq		\$0xb1,$D4,$H4
	vpermq		\$0xb1,$H0,$D0
	vpermq		\$0xb1,$H1,$D1
	vpermq		\$0xb1,$H2,$D2
	vpaddq		$D3,$H3,$H3
	vpaddq		$D4,$H4,$H4
	vpaddq		$D0,$H0,$H0
	vpaddq		$D1,$H1,$H1
	vpaddq		$D2,$H2,$H2

	kmovw		%eax,%k3
	vpermq		\$0x2,$H3,$D3
	vpermq		\$0x2,$H4,$D4
	vpermq		\$0x2,$H0,$D0
	vpermq		\$0x2,$H1,$D1
	vpermq		\$0x2,$H2,$D2
	vpaddq		$D3,$H3,$H3
	vpaddq		$D4,$H4,$H4
	vpaddq		$D0,$H0,$H0
	vpaddq		$D1,$H1,$H1
	vpaddq		$D2,$H2,$H2

	vextracti64x4	\$0x1,$H3,%y#$D3
	vextracti64x4	\$0x1,$H4,%y#$D4
	vextracti64x4	\$0x1,$H0,%y#$D0
	vextracti64x4	\$0x1,$H1,%y#$D1
	vextracti64x4	\$0x1,$H2,%y#$D2
	vpaddq		$D3,$H3,${H3}{%k3}{z}	# keep single qword in case
	vpaddq		$D4,$H4,${H4}{%k3}{z}	# it's passed to .Ltail_avx2
	vpaddq		$D0,$H0,${H0}{%k3}{z}
	vpaddq		$D1,$H1,${H1}{%k3}{z}
	vpaddq		$D2,$H2,${H2}{%k3}{z}
___
map(s/%z/%y/,($T0,$T1,$T2,$T3,$T4, $PADBIT));
map(s/%z/%y/,($H0,$H1,$H2,$H3,$H4, $D0,$D1,$D2,$D3,$D4, $MASK));
$code.=<<___;
	################################################################
	# lazy reduction (interleaved with input splat)

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	 vpsrldq	\$6,$T0,$T2		# splat input
	 vpsrldq	\$6,$T1,$T3
	 vpunpckhqdq	$T1,$T0,$T4		# 4
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	 vpunpcklqdq	$T3,$T2,$T2		# 2:3
	 vpunpcklqdq	$T1,$T0,$T0		# 0:1
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	vpsrlq		\$26,$H4,$D4
	vpand		$MASK,$H4,$H4

	vpsrlq		\$26,$H1,$D1
	vpand		$MASK,$H1,$H1
	 vpsrlq		\$30,$T2,$T3
	 vpsrlq		\$4,$T2,$T2
	vpaddq		$D1,$H2,$H2		# h1 -> h2

	vpaddq		$D4,$H0,$H0
	vpsllq		\$2,$D4,$D4
	 vpsrlq		\$26,$T0,$T1
	 vpsrlq		\$40,$T4,$T4		# 4
	vpaddq		$D4,$H0,$H0		# h4 -> h0

	vpsrlq		\$26,$H2,$D2
	vpand		$MASK,$H2,$H2
	 vpand		$MASK,$T2,$T2		# 2
	 vpand		$MASK,$T0,$T0		# 0
	vpaddq		$D2,$H3,$H3		# h2 -> h3

	vpsrlq		\$26,$H0,$D0
	vpand		$MASK,$H0,$H0
	 vpaddq		$H2,$T2,$H2		# accumulate input for .Ltail_avx2
	 vpand		$MASK,$T1,$T1		# 1
	vpaddq		$D0,$H1,$H1		# h0 -> h1

	vpsrlq		\$26,$H3,$D3
	vpand		$MASK,$H3,$H3
	 vpand		$MASK,$T3,$T3		# 3
	 vpor		32(%rcx),$T4,$T4	# padbit, yes, always
	vpaddq		$D3,$H4,$H4		# h3 -> h4

	lea		0x90(%rsp),%rax		# size optimization for .Ltail_avx2
	add		\$64,$len
	jnz		.Ltail_avx2

	vpsubq		$T2,$H2,$H2		# undo input accumulation
	vmovd		%x#$H0,`4*0-48-64`($ctx)# save partially reduced
	vmovd		%x#$H1,`4*1-48-64`($ctx)
	vmovd		%x#$H2,`4*2-48-64`($ctx)
	vmovd		%x#$H3,`4*3-48-64`($ctx)
	vmovd		%x#$H4,`4*4-48-64`($ctx)
	vzeroall
___
$code.=<<___	if ($win64);
	movdqa		0x50(%r11),%xmm6
	movdqa		0x60(%r11),%xmm7
	movdqa		0x70(%r11),%xmm8
	movdqa		0x80(%r11),%xmm9
	movdqa		0x90(%r11),%xmm10
	movdqa		0xa0(%r11),%xmm11
	movdqa		0xb0(%r11),%xmm12
	movdqa		0xc0(%r11),%xmm13
	movdqa		0xd0(%r11),%xmm14
	movdqa		0xe0(%r11),%xmm15
	lea		0xf8(%r11),%rsp
.Ldo_avx512_epilogue:
___
$code.=<<___	if (!$win64);
	lea		8(%r11),%rsp
.cfi_def_cfa		%rsp,8
___
$code.=<<___;
	ret
.cfi_endproc
.size	poly1305_blocks_avx512,.-poly1305_blocks_avx512
___
if ($avx>3 && !$win64) {
########################################################################
# VPMADD52 version using 2^44 radix.
#
# One can argue that base 2^52 would be more natural. Well, even though
# some operations would be more natural, one has to recognize couple of
# things. Base 2^52 doesn't provide advantage over base 2^44 if you look
# at amount of multiply-n-accumulate operations. Secondly, it makes it
# impossible to pre-compute multiples of 5 [referred to as s[]/sN in
# reference implementations], which means that more such operations
# would have to be performed in inner loop, which in turn makes critical
# path longer. In other words, even though base 2^44 reduction might
# look less elegant, overall critical path is actually shorter...

########################################################################
# Layout of opaque area is following.
#
#	unsigned __int64 h[3];		# current hash value base 2^44
#	unsigned __int64 s[2];		# key value*20 base 2^44
#	unsigned __int64 r[3];		# key value base 2^44
#	struct { unsigned __int64 r^1, r^3, r^2, r^4; } R[4];
#					# r^n positions reflect
#					# placement in register, not
#					# memory, R[3] is R[1]*20

$code.=<<___;
.type	poly1305_init_base2_44,\@function,3
.align	32
poly1305_init_base2_44:
.cfi_startproc
	xor	%rax,%rax
	mov	%rax,0($ctx)		# initialize hash value
	mov	%rax,8($ctx)
	mov	%rax,16($ctx)

.Linit_base2_44:
	lea	poly1305_blocks_vpmadd52(%rip),%r10
	lea	poly1305_emit_base2_44(%rip),%r11

	mov	\$0x0ffffffc0fffffff,%rax
	mov	\$0x0ffffffc0ffffffc,%rcx
	and	0($inp),%rax
	mov	\$0x00000fffffffffff,%r8
	and	8($inp),%rcx
	mov	\$0x00000fffffffffff,%r9
	and	%rax,%r8
	shrd	\$44,%rcx,%rax
	mov	%r8,40($ctx)		# r0
	and	%r9,%rax
	shr	\$24,%rcx
	mov	%rax,48($ctx)		# r1
	lea	(%rax,%rax,4),%rax	# *5
	mov	%rcx,56($ctx)		# r2
	shl	\$2,%rax		# magic <<2
	lea	(%rcx,%rcx,4),%rcx	# *5
	shl	\$2,%rcx		# magic <<2
	mov	%rax,24($ctx)		# s1
	mov	%rcx,32($ctx)		# s2
	movq	\$-1,64($ctx)		# write impossible value
___
$code.=<<___	if ($flavour !~ /elf32/);
	mov	%r10,0(%rdx)
	mov	%r11,8(%rdx)
___
$code.=<<___	if ($flavour =~ /elf32/);
	mov	%r10d,0(%rdx)
	mov	%r11d,4(%rdx)
___
$code.=<<___;
	mov	\$1,%eax
	ret
.cfi_endproc
.size	poly1305_init_base2_44,.-poly1305_init_base2_44
___
{
my ($H0,$H1,$H2,$r2r1r0,$r1r0s2,$r0s2s1,$Dlo,$Dhi) = map("%ymm$_",(0..5,16,17));
my ($T0,$inp_permd,$inp_shift,$PAD) = map("%ymm$_",(18..21));
my ($reduc_mask,$reduc_rght,$reduc_left) = map("%ymm$_",(22..25));

