
2008.07.10 LFJ Symposium BoF

The role of "pathname based

access control" in security.

Tetsuo Handa

<penguin-kernel@I-love.SAKURA.ne.jp>

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 2

Two types of access control

 Label (i.e. attribute) based

 SELinux

 SMACK

 Pathname (i.e. name) based

 AppArmor

 TOMOYO Linux

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 3

Pathname based access control

depends on the location of a file.
What happens if /etc/shadow is linked to /tmp/shadow ?

 Pathname based

 An attacker can access password information via

/tmp/shadow if the access control allows "ln /etc/shadow

/tmp/shadow" and "cat /tmp/shadow".

 So, we need to restrict pathname changes.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 4

Pathname based access control

depends on the location of a file.
What happens if /etc/shadow is linked to /tmp/shadow ?

 Label based

 An attacker can't access password information via

/tmp/shadow even if the access control allows "ln

/etc/shadow /tmp/shadow" as long as the access control

forbids "cat /etc/shadow" since /tmp/shadow preserves the

same attribute with /etc/shadow .

 So, we needn't to care about pathname changes.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 5

Pathname based access control

depends on the location of a file.
What happens if /etc/ is bind mounted to /tmp/ ?

 Pathname based

 An attacker can access files under /etc/ via /tmp/ if the

access control allows "mount --bind /etc/ /tmp/" and "cat

/tmp/*".

 So, we need to restrict namespace manipulation.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 6

Pathname based access control

depends on the location of a file.
What happens if /etc/ is bind mounted to /tmp/ ?

 Label based

 An attacker can't access files under /etc/ via /tmp/ even

if the access control allows "mount --bind /etc/ /tmp/" as

long as the access control forbids to access files under

/etc/ since /tmp/ preserves the same attribute with /etc/ .

 So, we needn't to care about namespace manipulation.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 7

That's right. But...

 The label based access control is indeed robust
against change of pathnames and namespaces.

 But that does not mean label based access control can
allow changing pathnames and namespaces freely.

 It is not appropriate to say "We don't need to care
about the location of a file if we use label based
access control."

 The location of a file has a meaning.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 8

What happens if /etc/ is bind

mounted to /tmp/ ?
 It is true that the content of /etc/shadow will not be

read by "cat /tmp/shadow" if we use label based

access control.

 But, since /etc/ and /tmp/ have the same attribute,

writing to /tmp/ is denied if writing to /etc/ is not

permitted.

 Unwritable /tmp/ causes trouble with the applications.

Can you tolerate it? (I can't.)

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 9

What happens if /etc/ is bind

mounted to /tmp/ ?
 The matter is no longer "whether the content of

/etc/shadow can be protected or not", but now

"whether the system can work properly or not".

 To keep the system workable, you had better not to

allow "mount --bind /etc/ /tmp/" from the beginning,

even if you use label based access control.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 10

What happens if /etc/shadow is

linked to /etc/nologin ?
 It is true that the content of /etc/shadow will not be

read by "cat /etc/nologin" if we use label based

access control.

 But /etc/nologin has special meaning, it prevents

unprivileged users from logging into the system.

Can you tolerate it? (I can't.)

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 11

What happens if /etc/shadow is

linked to /etc/nologin ?
 The matter is no longer "whether the content of

/etc/shadow can be protected or not", but now

"whether the specific pathname is allowed to be

created or not".

 To keep the system usable, you had better not to

allow "ln /etc/shadow /etc/nologin" from the

beginning, even if you use label based access

control.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 12

What happens if

/var/www/html/.htpasswd is renamed

to /var/www/html/index.html ?
We have to allow Apache to read both files.

 Apache will send the content of index.html to clients.

 Apache will not send the content of .htpasswd to clients.

Of course, we don't want Apache to leak password

information, do we?

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 13

What happens if

/var/www/html/.htpasswd is renamed

to /var/www/html/index.html ?
 The matter is no longer "whether these files are

accessible or not", but now "how these files are

processed".

 To keep /var/www/html/.htpasswd secret, you had

better not to allow "mv /var/www/html/.htpasswd

/var/www/html/index.html" from the beginning, even

if you use label based access control.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 14

What happens if /usr/sbin/httpd and

/usr/sbin/sshd are exchanged?
 Label based access control would block execution if

/usr/sbin/httpd got the label 'sshd_exec_t' and
/usr/sbin/sshd got the label 'httpd_exec_t'.

 But, are you happy to have a server which doesn't
provide services? (I'm not.)

 The matter is no longer "whether these programs
can preserve appropriate attributes", but now
"whether the system can continue providing
services".

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 15

What happens if /usr/sbin/httpd and

/usr/sbin/sshd are exchanged?
 To keep the system providing services, you had

better not to allow "mv /usr/sbin/httpd

/usr/sbin/httpd.tmp; mv /usr/sbin/sshd

/usr/sbin/httpd; mv /usr/sbin/httpd.tmp

/usr/sbin/sshd" from the beginning, even if you use

label based access control.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 16

More and more examples...

What happens if /bin/cat and /usr/bin/md5sum are

exchanged?

