| 1 |
/* |
| 2 |
* Copyright (c) 1998-2001, Robert O'Callahan |
| 3 |
* (C) 2004- TeraTerm Project |
| 4 |
* All rights reserved. |
| 5 |
* |
| 6 |
* Redistribution and use in source and binary forms, with or without |
| 7 |
* modification, are permitted provided that the following conditions |
| 8 |
* are met: |
| 9 |
* |
| 10 |
* 1. Redistributions of source code must retain the above copyright |
| 11 |
* notice, this list of conditions and the following disclaimer. |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the distribution. |
| 15 |
* 3. The name of the author may not be used to endorse or promote products |
| 16 |
* derived from this software without specific prior written permission. |
| 17 |
* |
| 18 |
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR |
| 19 |
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 20 |
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 21 |
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 22 |
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 23 |
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 24 |
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 25 |
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 26 |
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 27 |
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 28 |
*/ |
| 29 |
|
| 30 |
#define WINDOWS |
| 31 |
|
| 32 |
#include "ttxssh.h" |
| 33 |
#include "util.h" |
| 34 |
|
| 35 |
#include <openssl/rand.h> |
| 36 |
#include <openssl/bn.h> |
| 37 |
#include <openssl/md5.h> |
| 38 |
#include <openssl/err.h> |
| 39 |
#include <openssl/des.h> |
| 40 |
#include <openssl/hmac.h> // for SSH2(yutaka) |
| 41 |
#include <openssl/dsa.h> |
| 42 |
#include "cipher.h" |
| 43 |
#include "ssh.h" |
| 44 |
|
| 45 |
#define do_crc(buf, len) (~(uint32)crc32(0xFFFFFFFF, (buf), (len))) |
| 46 |
#define get_uint32(buf) get_uint32_MSBfirst((buf)) |
| 47 |
|
| 48 |
#define DEATTACK_OK 0 |
| 49 |
#define DEATTACK_DETECTED 1 |
| 50 |
|
| 51 |
/* |
| 52 |
* $Id: crypt.c,v 1.28 2008-11-23 07:44:05 doda Exp $ Cryptographic attack |
| 53 |
* detector for ssh - source code (C)1998 CORE-SDI, Buenos Aires Argentina |
| 54 |
* Ariel Futoransky(futo@core-sdi.com) <http://www.core-sdi.com> |
| 55 |
*/ |
| 56 |
|
| 57 |
/* SSH Constants */ |
| 58 |
#define SSH_BLOCKSIZE 8 |
| 59 |
|
| 60 |
/* Hashing constants */ |
| 61 |
#define HASH_MINSIZE 8*2048 |
| 62 |
#define HASH_ENTRYSIZE 4 |
| 63 |
#define HASH_FACTOR(x) ((x)*3/2) |
| 64 |
#define HASH_UNUSEDCHAR 0xff |
| 65 |
#define HASH_UNUSED 0xffffffff |
| 66 |
#define HASH_IV 0xfffffffe |