$code.=<<___;
.type	poly1305_blocks_vpmadd52,\@function,4
.align	32
poly1305_blocks_vpmadd52:
.cfi_startproc
	shr	\$4,$len
	jz	.Lno_data_vpmadd52		# too short

	shl	\$40,$padbit
	mov	64($ctx),%r8			# peek on power of the key

	# if powers of the key are not calculated yet, process up to 3
	# blocks with this single-block subroutine, otherwise ensure that
	# length is divisible by 2 blocks and pass the rest down to next
	# subroutine...

	mov	\$3,%rax
	mov	\$1,%r10
	cmp	\$4,$len			# is input long
	cmovae	%r10,%rax
	test	%r8,%r8				# is power value impossible?
	cmovns	%r10,%rax

	and	$len,%rax			# is input of favourable length?
	jz	.Lblocks_vpmadd52_4x

	sub		%rax,$len
	mov		\$7,%r10d
	mov		\$1,%r11d
	kmovw		%r10d,%k7
	lea		.L2_44_inp_permd(%rip),%r10
	kmovw		%r11d,%k1

	vmovq		$padbit,%x#$PAD
	vmovdqa64	0(%r10),$inp_permd	# .L2_44_inp_permd
	vmovdqa64	32(%r10),$inp_shift	# .L2_44_inp_shift
	vpermq		\$0xcf,$PAD,$PAD
	vmovdqa64	64(%r10),$reduc_mask	# .L2_44_mask

	vmovdqu64	0($ctx),${Dlo}{%k7}{z}		# load hash value
	vmovdqu64	40($ctx),${r2r1r0}{%k7}{z}	# load keys
	vmovdqu64	32($ctx),${r1r0s2}{%k7}{z}
	vmovdqu64	24($ctx),${r0s2s1}{%k7}{z}

	vmovdqa64	96(%r10),$reduc_rght	# .L2_44_shift_rgt
	vmovdqa64	128(%r10),$reduc_left	# .L2_44_shift_lft

	jmp		.Loop_vpmadd52

.align	32
.Loop_vpmadd52:
	vmovdqu32	0($inp),%x#$T0		# load input as ----3210
	lea		16($inp),$inp

	vpermd		$T0,$inp_permd,$T0	# ----3210 -> --322110
	vpsrlvq		$inp_shift,$T0,$T0
	vpandq		$reduc_mask,$T0,$T0
	vporq		$PAD,$T0,$T0

	vpaddq		$T0,$Dlo,$Dlo		# accumulate input

	vpermq		\$0,$Dlo,${H0}{%k7}{z}	# smash hash value
	vpermq		\$0b01010101,$Dlo,${H1}{%k7}{z}
	vpermq		\$0b10101010,$Dlo,${H2}{%k7}{z}

	vpxord		$Dlo,$Dlo,$Dlo
	vpxord		$Dhi,$Dhi,$Dhi

	vpmadd52luq	$r2r1r0,$H0,$Dlo
	vpmadd52huq	$r2r1r0,$H0,$Dhi

	vpmadd52luq	$r1r0s2,$H1,$Dlo
	vpmadd52huq	$r1r0s2,$H1,$Dhi

	vpmadd52luq	$r0s2s1,$H2,$Dlo
	vpmadd52huq	$r0s2s1,$H2,$Dhi

	vpsrlvq		$reduc_rght,$Dlo,$T0	# 0 in topmost qword
	vpsllvq		$reduc_left,$Dhi,$Dhi	# 0 in topmost qword
	vpandq		$reduc_mask,$Dlo,$Dlo

	vpaddq		$T0,$Dhi,$Dhi

	vpermq		\$0b10010011,$Dhi,$Dhi	# 0 in lowest qword

	vpaddq		$Dhi,$Dlo,$Dlo		# note topmost qword :-)

	vpsrlvq		$reduc_rght,$Dlo,$T0	# 0 in topmost word
	vpandq		$reduc_mask,$Dlo,$Dlo

	vpermq		\$0b10010011,$T0,$T0

	vpaddq		$T0,$Dlo,$Dlo

	vpermq		\$0b10010011,$Dlo,${T0}{%k1}{z}

	vpaddq		$T0,$Dlo,$Dlo
	vpsllq		\$2,$T0,$T0

	vpaddq		$T0,$Dlo,$Dlo

	dec		%rax			# len-=16
	jnz		.Loop_vpmadd52

	vmovdqu64	$Dlo,0($ctx){%k7}	# store hash value

	test		$len,$len
	jnz		.Lblocks_vpmadd52_4x

.Lno_data_vpmadd52:
	ret
.cfi_endproc
.size	poly1305_blocks_vpmadd52,.-poly1305_blocks_vpmadd52
___
}
{
########################################################################
# As implied by its name 4x subroutine processes 4 blocks in parallel
# (but handles even 4*n+2 blocks lengths). It takes up to 4th key power
# and is handled in 256-bit %ymm registers.

my ($H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2) = map("%ymm$_",(0..5,16,17));
my ($D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi) = map("%ymm$_",(18..23));
my ($T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD) = map("%ymm$_",(24..31));

$code.=<<___;
.type	poly1305_blocks_vpmadd52_4x,\@function,4
.align	32
poly1305_blocks_vpmadd52_4x:
.cfi_startproc
	shr	\$4,$len
	jz	.Lno_data_vpmadd52_4x		# too short

	shl	\$40,$padbit
	mov	64($ctx),%r8			# peek on power of the key

.Lblocks_vpmadd52_4x:
	vpbroadcastq	$padbit,$PAD

	vmovdqa64	.Lx_mask44(%rip),$mask44
	mov		\$5,%eax
	vmovdqa64	.Lx_mask42(%rip),$mask42
	kmovw		%eax,%k1		# used in 2x path

	test		%r8,%r8			# is power value impossible?
	js		.Linit_vpmadd52		# if it is, then init R[4]

	vmovq		0($ctx),%x#$H0		# load current hash value
	vmovq		8($ctx),%x#$H1
	vmovq		16($ctx),%x#$H2

	test		\$3,$len		# is length 4*n+2?
	jnz		.Lblocks_vpmadd52_2x_do

.Lblocks_vpmadd52_4x_do:
	vpbroadcastq	64($ctx),$R0		# load 4th power of the key
	vpbroadcastq	96($ctx),$R1
	vpbroadcastq	128($ctx),$R2
	vpbroadcastq	160($ctx),$S1