 You don't care because both files have the label

'bin_t'?

 I do care because shell scripts will stop working

properly.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 17

More and more examples...

What happens if a symbolic link /bin/md5sum to

/usr/bin/sha1sum is created?

 Applications want to execute md5sum, but they

actually execute sha1sum if environment variable

PATH is something like PATH=/bin:/usr/bin .

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 18

More and more examples...

What happens if /etc/shadow is renamed to

/etc/my_shadow?

 Nobody will be able to login to the system.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 19

System's availability depends on the

location of a file.
 It is the file's *attribute* that decides "whether the

file is readable and/or writable and/or executable or

not", but it is the file's *name* that decides "how the

file's content is processed" and "how the system

behaves".

 Pathname is the basis of system's availability.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 20

Need for protecting pathnames.

 To prevent the system from triggering contingency,

it is quite natural thing to restrict changing

pathnames.

 It is an indispensable prerequisite for the system to

work properly that necessary files are in place with

appropriate names.

 Almost all files' pathnames needn't to be changed, and

the range of pathname changes is not infinite.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 21

Need for protecting pathnames.

 It is important to enforce the rule

"Deny name changes by default.

Allow name changes only by specific names."

AS MUCH AS POSSIBLE.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 22

Need for protecting pathnames.

The maximal granularity of restricting name changes.

 Label based

 Per a directory (when each directory is assigned a

different label).

 Pathname based

 Per a filename (when wild card is not used).

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 23

Need for protecting pathnames.

 Label based access control can't restrict names

within a directory.

 It is impossible for label based access control to handle

cases where the names have meaning.

 Pathname based access control can restrict names

within a directory.

 It is possible for pathname based access control to

handle cases where the names have meaning.

 This sometimes helps.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 24

Current Problem.

 To make it possible to restrict pathname changes, I

want to calculate the requested file's pathname from

the LSM.

Miklos has developed the patch to pass information

needed for calculating the requested file's

pathname from the LSM.

 I want you to understand the meaning of the patch and

send Acked-by: response.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 25

Goal for the future.

 I agree that use of pathname based access control

alone is not sufficient.

 I hope you understand that use of label based

access control alone is not sufficient neither.

 Thus, I want the LSM coexist pathname based

access control which is good at restricting names

and label based access control which is good at

restricting attributes.

2008.07.10 LFJ Symposium BoF

What does TOMOYO Linux

provide?

Tetsuo Handa

<penguin-kernel@I-love.SAKURA.ne.jp>

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 27

Ability to minimize pathname changes.

...because unexpected pathnames leads to

unexpected results.

 You can check old/new pathnames together for

rename()/link().

 You can restrict namespace manipulation such as

mount()/umount()/chroot()/pivot_root().

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 28

Ability to minimize accessible

pathnames.

...because you want to allow programs to open only

essential files.

 You can use realpath derived by traversing up to

the process's namespace's root directory.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 29

Ability to minimize program's invocation

names.

...because multi-call binaries behave differently

depending on argv[0].

 You can check the combination of realpath and

argv[0].

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 30

Ability to validate parameters for

program's execution.

...because argv[] and envp[] can lead to unexpected

behavior.

 You can check argv[] and envp[] passed to

execve().

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 31

Ability to insert a setup program before

executing the requested program.

...because you want to manipulate parameters and

environments.

 You can insert a program for validating/modifying

argv[]/envp[] and setting up environments (e.g.

private namespace), at the price of ability to return

to the caller when the requested program could not

be executed.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 32

Ability to minimize reachable IP

addresses and port numbers.

...because you want to use per-a-program iptables.

 You can check peer's IP address and port number

of socket operation.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 33

Ability to minimize allowed system calls.

...because it is impossible to predict what system calls

a program will issue.

 You can control system calls which individual

program can call.

 Though, current granularity is far from sufficient.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 34

Ability to ...

Oops, I have no more time...

 See online documentation for other abilities.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 35

Summary

 TOMOYO Linux is a tool for reinforcing access control
which is supposed to be performed by the userland
process.
 It performs access control from the perspective of subjects (i.e.

processes) rather than the perspective of objects (i.e. files).

 Why not do it in the userland?
 Access control performed in the userland is easily bypassed by

errors and improper configurations (e.g. buffer overflow, statically
linked applications, environment variables like LD_PRELOAD).
To make access control inevitable, it is essential to do it in the
kernel.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 36

Summary

 Processes are born to achieve something, and they die

after they achieved the purpose.

 TOMOYO Linux tracks behavior of each process and restricts

requests of each process in accordance with the purpose of each

process.

 It can permit necessity minimum requests in each context.

 TOMOYO Linux is a parameter checking tool like Web

Application Firewall which is embedded into the kernel.

Copyright(c) 2008 NTT DATA CORPORATION All rights reserved. 37

Conclusion

 Both SELinux and TOMOYO Linux perform policy

based access restrictions.

 But, what TOMOYO Linux is doing is different from

what SELinux is doing.

 I believe both restrictions are important.

 TOMOYO Linux is ready to coexist with SELinux,

SMACK, AppArmor, LIDS etc.