| 67 |
|
| 68 |
#define HASH_MINBLOCKS (7*SSH_BLOCKSIZE) |
| 69 |
|
| 70 |
/* Hash function (Input keys are cipher results) */ |
| 71 |
#define HASH(x) get_uint32(x) |
| 72 |
|
| 73 |
#define CMP(a,b) memcmp(a, b, SSH_BLOCKSIZE) |
| 74 |
|
| 75 |
static unsigned char *encbuff = NULL; |
| 76 |
static unsigned int encbufflen = 0; |
| 77 |
|
| 78 |
static void crc_update(uint32 *a, uint32 b) |
| 79 |
{ |
| 80 |
b ^= *a; |
| 81 |
*a = do_crc((unsigned char *) &b, sizeof(b)); |
| 82 |
} |
| 83 |
|
| 84 |
/* check_crc |
| 85 |
detects if a block is used in a particular pattern |
| 86 |
*/ |
| 87 |
|
| 88 |
static int check_crc(unsigned char *S, unsigned char *buf, |
| 89 |
uint32 len, unsigned char *IV) |
| 90 |
{ |
| 91 |
uint32 crc; |
| 92 |
unsigned char *c; |
| 93 |
|
| 94 |
crc = 0; |
| 95 |
if (IV && !CMP(S, IV)) { |
| 96 |
crc_update(&crc, 1); |
| 97 |
crc_update(&crc, 0); |
| 98 |
} |
| 99 |
for (c = buf; c < buf + len; c += SSH_BLOCKSIZE) { |
| 100 |
if (!CMP(S, c)) { |
| 101 |
crc_update(&crc, 1); |
| 102 |
crc_update(&crc, 0); |
| 103 |
} else { |
| 104 |
crc_update(&crc, 0); |
| 105 |
crc_update(&crc, 0); |
| 106 |
} |
| 107 |
} |
| 108 |
|
| 109 |
return crc == 0; |
| 110 |
} |
| 111 |
|
| 112 |
|
| 113 |
/* |
| 114 |
detect_attack |
| 115 |
Detects a crc32 compensation attack on a packet |
| 116 |
*/ |
| 117 |
static int detect_attack(CRYPTDetectAttack *statics, |
| 118 |
unsigned char *buf, uint32 len, |
| 119 |
unsigned char *IV) |
| 120 |
{ |
| 121 |
uint32 *h = statics->h; |
| 122 |
uint32 n = statics->n; |
| 123 |
uint32 i, j; |
| 124 |
uint32 l; |
| 125 |
unsigned char *c; |
| 126 |
unsigned char *d; |
| 127 |
|
| 128 |
for (l = n; l < HASH_FACTOR(len / SSH_BLOCKSIZE); l = l << 2) { |
| 129 |
} |
| 130 |
|
| 131 |
if (h == NULL) { |
| 132 |
n = l; |
| 133 |
h = (uint32 *) malloc(n * HASH_ENTRYSIZE); |
| 134 |
} else { |
| 135 |
if (l > n) { |
| 136 |
n = l; |
| 137 |
h = (uint32 *) realloc(h, n * HASH_ENTRYSIZE); |
| 138 |
} |
| 139 |
} |
| 140 |
|
| 141 |
statics->h = h; |
| 142 |
statics->n = n; |
| 143 |
|
| 144 |
if (len <= HASH_MINBLOCKS) { |
| 145 |
for (c = buf; c < buf + len; c += SSH_BLOCKSIZE) { |
| 146 |
if (IV && (!CMP(c, IV))) { |
| 147 |
if ((check_crc(c, buf, len, IV))) |
| 148 |
return DEATTACK_DETECTED; |
| 149 |
else |
| 150 |
break; |
| 151 |
} |
| 152 |
for (d = buf; d < c; d += SSH_BLOCKSIZE) { |
| 153 |
if (!CMP(c, d)) { |
| 154 |
if ((check_crc(c, buf, len, IV))) |
| 155 |
return DEATTACK_DETECTED; |
| 156 |
else |
| 157 |
break; |
| 158 |
} |
| 159 |
} |
| 160 |
} |
| 161 |
return (DEATTACK_OK); |