.Lblocks_vpmadd52_4x_key_loaded:
	vpsllq		\$2,$R2,$S2		# S2 = R2*5*4
	vpaddq		$R2,$S2,$S2
	vpsllq		\$2,$S2,$S2

	test		\$7,$len		# is len 8*n?
	jz		.Lblocks_vpmadd52_8x

	vmovdqu64	16*0($inp),$T2		# load data
	vmovdqu64	16*2($inp),$T3
	lea		16*4($inp),$inp

	vpunpcklqdq	$T3,$T2,$T1		# transpose data
	vpunpckhqdq	$T3,$T2,$T3

	# at this point 64-bit lanes are ordered as 3-1-2-0

	vpsrlq		\$24,$T3,$T2		# splat the data
	vporq		$PAD,$T2,$T2
	 vpaddq		$T2,$H2,$H2		# accumulate input
	vpandq		$mask44,$T1,$T0
	vpsrlq		\$44,$T1,$T1
	vpsllq		\$20,$T3,$T3
	vporq		$T3,$T1,$T1
	vpandq		$mask44,$T1,$T1

	sub		\$4,$len
	jz		.Ltail_vpmadd52_4x
	jmp		.Loop_vpmadd52_4x
	ud2

.align	32
.Linit_vpmadd52:
	vmovq		24($ctx),%x#$S1		# load key
	vmovq		56($ctx),%x#$H2
	vmovq		32($ctx),%x#$S2
	vmovq		40($ctx),%x#$R0
	vmovq		48($ctx),%x#$R1

	vmovdqa		$R0,$H0
	vmovdqa		$R1,$H1
	vmovdqa		$H2,$R2

	mov		\$2,%eax

.Lmul_init_vpmadd52:
	vpxorq		$D0lo,$D0lo,$D0lo
	vpmadd52luq	$H2,$S1,$D0lo
	vpxorq		$D0hi,$D0hi,$D0hi
	vpmadd52huq	$H2,$S1,$D0hi
	vpxorq		$D1lo,$D1lo,$D1lo
	vpmadd52luq	$H2,$S2,$D1lo
	vpxorq		$D1hi,$D1hi,$D1hi
	vpmadd52huq	$H2,$S2,$D1hi
	vpxorq		$D2lo,$D2lo,$D2lo
	vpmadd52luq	$H2,$R0,$D2lo
	vpxorq		$D2hi,$D2hi,$D2hi
	vpmadd52huq	$H2,$R0,$D2hi

	vpmadd52luq	$H0,$R0,$D0lo
	vpmadd52huq	$H0,$R0,$D0hi
	vpmadd52luq	$H0,$R1,$D1lo
	vpmadd52huq	$H0,$R1,$D1hi
	vpmadd52luq	$H0,$R2,$D2lo
	vpmadd52huq	$H0,$R2,$D2hi

	vpmadd52luq	$H1,$S2,$D0lo
	vpmadd52huq	$H1,$S2,$D0hi
	vpmadd52luq	$H1,$R0,$D1lo
	vpmadd52huq	$H1,$R0,$D1hi
	vpmadd52luq	$H1,$R1,$D2lo
	vpmadd52huq	$H1,$R1,$D2hi

	################################################################
	# partial reduction
	vpsrlq		\$44,$D0lo,$tmp
	vpsllq		\$8,$D0hi,$D0hi
	vpandq		$mask44,$D0lo,$H0
	vpaddq		$tmp,$D0hi,$D0hi

	vpaddq		$D0hi,$D1lo,$D1lo

	vpsrlq		\$44,$D1lo,$tmp
	vpsllq		\$8,$D1hi,$D1hi
	vpandq		$mask44,$D1lo,$H1
	vpaddq		$tmp,$D1hi,$D1hi

	vpaddq		$D1hi,$D2lo,$D2lo

	vpsrlq		\$42,$D2lo,$tmp
	vpsllq		\$10,$D2hi,$D2hi
	vpandq		$mask42,$D2lo,$H2
	vpaddq		$tmp,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0
	vpsllq		\$2,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0

	vpsrlq		\$44,$H0,$tmp		# additional step
	vpandq		$mask44,$H0,$H0

	vpaddq		$tmp,$H1,$H1

	dec		%eax
	jz		.Ldone_init_vpmadd52

	vpunpcklqdq	$R1,$H1,$R1		# 1,2
	vpbroadcastq	%x#$H1,%x#$H1		# 2,2
	vpunpcklqdq	$R2,$H2,$R2
	vpbroadcastq	%x#$H2,%x#$H2
	vpunpcklqdq	$R0,$H0,$R0
	vpbroadcastq	%x#$H0,%x#$H0

	vpsllq		\$2,$R1,$S1		# S1 = R1*5*4
	vpsllq		\$2,$R2,$S2		# S2 = R2*5*4
	vpaddq		$R1,$S1,$S1
	vpaddq		$R2,$S2,$S2
	vpsllq		\$2,$S1,$S1
	vpsllq		\$2,$S2,$S2

	jmp		.Lmul_init_vpmadd52
	ud2

.align	32
.Ldone_init_vpmadd52:
	vinserti128	\$1,%x#$R1,$H1,$R1	# 1,2,3,4
	vinserti128	\$1,%x#$R2,$H2,$R2
	vinserti128	\$1,%x#$R0,$H0,$R0

	vpermq		\$0b11011000,$R1,$R1	# 1,3,2,4
	vpermq		\$0b11011000,$R2,$R2
	vpermq		\$0b11011000,$R0,$R0

	vpsllq		\$2,$R1,$S1		# S1 = R1*5*4
	vpaddq		$R1,$S1,$S1
	vpsllq		\$2,$S1,$S1

	vmovq		0($ctx),%x#$H0		# load current hash value
	vmovq		8($ctx),%x#$H1
	vmovq		16($ctx),%x#$H2

	test		\$3,$len		# is length 4*n+2?
	jnz		.Ldone_init_vpmadd52_2x

	vmovdqu64	$R0,64($ctx)		# save key powers
	vpbroadcastq	%x#$R0,$R0		# broadcast 4th power
	vmovdqu64	$R1,96($ctx)
	vpbroadcastq	%x#$R1,$R1
	vmovdqu64	$R2,128($ctx)
	vpbroadcastq	%x#$R2,$R2
	vmovdqu64	$S1,160($ctx)
	vpbroadcastq	%x#$S1,$S1

	jmp		.Lblocks_vpmadd52_4x_key_loaded
	ud2

.align	32
.Ldone_init_vpmadd52_2x:
	vmovdqu64	$R0,64($ctx)		# save key powers
	vpsrldq		\$8,$R0,$R0		# 0-1-0-2
	vmovdqu64	$R1,96($ctx)
	vpsrldq		\$8,$R1,$R1
	vmovdqu64	$R2,128($ctx)
	vpsrldq		\$8,$R2,$R2
	vmovdqu64	$S1,160($ctx)
	vpsrldq		\$8,$S1,$S1
	jmp		.Lblocks_vpmadd52_2x_key_loaded
	ud2

.align	32
.Lblocks_vpmadd52_2x_do:
	vmovdqu64	128+8($ctx),${R2}{%k1}{z}# load 2nd and 1st key powers
	vmovdqu64	160+8($ctx),${S1}{%k1}{z}
	vmovdqu64	64+8($ctx),${R0}{%k1}{z}
	vmovdqu64	96+8($ctx),${R1}{%k1}{z}

.Lblocks_vpmadd52_2x_key_loaded:
	vmovdqu64	16*0($inp),$T2		# load data
	vpxorq		$T3,$T3,$T3
	lea		16*2($inp),$inp

	vpunpcklqdq	$T3,$T2,$T1		# transpose data
	vpunpckhqdq	$T3,$T2,$T3

	# at this point 64-bit lanes are ordered as x-1-x-0

	vpsrlq		\$24,$T3,$T2		# splat the data
	vporq		$PAD,$T2,$T2
	 vpaddq		$T2,$H2,$H2		# accumulate input
	vpandq		$mask44,$T1,$T0
	vpsrlq		\$44,$T1,$T1
	vpsllq		\$20,$T3,$T3
	vporq		$T3,$T1,$T1
	vpandq		$mask44,$T1,$T1

	jmp		.Ltail_vpmadd52_2x
	ud2

.align	32
.Loop_vpmadd52_4x:
	#vpaddq		$T2,$H2,$H2		# accumulate input
	vpaddq		$T0,$H0,$H0
	vpaddq		$T1,$H1,$H1

	vpxorq		$D0lo,$D0lo,$D0lo
	vpmadd52luq	$H2,$S1,$D0lo
	vpxorq		$D0hi,$D0hi,$D0hi
	vpmadd52huq	$H2,$S1,$D0hi
	vpxorq		$D1lo,$D1lo,$D1lo
	vpmadd52luq	$H2,$S2,$D1lo
	vpxorq		$D1hi,$D1hi,$D1hi
	vpmadd52huq	$H2,$S2,$D1hi
	vpxorq		$D2lo,$D2lo,$D2lo
	vpmadd52luq	$H2,$R0,$D2lo
	vpxorq		$D2hi,$D2hi,$D2hi
	vpmadd52huq	$H2,$R0,$D2hi

	 vmovdqu64	16*0($inp),$T2		# load data
	 vmovdqu64	16*2($inp),$T3
	 lea		16*4($inp),$inp
	vpmadd52luq	$H0,$R0,$D0lo
	vpmadd52huq	$H0,$R0,$D0hi
	vpmadd52luq	$H0,$R1,$D1lo
	vpmadd52huq	$H0,$R1,$D1hi
	vpmadd52luq	$H0,$R2,$D2lo
	vpmadd52huq	$H0,$R2,$D2hi

	 vpunpcklqdq	$T3,$T2,$T1		# transpose data
	 vpunpckhqdq	$T3,$T2,$T3
	vpmadd52luq	$H1,$S2,$D0lo
	vpmadd52huq	$H1,$S2,$D0hi
	vpmadd52luq	$H1,$R0,$D1lo
	vpmadd52huq	$H1,$R0,$D1hi
	vpmadd52luq	$H1,$R1,$D2lo
	vpmadd52huq	$H1,$R1,$D2hi

	################################################################
	# partial reduction (interleaved with data splat)
	vpsrlq		\$44,$D0lo,$tmp
	vpsllq		\$8,$D0hi,$D0hi
	vpandq		$mask44,$D0lo,$H0
	vpaddq		$tmp,$D0hi,$D0hi

	 vpsrlq		\$24,$T3,$T2
	 vporq		$PAD,$T2,$T2
	vpaddq		$D0hi,$D1lo,$D1lo

	vpsrlq		\$44,$D1lo,$tmp
	vpsllq		\$8,$D1hi,$D1hi
	vpandq		$mask44,$D1lo,$H1
	vpaddq		$tmp,$D1hi,$D1hi

	 vpandq		$mask44,$T1,$T0
	 vpsrlq		\$44,$T1,$T1
	 vpsllq		\$20,$T3,$T3
	vpaddq		$D1hi,$D2lo,$D2lo

	vpsrlq		\$42,$D2lo,$tmp
	vpsllq		\$10,$D2hi,$D2hi
	vpandq		$mask42,$D2lo,$H2
	vpaddq		$tmp,$D2hi,$D2hi

	  vpaddq	$T2,$H2,$H2		# accumulate input
	vpaddq		$D2hi,$H0,$H0
	vpsllq		\$2,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0
	 vporq		$T3,$T1,$T1
	 vpandq		$mask44,$T1,$T1

	vpsrlq		\$44,$H0,$tmp		# additional step
	vpandq		$mask44,$H0,$H0

	vpaddq		$tmp,$H1,$H1

	sub		\$4,$len		# len-=64
	jnz		.Loop_vpmadd52_4x

.Ltail_vpmadd52_4x:
	vmovdqu64	128($ctx),$R2		# load all key powers
	vmovdqu64	160($ctx),$S1
	vmovdqu64	64($ctx),$R0
	vmovdqu64	96($ctx),$R1

.Ltail_vpmadd52_2x:
	vpsllq		\$2,$R2,$S2		# S2 = R2*5*4
	vpaddq		$R2,$S2,$S2
	vpsllq		\$2,$S2,$S2

	#vpaddq		$T2,$H2,$H2		# accumulate input
	vpaddq		$T0,$H0,$H0
	vpaddq		$T1,$H1,$H1

	vpxorq		$D0lo,$D0lo,$D0lo
	vpmadd52luq	$H2,$S1,$D0lo
	vpxorq		$D0hi,$D0hi,$D0hi
	vpmadd52huq	$H2,$S1,$D0hi
	vpxorq		$D1lo,$D1lo,$D1lo
	vpmadd52luq	$H2,$S2,$D1lo
	vpxorq		$D1hi,$D1hi,$D1hi
	vpmadd52huq	$H2,$S2,$D1hi
	vpxorq		$D2lo,$D2lo,$D2lo
	vpmadd52luq	$H2,$R0,$D2lo
	vpxorq		$D2hi,$D2hi,$D2hi
	vpmadd52huq	$H2,$R0,$D2hi

	vpmadd52luq	$H0,$R0,$D0lo
	vpmadd52huq	$H0,$R0,$D0hi
	vpmadd52luq	$H0,$R1,$D1lo
	vpmadd52huq	$H0,$R1,$D1hi
	vpmadd52luq	$H0,$R2,$D2lo
	vpmadd52huq	$H0,$R2,$D2hi

	vpmadd52luq	$H1,$S2,$D0lo
	vpmadd52huq	$H1,$S2,$D0hi
	vpmadd52luq	$H1,$R0,$D1lo
	vpmadd52huq	$H1,$R0,$D1hi
	vpmadd52luq	$H1,$R1,$D2lo
	vpmadd52huq	$H1,$R1,$D2hi

	################################################################
	# horizontal addition

	mov		\$1,%eax
	kmovw		%eax,%k1
	vpsrldq		\$8,$D0lo,$T0
	vpsrldq		\$8,$D0hi,$H0
	vpsrldq		\$8,$D1lo,$T1
	vpsrldq		\$8,$D1hi,$H1
	vpaddq		$T0,$D0lo,$D0lo
	vpaddq		$H0,$D0hi,$D0hi
	vpsrldq		\$8,$D2lo,$T2
	vpsrldq		\$8,$D2hi,$H2
	vpaddq		$T1,$D1lo,$D1lo
	vpaddq		$H1,$D1hi,$D1hi
	 vpermq		\$0x2,$D0lo,$T0
	 vpermq		\$0x2,$D0hi,$H0
	vpaddq		$T2,$D2lo,$D2lo
	vpaddq		$H2,$D2hi,$D2hi

	vpermq		\$0x2,$D1lo,$T1
	vpermq		\$0x2,$D1hi,$H1
	vpaddq		$T0,$D0lo,${D0lo}{%k1}{z}
	vpaddq		$H0,$D0hi,${D0hi}{%k1}{z}
	vpermq		\$0x2,$D2lo,$T2
	vpermq		\$0x2,$D2hi,$H2
	vpaddq		$T1,$D1lo,${D1lo}{%k1}{z}
	vpaddq		$H1,$D1hi,${D1hi}{%k1}{z}
	vpaddq		$T2,$D2lo,${D2lo}{%k1}{z}
	vpaddq		$H2,$D2hi,${D2hi}{%k1}{z}

	################################################################
	# partial reduction
	vpsrlq		\$44,$D0lo,$tmp
	vpsllq		\$8,$D0hi,$D0hi
	vpandq		$mask44,$D0lo,$H0
	vpaddq		$tmp,$D0hi,$D0hi

	vpaddq		$D0hi,$D1lo,$D1lo

	vpsrlq		\$44,$D1lo,$tmp
	vpsllq		\$8,$D1hi,$D1hi
	vpandq		$mask44,$D1lo,$H1
	vpaddq		$tmp,$D1hi,$D1hi

	vpaddq		$D1hi,$D2lo,$D2lo

	vpsrlq		\$42,$D2lo,$tmp
	vpsllq		\$10,$D2hi,$D2hi
	vpandq		$mask42,$D2lo,$H2
	vpaddq		$tmp,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0
	vpsllq		\$2,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0

	vpsrlq		\$44,$H0,$tmp		# additional step
	vpandq		$mask44,$H0,$H0

	vpaddq		$tmp,$H1,$H1
						# at this point $len is
						# either 4*n+2 or 0...
	sub		\$2,$len		# len-=32
	ja		.Lblocks_vpmadd52_4x_do

	vmovq		%x#$H0,0($ctx)
	vmovq		%x#$H1,8($ctx)
	vmovq		%x#$H2,16($ctx)
	vzeroall

.Lno_data_vpmadd52_4x:
	ret
.cfi_endproc
.size	poly1305_blocks_vpmadd52_4x,.-poly1305_blocks_vpmadd52_4x
___
}
{
########################################################################
# As implied by its name 8x subroutine processes 8 blocks in parallel...
# This is intermediate version, as it's used only in cases when input
# length is either 8*n, 8*n+1 or 8*n+2...