| 162 |
} |
| 163 |
memset(h, HASH_UNUSEDCHAR, n * HASH_ENTRYSIZE); |
| 164 |
|
| 165 |
if (IV) { |
| 166 |
h[HASH(IV) & (n - 1)] = HASH_IV; |
| 167 |
} |
| 168 |
|
| 169 |
for (c = buf, j = 0; c < (buf + len); c += SSH_BLOCKSIZE, j++) { |
| 170 |
for (i = HASH(c) & (n - 1); h[i] != HASH_UNUSED; |
| 171 |
i = (i + 1) & (n - 1)) { |
| 172 |
if (h[i] == HASH_IV) { |
| 173 |
if (!CMP(c, IV)) { |
| 174 |
if (check_crc(c, buf, len, IV)) |
| 175 |
return DEATTACK_DETECTED; |
| 176 |
else |
| 177 |
break; |
| 178 |
} |
| 179 |
} else if (!CMP(c, buf + h[i] * SSH_BLOCKSIZE)) { |
| 180 |
if (check_crc(c, buf, len, IV)) |
| 181 |
return DEATTACK_DETECTED; |
| 182 |
else |
| 183 |
break; |
| 184 |
} |
| 185 |
} |
| 186 |
h[i] = j; |
| 187 |
} |
| 188 |
|
| 189 |
return DEATTACK_OK; |
| 190 |
} |
| 191 |
|
| 192 |
BOOL CRYPT_detect_attack(PTInstVar pvar, unsigned char *buf, int bytes) |
| 193 |
{ |
| 194 |
if (SSHv1(pvar) && pvar->crypt_state.sender_cipher != SSH_CIPHER_NONE) { |
| 195 |
return detect_attack(&pvar->crypt_state.detect_attack_statics, buf, bytes, NULL) == DEATTACK_DETECTED; |
| 196 |
} else { |
| 197 |
return FALSE; |
| 198 |
} |
| 199 |
} |
| 200 |
|
| 201 |
BOOL CRYPT_encrypt_aead(PTInstVar pvar, unsigned char *data, unsigned int bytes, unsigned int aadlen, unsigned int authlen) |
| 202 |
{ |
| 203 |
unsigned char *newbuff = NULL; |
| 204 |
unsigned int block_size = pvar->ssh2_keys[MODE_OUT].enc.block_size; |
| 205 |
unsigned char lastiv[1]; |
| 206 |
char tmp[80]; |
| 207 |
EVP_CIPHER_CTX *evp = pvar->evpcip[MODE_OUT]; |
| 208 |
|
| 209 |
if (bytes == 0) |
| 210 |
return TRUE; |
| 211 |
|
| 212 |
if (bytes % block_size) { |
| 213 |
UTIL_get_lang_msg("MSG_ENCRYPT_ERROR1", pvar, "%s encrypt error(1): bytes %d (%d)"); |
| 214 |
_snprintf_s(tmp, sizeof(tmp), _TRUNCATE, pvar->ts->UIMsg, |
| 215 |
get_cipher_name(pvar->crypt_state.sender_cipher), |
| 216 |
bytes, block_size); |
| 217 |
notify_fatal_error(pvar, tmp, TRUE); |
| 218 |
return FALSE; |
| 219 |
} |
| 220 |
|
| 221 |
if (bytes > encbufflen) { |
| 222 |
if ((newbuff = realloc(encbuff, bytes)) == NULL) |
| 223 |
goto err; |
| 224 |
encbuff = newbuff; |
| 225 |
encbufflen = bytes; |
| 226 |
} |
| 227 |
|
| 228 |
if (!EVP_CIPHER_CTX_ctrl(evp, EVP_CTRL_GCM_IV_GEN, 1, lastiv)) |
| 229 |
goto err; |
| 230 |
|
| 231 |
if (aadlen && !EVP_Cipher(evp, NULL, data, aadlen) < 0) |
| 232 |
goto err; |
| 233 |
|
| 234 |
if (EVP_Cipher(evp, encbuff, data+aadlen, bytes) < 0) |
| 235 |
goto err; |
| 236 |
|
| 237 |
memcpy(data+aadlen, encbuff, bytes); |
| 238 |
|
| 239 |