my ($H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2) = map("%ymm$_",(0..5,16,17));
my ($D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi) = map("%ymm$_",(18..23));
my ($T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD) = map("%ymm$_",(24..31));
my ($RR0,$RR1,$RR2,$SS1,$SS2) = map("%ymm$_",(6..10));

$code.=<<___;
.type	poly1305_blocks_vpmadd52_8x,\@function,4
.align	32
poly1305_blocks_vpmadd52_8x:
.cfi_startproc
	shr	\$4,$len
	jz	.Lno_data_vpmadd52_8x		# too short

	shl	\$40,$padbit
	mov	64($ctx),%r8			# peek on power of the key

	vmovdqa64	.Lx_mask44(%rip),$mask44
	vmovdqa64	.Lx_mask42(%rip),$mask42

	test	%r8,%r8				# is power value impossible?
	js	.Linit_vpmadd52			# if it is, then init R[4]

	vmovq	0($ctx),%x#$H0			# load current hash value
	vmovq	8($ctx),%x#$H1
	vmovq	16($ctx),%x#$H2

.Lblocks_vpmadd52_8x:
	################################################################
	# fist we calculate more key powers

	vmovdqu64	128($ctx),$R2		# load 1-3-2-4 powers
	vmovdqu64	160($ctx),$S1
	vmovdqu64	64($ctx),$R0
	vmovdqu64	96($ctx),$R1

	vpsllq		\$2,$R2,$S2		# S2 = R2*5*4
	vpaddq		$R2,$S2,$S2
	vpsllq		\$2,$S2,$S2

	vpbroadcastq	%x#$R2,$RR2		# broadcast 4th power
	vpbroadcastq	%x#$R0,$RR0
	vpbroadcastq	%x#$R1,$RR1

	vpxorq		$D0lo,$D0lo,$D0lo
	vpmadd52luq	$RR2,$S1,$D0lo
	vpxorq		$D0hi,$D0hi,$D0hi
	vpmadd52huq	$RR2,$S1,$D0hi
	vpxorq		$D1lo,$D1lo,$D1lo
	vpmadd52luq	$RR2,$S2,$D1lo
	vpxorq		$D1hi,$D1hi,$D1hi
	vpmadd52huq	$RR2,$S2,$D1hi
	vpxorq		$D2lo,$D2lo,$D2lo
	vpmadd52luq	$RR2,$R0,$D2lo
	vpxorq		$D2hi,$D2hi,$D2hi
	vpmadd52huq	$RR2,$R0,$D2hi

	vpmadd52luq	$RR0,$R0,$D0lo
	vpmadd52huq	$RR0,$R0,$D0hi
	vpmadd52luq	$RR0,$R1,$D1lo
	vpmadd52huq	$RR0,$R1,$D1hi
	vpmadd52luq	$RR0,$R2,$D2lo
	vpmadd52huq	$RR0,$R2,$D2hi

	vpmadd52luq	$RR1,$S2,$D0lo
	vpmadd52huq	$RR1,$S2,$D0hi
	vpmadd52luq	$RR1,$R0,$D1lo
	vpmadd52huq	$RR1,$R0,$D1hi
	vpmadd52luq	$RR1,$R1,$D2lo
	vpmadd52huq	$RR1,$R1,$D2hi

	################################################################
	# partial reduction
	vpsrlq		\$44,$D0lo,$tmp
	vpsllq		\$8,$D0hi,$D0hi
	vpandq		$mask44,$D0lo,$RR0
	vpaddq		$tmp,$D0hi,$D0hi

	vpaddq		$D0hi,$D1lo,$D1lo

	vpsrlq		\$44,$D1lo,$tmp
	vpsllq		\$8,$D1hi,$D1hi
	vpandq		$mask44,$D1lo,$RR1
	vpaddq		$tmp,$D1hi,$D1hi

	vpaddq		$D1hi,$D2lo,$D2lo

	vpsrlq		\$42,$D2lo,$tmp
	vpsllq		\$10,$D2hi,$D2hi
	vpandq		$mask42,$D2lo,$RR2
	vpaddq		$tmp,$D2hi,$D2hi

	vpaddq		$D2hi,$RR0,$RR0
	vpsllq		\$2,$D2hi,$D2hi

	vpaddq		$D2hi,$RR0,$RR0

	vpsrlq		\$44,$RR0,$tmp		# additional step
	vpandq		$mask44,$RR0,$RR0

	vpaddq		$tmp,$RR1,$RR1

	################################################################
	# At this point Rx holds 1324 powers, RRx - 5768, and the goal
	# is 15263748, which reflects how data is loaded...

	vpunpcklqdq	$R2,$RR2,$T2		# 3748
	vpunpckhqdq	$R2,$RR2,$R2		# 1526
	vpunpcklqdq	$R0,$RR0,$T0
	vpunpckhqdq	$R0,$RR0,$R0
	vpunpcklqdq	$R1,$RR1,$T1
	vpunpckhqdq	$R1,$RR1,$R1
___
######## switch to %zmm
map(s/%y/%z/, $H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2);
map(s/%y/%z/, $D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi);
map(s/%y/%z/, $T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD);
map(s/%y/%z/, $RR0,$RR1,$RR2,$SS1,$SS2);

$code.=<<___;
	vshufi64x2	\$0x44,$R2,$T2,$RR2	# 15263748
	vshufi64x2	\$0x44,$R0,$T0,$RR0
	vshufi64x2	\$0x44,$R1,$T1,$RR1

	vmovdqu64	16*0($inp),$T2		# load data
	vmovdqu64	16*4($inp),$T3
	lea		16*8($inp),$inp

	vpsllq		\$2,$RR2,$SS2		# S2 = R2*5*4
	vpsllq		\$2,$RR1,$SS1		# S1 = R1*5*4
	vpaddq		$RR2,$SS2,$SS2
	vpaddq		$RR1,$SS1,$SS1
	vpsllq		\$2,$SS2,$SS2
	vpsllq		\$2,$SS1,$SS1

	vpbroadcastq	$padbit,$PAD
	vpbroadcastq	%x#$mask44,$mask44
	vpbroadcastq	%x#$mask42,$mask42

	vpbroadcastq	%x#$SS1,$S1		# broadcast 8th power
	vpbroadcastq	%x#$SS2,$S2
	vpbroadcastq	%x#$RR0,$R0
	vpbroadcastq	%x#$RR1,$R1
	vpbroadcastq	%x#$RR2,$R2

	vpunpcklqdq	$T3,$T2,$T1		# transpose data
	vpunpckhqdq	$T3,$T2,$T3

	# at this point 64-bit lanes are ordered as 73625140

	vpsrlq		\$24,$T3,$T2		# splat the data
	vporq		$PAD,$T2,$T2
	 vpaddq		$T2,$H2,$H2		# accumulate input
	vpandq		$mask44,$T1,$T0
	vpsrlq		\$44,$T1,$T1
	vpsllq		\$20,$T3,$T3
	vporq		$T3,$T1,$T1
	vpandq		$mask44,$T1,$T1

	sub		\$8,$len
	jz		.Ltail_vpmadd52_8x
	jmp		.Loop_vpmadd52_8x

.align	32
.Loop_vpmadd52_8x:
	#vpaddq		$T2,$H2,$H2		# accumulate input
	vpaddq		$T0,$H0,$H0
	vpaddq		$T1,$H1,$H1