if (EVP_Cipher(evp, NULL, NULL, 0) < 0) |
| 240 |
goto err; |
| 241 |
|
| 242 |
if (!EVP_CIPHER_CTX_ctrl(evp, EVP_CTRL_GCM_GET_TAG, authlen, data+aadlen+bytes)) |
| 243 |
goto err; |
| 244 |
|
| 245 |
return TRUE; |
| 246 |
|
| 247 |
err: |
| 248 |
UTIL_get_lang_msg("MSG_ENCRYPT_ERROR2", pvar, "%s encrypt error(2)"); |
| 249 |
_snprintf_s(tmp, sizeof(tmp), _TRUNCATE, pvar->ts->UIMsg, |
| 250 |
get_cipher_name(pvar->crypt_state.sender_cipher)); |
| 251 |
notify_fatal_error(pvar, tmp, TRUE); |
| 252 |
return FALSE; |
| 253 |
} |
| 254 |
|
| 255 |
BOOL CRYPT_decrypt_aead(PTInstVar pvar, unsigned char *data, unsigned int bytes, unsigned int aadlen, unsigned int authlen) |
| 256 |
{ |
| 257 |
unsigned char *newbuff = NULL; |
| 258 |
unsigned int block_size = pvar->ssh2_keys[MODE_IN].enc.block_size; |
| 259 |
unsigned char lastiv[1]; |
| 260 |
char tmp[80]; |
| 261 |
EVP_CIPHER_CTX *evp = pvar->evpcip[MODE_IN]; |
| 262 |
|
| 263 |
if (bytes == 0) |
| 264 |
return TRUE; |
| 265 |
|
| 266 |
if (bytes % block_size) { |
| 267 |
UTIL_get_lang_msg("MSG_DECRYPT_ERROR1", pvar, "%s decrypt error(1): bytes %d (%d)"); |
| 268 |
_snprintf_s(tmp, sizeof(tmp), _TRUNCATE, pvar->ts->UIMsg, |
| 269 |
get_cipher_name(pvar->crypt_state.receiver_cipher), |
| 270 |
bytes, block_size); |
| 271 |
notify_fatal_error(pvar, tmp, TRUE); |
| 272 |
return FALSE; |
| 273 |
} |
| 274 |
|
| 275 |
if (bytes > encbufflen) { |
| 276 |
if ((newbuff = realloc(encbuff, bytes)) == NULL) |
| 277 |
goto err; |
| 278 |
encbuff = newbuff; |
| 279 |
encbufflen = bytes; |
| 280 |
} |
| 281 |
|
| 282 |
if (!EVP_CIPHER_CTX_ctrl(evp, EVP_CTRL_GCM_IV_GEN, 1, lastiv)) |
| 283 |
goto err; |
| 284 |
|
| 285 |
if (!EVP_CIPHER_CTX_ctrl(evp, EVP_CTRL_GCM_SET_TAG, authlen, data+aadlen+bytes)) |
| 286 |
goto err; |
| 287 |
|
| 288 |
if (aadlen && !EVP_Cipher(evp, NULL, data, aadlen) < 0) |
| 289 |
goto err; |
| 290 |
|
| 291 |
if (EVP_Cipher(evp, encbuff, data+aadlen, bytes) < 0) |
| 292 |
goto err; |
| 293 |
|
| 294 |
memcpy(data+aadlen, encbuff, bytes); |
| 295 |
|
| 296 |
if (EVP_Cipher(evp, NULL, NULL, 0) < 0) |
| 297 |
goto err; |
| 298 |
|
| 299 |
return TRUE; |
| 300 |
|
| 301 |
err: |
| 302 |
UTIL_get_lang_msg("MSG_DECRYPT_ERROR2", pvar, "%s decrypt error(2)"); |
| 303 |
_snprintf_s(tmp, sizeof(tmp), _TRUNCATE, pvar->ts->UIMsg, |
| 304 |
get_cipher_name(pvar->crypt_state.receiver_cipher)); |
| 305 |
notify_fatal_error(pvar, tmp, TRUE); |
| 306 |
return FALSE; |
| 307 |
} |
| 308 |
|
| 309 |
static void no_encrypt(PTInstVar pvar, unsigned char *buf, unsigned int bytes) |
| 310 |
{ |
| 311 |
} |
| 312 |
|
| 313 |
static void crypt_SSH2_encrypt(PTInstVar pvar, unsigned char *buf, unsigned int bytes) |
| 314 |
{ |
| 315 |
unsigned char *newbuff; |
| 316 |
int block_size = pvar->ssh2_keys[MODE_OUT].enc.block_size; |
| 317 |
char tmp[80]; |
| 318 |
|
| 319 |
if (bytes == 0) |
| 320 |
return; |
| 321 |
|
| 322 |
if (bytes % block_size) { |
| 323 |
UTIL_get_lang_msg("MSG_ENCRYPT_ERROR1", pvar, |
| 324 |
"%s encrypt error(1): bytes %d (%d)"); |
| 325 |
_snprintf_s(tmp, sizeof(tmp), _TRUNCATE, pvar->ts->UIMsg, |
| 326 |
get_cipher_name(pvar->crypt_state.sender_cipher), |
| 327 |
bytes, block_size); |
| 328 |
notify_fatal_error(pvar, tmp, TRUE); |
| 329 |
return; |
| 330 |
} |
| 331 |
|
| 332 |
if (bytes > encbufflen) { |
| 333 |
if ((newbuff = realloc(encbuff, bytes)) == NULL) |
| 334 |
return; |
| 335 |
encbuff = newbuff; |
| 336 |
encbufflen = bytes; |
| 337 |
} |
| 338 |
|
| 339 |
if (EVP_Cipher(pvar->evpcip[MODE_OUT], encbuff, buf, bytes) == 0) { |
| 340 |
UTIL_get_lang_msg("MSG_ENCRYPT_ERROR2", pvar, "%s encrypt error(2)"); |
| 341 |
_snprintf_s(tmp, sizeof(tmp), _TRUNCATE, pvar->ts->UIMsg, |
| 342 |
get_cipher_name(pvar->crypt_state.sender_cipher)); |
| 343 |
notify_fatal_error(pvar, tmp, TRUE); |
| 344 |
} else { |
| 345 |
memcpy(buf, encbuff, bytes); |
| 346 |
} |
| 347 |
} |
| 348 |
|
| 349 |
static void crypt_SSH2_decrypt(PTInstVar pvar, unsigned char *buf, unsigned int bytes) |
| 350 |
{ |
| 351 |
unsigned char *newbuff; |
| 352 |
int block_size = pvar->ssh2_keys[MODE_IN].enc.block_size; |
| 353 |
char tmp[80]; |
| 354 |
|
| 355 |
if (bytes == 0) |
| 356 |
return; |
| 357 |
|
| 358 |
if (bytes % block_size) { |
| 359 |
UTIL_get_lang_msg("MSG_DECRYPT_ERROR1", pvar, |
| 360 |
"%s decrypt error(1): bytes %d (%d)"); |
| 361 |
_snprintf_s(tmp, sizeof(tmp), _TRUNCATE, pvar->ts->UIMsg, |
| 362 |
get_cipher_name(pvar->crypt_state.receiver_cipher), |
| 363 |
bytes, block_size); |
| 364 |
notify_fatal_error(pvar, tmp, TRUE); |
| 365 |
return; |
| 366 |
} |
| 367 |
|
| 368 |
if (bytes > encbufflen) { |
| 369 |
if ((newbuff = malloc(bytes)) == NULL) |
| 370 |
return; |
| 371 |
encbuff = newbuff; |
| 372 |
encbufflen = bytes; |
| 373 |
} |
| 374 |
|
| 375 |
if (EVP_Cipher(pvar->evpcip[MODE_IN], encbuff, buf, bytes) == 0) { |
| 376 |
UTIL_get_lang_msg("MSG_DECRYPT_ERROR2", pvar, "%s decrypt error(2)"); |
| 377 |
_snprintf_s(tmp, sizeof(tmp), _TRUNCATE, pvar->ts->UIMsg, |
| 378 |
get_cipher_name(pvar->crypt_state.receiver_cipher)); |
| 379 |
notify_fatal_error(pvar, tmp, TRUE); |
| 380 |
} else { |
| 381 |
memcpy(buf, encbuff, bytes); |
| 382 |
} |
| 383 |