	vpxorq		$D0lo,$D0lo,$D0lo
	vpmadd52luq	$H2,$S1,$D0lo
	vpxorq		$D0hi,$D0hi,$D0hi
	vpmadd52huq	$H2,$S1,$D0hi
	vpxorq		$D1lo,$D1lo,$D1lo
	vpmadd52luq	$H2,$S2,$D1lo
	vpxorq		$D1hi,$D1hi,$D1hi
	vpmadd52huq	$H2,$S2,$D1hi
	vpxorq		$D2lo,$D2lo,$D2lo
	vpmadd52luq	$H2,$R0,$D2lo
	vpxorq		$D2hi,$D2hi,$D2hi
	vpmadd52huq	$H2,$R0,$D2hi

	 vmovdqu64	16*0($inp),$T2		# load data
	 vmovdqu64	16*4($inp),$T3
	 lea		16*8($inp),$inp
	vpmadd52luq	$H0,$R0,$D0lo
	vpmadd52huq	$H0,$R0,$D0hi
	vpmadd52luq	$H0,$R1,$D1lo
	vpmadd52huq	$H0,$R1,$D1hi
	vpmadd52luq	$H0,$R2,$D2lo
	vpmadd52huq	$H0,$R2,$D2hi

	 vpunpcklqdq	$T3,$T2,$T1		# transpose data
	 vpunpckhqdq	$T3,$T2,$T3
	vpmadd52luq	$H1,$S2,$D0lo
	vpmadd52huq	$H1,$S2,$D0hi
	vpmadd52luq	$H1,$R0,$D1lo
	vpmadd52huq	$H1,$R0,$D1hi
	vpmadd52luq	$H1,$R1,$D2lo
	vpmadd52huq	$H1,$R1,$D2hi

	################################################################
	# partial reduction (interleaved with data splat)
	vpsrlq		\$44,$D0lo,$tmp
	vpsllq		\$8,$D0hi,$D0hi
	vpandq		$mask44,$D0lo,$H0
	vpaddq		$tmp,$D0hi,$D0hi

	 vpsrlq		\$24,$T3,$T2
	 vporq		$PAD,$T2,$T2
	vpaddq		$D0hi,$D1lo,$D1lo

	vpsrlq		\$44,$D1lo,$tmp
	vpsllq		\$8,$D1hi,$D1hi
	vpandq		$mask44,$D1lo,$H1
	vpaddq		$tmp,$D1hi,$D1hi

	 vpandq		$mask44,$T1,$T0
	 vpsrlq		\$44,$T1,$T1
	 vpsllq		\$20,$T3,$T3
	vpaddq		$D1hi,$D2lo,$D2lo

	vpsrlq		\$42,$D2lo,$tmp
	vpsllq		\$10,$D2hi,$D2hi
	vpandq		$mask42,$D2lo,$H2
	vpaddq		$tmp,$D2hi,$D2hi

	  vpaddq	$T2,$H2,$H2		# accumulate input
	vpaddq		$D2hi,$H0,$H0
	vpsllq		\$2,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0
	 vporq		$T3,$T1,$T1
	 vpandq		$mask44,$T1,$T1

	vpsrlq		\$44,$H0,$tmp		# additional step
	vpandq		$mask44,$H0,$H0

	vpaddq		$tmp,$H1,$H1

	sub		\$8,$len		# len-=128
	jnz		.Loop_vpmadd52_8x

.Ltail_vpmadd52_8x:
	#vpaddq		$T2,$H2,$H2		# accumulate input
	vpaddq		$T0,$H0,$H0
	vpaddq		$T1,$H1,$H1

	vpxorq		$D0lo,$D0lo,$D0lo
	vpmadd52luq	$H2,$SS1,$D0lo
	vpxorq		$D0hi,$D0hi,$D0hi
	vpmadd52huq	$H2,$SS1,$D0hi
	vpxorq		$D1lo,$D1lo,$D1lo
	vpmadd52luq	$H2,$SS2,$D1lo
	vpxorq		$D1hi,$D1hi,$D1hi
	vpmadd52huq	$H2,$SS2,$D1hi
	vpxorq		$D2lo,$D2lo,$D2lo
	vpmadd52luq	$H2,$RR0,$D2lo
	vpxorq		$D2hi,$D2hi,$D2hi
	vpmadd52huq	$H2,$RR0,$D2hi

	vpmadd52luq	$H0,$RR0,$D0lo
	vpmadd52huq	$H0,$RR0,$D0hi
	vpmadd52luq	$H0,$RR1,$D1lo
	vpmadd52huq	$H0,$RR1,$D1hi
	vpmadd52luq	$H0,$RR2,$D2lo
	vpmadd52huq	$H0,$RR2,$D2hi

	vpmadd52luq	$H1,$SS2,$D0lo
	vpmadd52huq	$H1,$SS2,$D0hi
	vpmadd52luq	$H1,$RR0,$D1lo
	vpmadd52huq	$H1,$RR0,$D1hi
	vpmadd52luq	$H1,$RR1,$D2lo
	vpmadd52huq	$H1,$RR1,$D2hi

	################################################################
	# horizontal addition

	mov		\$1,%eax
	kmovw		%eax,%k1
	vpsrldq		\$8,$D0lo,$T0
	vpsrldq		\$8,$D0hi,$H0
	vpsrldq		\$8,$D1lo,$T1
	vpsrldq		\$8,$D1hi,$H1
	vpaddq		$T0,$D0lo,$D0lo
	vpaddq		$H0,$D0hi,$D0hi
	vpsrldq		\$8,$D2lo,$T2
	vpsrldq		\$8,$D2hi,$H2
	vpaddq		$T1,$D1lo,$D1lo
	vpaddq		$H1,$D1hi,$D1hi
	 vpermq		\$0x2,$D0lo,$T0
	 vpermq		\$0x2,$D0hi,$H0
	vpaddq		$T2,$D2lo,$D2lo
	vpaddq		$H2,$D2hi,$D2hi

	vpermq		\$0x2,$D1lo,$T1
	vpermq		\$0x2,$D1hi,$H1
	vpaddq		$T0,$D0lo,$D0lo
	vpaddq		$H0,$D0hi,$D0hi
	vpermq		\$0x2,$D2lo,$T2
	vpermq		\$0x2,$D2hi,$H2
	vpaddq		$T1,$D1lo,$D1lo
	vpaddq		$H1,$D1hi,$D1hi
	 vextracti64x4	\$1,$D0lo,%y#$T0
	 vextracti64x4	\$1,$D0hi,%y#$H0
	vpaddq		$T2,$D2lo,$D2lo
	vpaddq		$H2,$D2hi,$D2hi

	vextracti64x4	\$1,$D1lo,%y#$T1
	vextracti64x4	\$1,$D1hi,%y#$H1
	vextracti64x4	\$1,$D2lo,%y#$T2
	vextracti64x4	\$1,$D2hi,%y#$H2
___
######## switch back to %ymm
map(s/%z/%y/, $H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2);
map(s/%z/%y/, $D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi);
map(s/%z/%y/, $T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD);

$code.=<<___;
	vpaddq		$T0,$D0lo,${D0lo}{%k1}{z}
	vpaddq		$H0,$D0hi,${D0hi}{%k1}{z}
	vpaddq		$T1,$D1lo,${D1lo}{%k1}{z}
	vpaddq		$H1,$D1hi,${D1hi}{%k1}{z}
	vpaddq		$T2,$D2lo,${D2lo}{%k1}{z}
	vpaddq		$H2,$D2hi,${D2hi}{%k1}{z}