} |
| 384 |
|
| 385 |
static void c3DES_encrypt(PTInstVar pvar, unsigned char *buf, unsigned int bytes) |
| 386 |
{ |
| 387 |
Cipher3DESState *encryptstate = &pvar->crypt_state.enc.c3DES; |
| 388 |
|
| 389 |
DES_ncbc_encrypt(buf, buf, bytes, |
| 390 |
&encryptstate->k1, &encryptstate->ivec1, DES_ENCRYPT); |
| 391 |
DES_ncbc_encrypt(buf, buf, bytes, |
| 392 |
&encryptstate->k2, &encryptstate->ivec2, DES_DECRYPT); |
| 393 |
DES_ncbc_encrypt(buf, buf, bytes, |
| 394 |
&encryptstate->k3, &encryptstate->ivec3, DES_ENCRYPT); |
| 395 |
} |
| 396 |
|
| 397 |
static void c3DES_decrypt(PTInstVar pvar, unsigned char *buf, unsigned int bytes) |
| 398 |
{ |
| 399 |
Cipher3DESState *decryptstate = &pvar->crypt_state.dec.c3DES; |
| 400 |
|
| 401 |
DES_ncbc_encrypt(buf, buf, bytes, |
| 402 |
&decryptstate->k3, &decryptstate->ivec3, DES_DECRYPT); |
| 403 |
DES_ncbc_encrypt(buf, buf, bytes, |
| 404 |
&decryptstate->k2, &decryptstate->ivec2, DES_ENCRYPT); |
| 405 |
DES_ncbc_encrypt(buf, buf, bytes, |
| 406 |
&decryptstate->k1, &decryptstate->ivec1, DES_DECRYPT); |
| 407 |
} |
| 408 |
|
| 409 |
static void cDES_encrypt(PTInstVar pvar, unsigned char *buf, unsigned int bytes) |
| 410 |
{ |
| 411 |
CipherDESState *encryptstate = &pvar->crypt_state.enc.cDES; |
| 412 |
|
| 413 |
DES_ncbc_encrypt(buf, buf, bytes, |
| 414 |
&encryptstate->k, &encryptstate->ivec, DES_ENCRYPT); |
| 415 |
} |
| 416 |
|
| 417 |
static void cDES_decrypt(PTInstVar pvar, unsigned char *buf, unsigned int bytes) |
| 418 |
{ |
| 419 |
CipherDESState *decryptstate = &pvar->crypt_state.dec.cDES; |
| 420 |
|
| 421 |
DES_ncbc_encrypt(buf, buf, bytes, |
| 422 |
&decryptstate->k, &decryptstate->ivec, DES_DECRYPT); |
| 423 |
} |
| 424 |
|
| 425 |
static void flip_endianness(unsigned char *cbuf, unsigned int bytes) |
| 426 |
{ |
| 427 |
uint32 *buf = (uint32 *) cbuf; |
| 428 |
int count = bytes / 4; |
| 429 |
|
| 430 |
while (count > 0) { |
| 431 |
uint32 w = *buf; |
| 432 |
|
| 433 |
*buf = ((w << 24) & 0xFF000000) | ((w << 8) & 0x00FF0000) |
| 434 |
| ((w >> 8) & 0x0000FF00) | ((w >> 24) & 0x000000FF); |
| 435 |
count--; |
| 436 |
buf++; |
| 437 |
} |
| 438 |
} |
| 439 |
|
| 440 |
static void cBlowfish_encrypt(PTInstVar pvar, unsigned char *buf, unsigned int bytes) |
| 441 |
{ |
| 442 |
CipherBlowfishState *encryptstate = |
| 443 |
&pvar->crypt_state.enc.cBlowfish; |
| 444 |
|
| 445 |
flip_endianness(buf, bytes); |
| 446 |
BF_cbc_encrypt(buf, buf, bytes, &encryptstate->k, encryptstate->ivec, |
| 447 |
BF_ENCRYPT); |
| 448 |
flip_endianness(buf, bytes); |
| 449 |
} |
| 450 |
|
| 451 |
static void cBlowfish_decrypt(PTInstVar pvar, unsigned char *buf, unsigned int bytes) |
| 452 |
{ |
| 453 |
CipherBlowfishState *decryptstate = |
| 454 |
&pvar->crypt_state.dec.cBlowfish; |
| 455 |
|
| 456 |
flip_endianness(buf, bytes); |
| 457 |
BF_cbc_encrypt(buf, buf, bytes, &decryptstate->k, decryptstate->ivec, |
| 458 |
BF_DECRYPT); |
| 459 |
flip_endianness(buf, bytes); |
| 460 |
} |
| 461 |
|
| 462 |
void CRYPT_set_random_data(PTInstVar pvar, unsigned char *buf, unsigned int bytes) |
| 463 |
{ |
| 464 |
int ret; |
| 465 |
|
| 466 |
// OpenSSL 1.1.1���g���������AWindowsMe���� RAND_bytes() �������o�����������B |
| 467 |
logprintf(LOG_LEVEL_VERBOSE, "%s: RAND_bytes call", __FUNCTION__); |
| 468 |
ret = RAND_bytes(buf, bytes); |
| 469 |
if (ret < 0) { |
| 470 |
logprintf(LOG_LEVEL_ERROR, "%s: RAND_bytes error(%d)", __FUNCTION__, ret); |
| 471 |
} |
| 472 |
} |
| 473 |
|
| 474 |
void CRYPT_initialize_random_numbers(PTInstVar pvar) |
| 475 |
{ |
| 476 |
// ���������������������� |
| 477 |
// http://www.mail-archive.com/openssl-users@openssl.org/msg60484.html |
| 478 |
//RAND_screen(); |
| 479 |
} |
| 480 |
|
| 481 |
static BIGNUM *get_bignum(unsigned char *bytes) |
| 482 |
{ |
| 483 |
int bits = get_ushort16_MSBfirst(bytes); |
| 484 |
|
| 485 |
return BN_bin2bn(bytes + 2, (bits + 7) / 8, NULL); |
| 486 |
} |
| 487 |
|
| 488 |
// make_key()�� fingerprint �����������p���������Astatic�������B(2006.3.27 yutaka) |
| 489 |
RSA *make_key(PTInstVar pvar, |
| 490 |
int bits, unsigned char *exp, |
| 491 |
unsigned char *mod) |
| 492 |
{ |
| 493 |
RSA *key = RSA_new(); |
| 494 |
BIGNUM *e = NULL, *n = NULL; |
| 495 |
|
| 496 |
if (key != NULL) { |
| 497 |
// OpenSSL 1.1.0����RSA�\�����������o�[�������A�N�Z�X�������������A |
| 498 |
// RSA_set0_key���������������K�v�������B |
| 499 |
e = get_bignum(exp); |
| 500 |
n = get_bignum(mod); |
| 501 |
RSA_set0_key(key, n, e, NULL); |
| 502 |
} |
| 503 |
|
| 504 |
if (key == NULL || e == NULL || n == NULL) { |
| 505 |
UTIL_get_lang_msg("MSG_RSAKEY_SETUP_ERROR", pvar, |
| 506 |
"Error setting up RSA keys"); |
| 507 |
notify_fatal_error(pvar, pvar->ts->UIMsg, TRUE); |
| 508 |
|
| 509 |
if (key != NULL) { |
| 510 |
if (e != NULL) { |
| 511 |
BN_free(e); |
| 512 |
} |
| 513 |
if (n != NULL) { |
| 514 |
BN_free(n); |
| 515 |
} |
| 516 |
RSA_free(key); |
| 517 |
} |
| 518 |
|
| 519 |
return NULL; |
| 520 |
} else { |
| 521 |
return key; |
| 522 |
} |
| 523 |
} |
| 524 |
|
| 525 |
void CRYPT_set_server_cookie(PTInstVar pvar, unsigned char *cookie) |
| 526 |
{ |
| 527 |
if (SSHv1(pvar)) { |
| 528 |