	################################################################
	# partial reduction
	vpsrlq		\$44,$D0lo,$tmp
	vpsllq		\$8,$D0hi,$D0hi
	vpandq		$mask44,$D0lo,$H0
	vpaddq		$tmp,$D0hi,$D0hi

	vpaddq		$D0hi,$D1lo,$D1lo

	vpsrlq		\$44,$D1lo,$tmp
	vpsllq		\$8,$D1hi,$D1hi
	vpandq		$mask44,$D1lo,$H1
	vpaddq		$tmp,$D1hi,$D1hi

	vpaddq		$D1hi,$D2lo,$D2lo

	vpsrlq		\$42,$D2lo,$tmp
	vpsllq		\$10,$D2hi,$D2hi
	vpandq		$mask42,$D2lo,$H2
	vpaddq		$tmp,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0
	vpsllq		\$2,$D2hi,$D2hi

	vpaddq		$D2hi,$H0,$H0

	vpsrlq		\$44,$H0,$tmp		# additional step
	vpandq		$mask44,$H0,$H0

	vpaddq		$tmp,$H1,$H1

	################################################################

	vmovq		%x#$H0,0($ctx)
	vmovq		%x#$H1,8($ctx)
	vmovq		%x#$H2,16($ctx)
	vzeroall

.Lno_data_vpmadd52_8x:
	ret
.cfi_endproc
.size	poly1305_blocks_vpmadd52_8x,.-poly1305_blocks_vpmadd52_8x
___
}
$code.=<<___;
.type	poly1305_emit_base2_44,\@function,3
.align	32
poly1305_emit_base2_44:
.cfi_startproc
	mov	0($ctx),%r8	# load hash value
	mov	8($ctx),%r9
	mov	16($ctx),%r10

	mov	%r9,%rax
	shr	\$20,%r9
	shl	\$44,%rax
	mov	%r10,%rcx
	shr	\$40,%r10
	shl	\$24,%rcx

	add	%rax,%r8
	adc	%rcx,%r9
	adc	\$0,%r10

	mov	%r8,%rax
	add	\$5,%r8		# compare to modulus
	mov	%r9,%rcx
	adc	\$0,%r9
	adc	\$0,%r10
	shr	\$2,%r10	# did 130-bit value overflow?
	cmovnz	%r8,%rax
	cmovnz	%r9,%rcx

	add	0($nonce),%rax	# accumulate nonce
	adc	8($nonce),%rcx
	mov	%rax,0($mac)	# write result
	mov	%rcx,8($mac)

	ret
.cfi_endproc
.size	poly1305_emit_base2_44,.-poly1305_emit_base2_44
___
}	}	}
$code.=<<___;
.align	64
.Lconst:
.Lmask24:
.long	0x0ffffff,0,0x0ffffff,0,0x0ffffff,0,0x0ffffff,0
.L129:
.long	`1<<24`,0,`1<<24`,0,`1<<24`,0,`1<<24`,0
.Lmask26:
.long	0x3ffffff,0,0x3ffffff,0,0x3ffffff,0,0x3ffffff,0
.Lpermd_avx2:
.long	2,2,2,3,2,0,2,1
.Lpermd_avx512:
.long	0,0,0,1, 0,2,0,3, 0,4,0,5, 0,6,0,7

.L2_44_inp_permd:
.long	0,1,1,2,2,3,7,7
.L2_44_inp_shift:
.quad	0,12,24,64
.L2_44_mask:
.quad	0xfffffffffff,0xfffffffffff,0x3ffffffffff,0xffffffffffffffff
.L2_44_shift_rgt:
.quad	44,44,42,64
.L2_44_shift_lft:
.quad	8,8,10,64

.align	64
.Lx_mask44:
.quad	0xfffffffffff,0xfffffffffff,0xfffffffffff,0xfffffffffff
.quad	0xfffffffffff,0xfffffffffff,0xfffffffffff,0xfffffffffff
.Lx_mask42:
.quad	0x3ffffffffff,0x3ffffffffff,0x3ffffffffff,0x3ffffffffff
.quad	0x3ffffffffff,0x3ffffffffff,0x3ffffffffff,0x3ffffffffff
___
}
$code.=<<___;
.asciz	"Poly1305 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
.align	16
___

{	# chacha20-poly1305 helpers
my ($out,$inp,$otp,$len)=$win64 ? ("%rcx","%rdx","%r8", "%r9") :  # Win64 order
                                  ("%rdi","%rsi","%rdx","%rcx");  # Unix order
$code.=<<___;
.globl	xor128_encrypt_n_pad
.type	xor128_encrypt_n_pad,\@abi-omnipotent
.align	16
xor128_encrypt_n_pad:
.cfi_startproc
	sub	$otp,$inp
	sub	$otp,$out
	mov	$len,%r10		# put len aside
	shr	\$4,$len		# len / 16
	jz	.Ltail_enc
	nop
.Loop_enc_xmm:
	movdqu	($inp,$otp),%xmm0
	pxor	($otp),%xmm0
	movdqu	%xmm0,($out,$otp)
	movdqa	%xmm0,($otp)
	lea	16($otp),$otp
	dec	$len
	jnz	.Loop_enc_xmm

	and	\$15,%r10		# len % 16
	jz	.Ldone_enc

.Ltail_enc:
	mov	\$16,$len
	sub	%r10,$len
	xor	%eax,%eax
.Loop_enc_byte:
	mov	($inp,$otp),%al
	xor	($otp),%al
	mov	%al,($out,$otp)
	mov	%al,($otp)
	lea	1($otp),$otp
	dec	%r10
	jnz	.Loop_enc_byte

	xor	%eax,%eax
.Loop_enc_pad:
	mov	%al,($otp)
	lea	1($otp),$otp
	dec	$len
	jnz	.Loop_enc_pad

.Ldone_enc:
	mov	$otp,%rax
	ret
.cfi_endproc
.size	xor128_encrypt_n_pad,.-xor128_encrypt_n_pad

.globl	xor128_decrypt_n_pad
.type	xor128_decrypt_n_pad,\@abi-omnipotent
.align	16
xor128_decrypt_n_pad:
.cfi_startproc
	sub	$otp,$inp
	sub	$otp,$out
	mov	$len,%r10		# put len aside
	shr	\$4,$len		# len / 16
	jz	.Ltail_dec
	nop
.Loop_dec_xmm:
	movdqu	($inp,$otp),%xmm0
	movdqa	($otp),%xmm1
	pxor	%xmm0,%xmm1
	movdqu	%xmm1,($out,$otp)
	movdqa	%xmm0,($otp)
	lea	16($otp),$otp
	dec	$len
	jnz	.Loop_dec_xmm

	pxor	%xmm1,%xmm1
	and	\$15,%r10		# len % 16
	jz	.Ldone_dec

.Ltail_dec:
	mov	\$16,$len
	sub	%r10,$len
	xor	%eax,%eax
	xor	%r11,%r11
.Loop_dec_byte:
	mov	($inp,$otp),%r11b
	mov	($otp),%al
	xor	%r11b,%al
	mov	%al,($out,$otp)
	mov	%r11b,($otp)
	lea	1($otp),$otp
	dec	%r10
	jnz	.Loop_dec_byte

	xor	%eax,%eax
.Loop_dec_pad:
	mov	%al,($otp)
	lea	1($otp),$otp
	dec	$len
	jnz	.Loop_dec_pad

.Ldone_dec:
	mov	$otp,%rax
	ret
.cfi_endproc
.size	xor128_decrypt_n_pad,.-xor128_decrypt_n_pad
___
}

# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
#		CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";

$code.=<<___;
.extern	__imp_RtlVirtualUnwind
.type	se_handler,\@abi-omnipotent
.align	16
se_handler:
	push	%rsi
	push	%rdi
	push	%rbx
	push	%rbp
	push	%r12
	push	%r13
	push	%r14
	push	%r15
	pushfq
	sub	\$64,%rsp

	mov	120($context),%rax	# pull context->Rax
	mov	248($context),%rbx	# pull context->Rip

	mov	8($disp),%rsi		# disp->ImageBase
	mov	56($disp),%r11		# disp->HandlerData

	mov	0(%r11),%r10d		# HandlerData[0]
	lea	(%rsi,%r10),%r10	# prologue label
	cmp	%r10,%rbx		# context->Rip<.Lprologue
	jb	.Lcommon_seh_tail

	mov	152($context),%rax	# pull context->Rsp

	mov	4(%r11),%r10d		# HandlerData[1]
	lea	(%rsi,%r10),%r10	# epilogue label
	cmp	%r10,%rbx		# context->Rip>=.Lepilogue
	jae	.Lcommon_seh_tail

	lea	48(%rax),%rax

	mov	-8(%rax),%rbx
	mov	-16(%rax),%rbp
	mov	-24(%rax),%r12
	mov	-32(%rax),%r13
	mov	-40(%rax),%r14
	mov	-48(%rax),%r15
	mov	%rbx,144($context)	# restore context->Rbx
	mov	%rbp,160($context)	# restore context->Rbp
	mov	%r12,216($context)	# restore context->R12
	mov	%r13,224($context)	# restore context->R13
	mov	%r14,232($context)	# restore context->R14
	mov	%r15,240($context)	# restore context->R14

	jmp	.Lcommon_seh_tail
.size	se_handler,.-se_handler

.type	avx_handler,\@abi-omnipotent
.align	16
avx_handler:
	push	%rsi
	push	%rdi
	push	%rbx
	push	%rbp
	push	%r12
	push	%r13
	push	%r14
	push	%r15
	pushfq
	sub	\$64,%rsp

	mov	120($context),%rax	# pull context->Rax
	mov	248($context),%rbx	# pull context->Rip

	mov	8($disp),%rsi		# disp->ImageBase
	mov	56($disp),%r11		# disp->HandlerData

	mov	0(%r11),%r10d		# HandlerData[0]
	lea	(%rsi,%r10),%r10	# prologue label
	cmp	%r10,%rbx		# context->Rip<prologue label
	jb	.Lcommon_seh_tail

	mov	152($context),%rax	# pull context->Rsp

	mov	4(%r11),%r10d		# HandlerData[1]
	lea	(%rsi,%r10),%r10	# epilogue label
	cmp	%r10,%rbx		# context->Rip>=epilogue label
	jae	.Lcommon_seh_tail

	mov	208($context),%rax	# pull context->R11

	lea	0x50(%rax),%rsi
	lea	0xf8(%rax),%rax
	lea	512($context),%rdi	# &context.Xmm6
	mov	\$20,%ecx
	.long	0xa548f3fc		# cld; rep movsq

.Lcommon_seh_tail:
	mov	8(%rax),%rdi
	mov	16(%rax),%rsi
	mov	%rax,152($context)	# restore context->Rsp
	mov	%rsi,168($context)	# restore context->Rsi
	mov	%rdi,176($context)	# restore context->Rdi

	mov	40($disp),%rdi		# disp->ContextRecord
	mov	$context,%rsi		# context
	mov	\$154,%ecx		# sizeof(CONTEXT)
	.long	0xa548f3fc		# cld; rep movsq

	mov	$disp,%rsi
	xor	%rcx,%rcx		# arg1, UNW_FLAG_NHANDLER
	mov	8(%rsi),%rdx		# arg2, disp->ImageBase
	mov	0(%rsi),%r8		# arg3, disp->ControlPc
	mov	16(%rsi),%r9		# arg4, disp->FunctionEntry
	mov	40(%rsi),%r10		# disp->ContextRecord
	lea	56(%rsi),%r11		# &disp->HandlerData
	lea	24(%rsi),%r12		# &disp->EstablisherFrame
	mov	%r10,32(%rsp)		# arg5
	mov	%r11,40(%rsp)		# arg6
	mov	%r12,48(%rsp)		# arg7
	mov	%rcx,56(%rsp)		# arg8, (NULL)
	call	*__imp_RtlVirtualUnwind(%rip)

	mov	\$1,%eax		# ExceptionContinueSearch
	add	\$64,%rsp
	popfq
	pop	%r15
	pop	%r14
	pop	%r13
	pop	%r12
	pop	%rbp
	pop	%rbx
	pop	%rdi
	pop	%rsi
	ret
.size	avx_handler,.-avx_handler

.section	.pdata
.align	4
	.rva	.LSEH_begin_poly1305_init
	.rva	.LSEH_end_poly1305_init
	.rva	.LSEH_info_poly1305_init

	.rva	.LSEH_begin_poly1305_blocks
	.rva	.LSEH_end_poly1305_blocks
	.rva	.LSEH_info_poly1305_blocks

	.rva	.LSEH_begin_poly1305_emit
	.rva	.LSEH_end_poly1305_emit
	.rva	.LSEH_info_poly1305_emit
___
$code.=<<___ if ($avx);
	.rva	.LSEH_begin_poly1305_blocks_avx
	.rva	.Lbase2_64_avx
	.rva	.LSEH_info_poly1305_blocks_avx_1

	.rva	.Lbase2_64_avx
	.rva	.Leven_avx
	.rva	.LSEH_info_poly1305_blocks_avx_2

	.rva	.Leven_avx
	.rva	.LSEH_end_poly1305_blocks_avx
	.rva	.LSEH_info_poly1305_blocks_avx_3

	.rva	.LSEH_begin_poly1305_emit_avx
	.rva	.LSEH_end_poly1305_emit_avx
	.rva	.LSEH_info_poly1305_emit_avx
___
$code.=<<___ if ($avx>1);
	.rva	.LSEH_begin_poly1305_blocks_avx2
	.rva	.Lbase2_64_avx2
	.rva	.LSEH_info_poly1305_blocks_avx2_1

	.rva	.Lbase2_64_avx2
	.rva	.Leven_avx2
	.rva	.LSEH_info_poly1305_blocks_avx2_2

	.rva	.Leven_avx2
	.rva	.LSEH_end_poly1305_blocks_avx2
	.rva	.LSEH_info_poly1305_blocks_avx2_3
___
$code.=<<___ if ($avx>2);
	.rva	.LSEH_begin_poly1305_blocks_avx512
	.rva	.LSEH_end_poly1305_blocks_avx512
	.rva	.LSEH_info_poly1305_blocks_avx512
___
$code.=<<___;
.section	.xdata
.align	8
.LSEH_info_poly1305_init:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.LSEH_begin_poly1305_init,.LSEH_begin_poly1305_init

.LSEH_info_poly1305_blocks:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.Lblocks_body,.Lblocks_epilogue

.LSEH_info_poly1305_emit:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.LSEH_begin_poly1305_emit,.LSEH_begin_poly1305_emit
___
$code.=<<___ if ($avx);
.LSEH_info_poly1305_blocks_avx_1:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.Lblocks_avx_body,.Lblocks_avx_epilogue		# HandlerData[]

.LSEH_info_poly1305_blocks_avx_2:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.Lbase2_64_avx_body,.Lbase2_64_avx_epilogue	# HandlerData[]

.LSEH_info_poly1305_blocks_avx_3:
	.byte	9,0,0,0
	.rva	avx_handler
	.rva	.Ldo_avx_body,.Ldo_avx_epilogue			# HandlerData[]

.LSEH_info_poly1305_emit_avx:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.LSEH_begin_poly1305_emit_avx,.LSEH_begin_poly1305_emit_avx
___
$code.=<<___ if ($avx>1);
.LSEH_info_poly1305_blocks_avx2_1:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.Lblocks_avx2_body,.Lblocks_avx2_epilogue	# HandlerData[]

.LSEH_info_poly1305_blocks_avx2_2:
	.byte	9,0,0,0
	.rva	se_handler
	.rva	.Lbase2_64_avx2_body,.Lbase2_64_avx2_epilogue	# HandlerData[]

.LSEH_info_poly1305_blocks_avx2_3:
	.byte	9,0,0,0
	.rva	avx_handler
	.rva	.Ldo_avx2_body,.Ldo_avx2_epilogue		# HandlerData[]
___
$code.=<<___ if ($avx>2);
.LSEH_info_poly1305_blocks_avx512:
	.byte	9,0,0,0
	.rva	avx_handler
	.rva	.Ldo_avx512_body,.Ldo_avx512_epilogue		# HandlerData[]
___
}

foreach (split('\n',$code)) {
	s/\`([^\`]*)\`/eval($1)/ge;
	s/%r([a-z]+)#d/%e$1/g;
	s/%r([0-9]+)#d/%r$1d/g;
	s/%x#%[yz]/%x/g or s/%y#%z/%y/g or s/%z#%[yz]/%z/g;

	print $_,"\n";
}
close STDOUT or die "error closing STDOUT: $!";
Show on old repository browser