memcpy(pvar->crypt_state.server_cookie, cookie, SSH_COOKIE_LENGTH); |
| 529 |
} else { |
| 530 |
memcpy(pvar->crypt_state.server_cookie, cookie, |
| 531 |
SSH2_COOKIE_LENGTH); |
| 532 |
} |
| 533 |
} |
| 534 |
|
| 535 |
void CRYPT_set_client_cookie(PTInstVar pvar, unsigned char *cookie) |
| 536 |
{ |
| 537 |
if (SSHv2(pvar)) { |
| 538 |
memcpy(pvar->crypt_state.client_cookie, cookie, |
| 539 |
SSH2_COOKIE_LENGTH); |
| 540 |
} |
| 541 |
} |
| 542 |
|
| 543 |
BOOL CRYPT_set_server_RSA_key(PTInstVar pvar, |
| 544 |
int bits, unsigned char *exp, |
| 545 |
unsigned char *mod) |
| 546 |
{ |
| 547 |
pvar->crypt_state.server_key.RSA_key = make_key(pvar, bits, exp, mod); |
| 548 |
|
| 549 |
return pvar->crypt_state.server_key.RSA_key != NULL; |
| 550 |
} |
| 551 |
|
| 552 |
BOOL CRYPT_set_host_RSA_key(PTInstVar pvar, |
| 553 |
int bits, unsigned char *exp, |
| 554 |
unsigned char *mod) |
| 555 |
{ |
| 556 |
pvar->crypt_state.host_key.RSA_key = make_key(pvar, bits, exp, mod); |
| 557 |
|
| 558 |
return pvar->crypt_state.host_key.RSA_key != NULL; |
| 559 |
} |
| 560 |
|
| 561 |
BOOL CRYPT_set_supported_ciphers(PTInstVar pvar, int sender_ciphers, |
| 562 |
int receiver_ciphers) |
| 563 |
{ |
| 564 |
int cipher_mask; |
| 565 |
|
| 566 |
if (SSHv1(pvar)) { |
| 567 |
cipher_mask = (1 << SSH_CIPHER_DES) |
| 568 |
| (1 << SSH_CIPHER_3DES) |
| 569 |
| (1 << SSH_CIPHER_BLOWFISH); |
| 570 |
|
| 571 |
} else { // for SSH2(yutaka) |
| 572 |
// SSH2���T�|�[�g�����f�[�^���M�p�A���S���Y���i���J�������p�������j |
| 573 |
cipher_mask =((1 << SSH2_CIPHER_3DES_CBC) |
| 574 |
| (1 << SSH2_CIPHER_AES128_CBC) |
| 575 |
| (1 << SSH2_CIPHER_AES192_CBC) |
| 576 |
| (1 << SSH2_CIPHER_AES256_CBC) |
| 577 |
| (1 << SSH2_CIPHER_BLOWFISH_CBC) |
| 578 |
| (1 << SSH2_CIPHER_AES128_CTR) |
| 579 |
| (1 << SSH2_CIPHER_AES192_CTR) |
| 580 |
| (1 << SSH2_CIPHER_AES256_CTR) |
| 581 |
| (1 << SSH2_CIPHER_ARCFOUR) |
| 582 |
| (1 << SSH2_CIPHER_ARCFOUR128) |
| 583 |
| (1 << SSH2_CIPHER_ARCFOUR256) |
| 584 |
| (1 << SSH2_CIPHER_CAST128_CBC) |
| 585 |
| (1 << SSH2_CIPHER_3DES_CTR) |
| 586 |
| (1 << SSH2_CIPHER_BLOWFISH_CTR) |
| 587 |
| (1 << SSH2_CIPHER_CAST128_CTR) |
| 588 |
| (1 << SSH2_CIPHER_CAMELLIA128_CBC) |
| 589 |
| (1 << SSH2_CIPHER_CAMELLIA192_CBC) |
| 590 |
| (1 << SSH2_CIPHER_CAMELLIA256_CBC) |
| 591 |
| (1 << SSH2_CIPHER_CAMELLIA128_CTR) |
| 592 |
| (1 << SSH2_CIPHER_CAMELLIA192_CTR) |
| 593 |
| (1 << SSH2_CIPHER_CAMELLIA256_CTR) |
| 594 |
| (1 << SSH2_CIPHER_AES128_GCM) |
| 595 |
| (1 << SSH2_CIPHER_AES256_GCM) |
| 596 |
); |
| 597 |
} |
| 598 |
|
| 599 |
sender_ciphers &= cipher_mask; |
| 600 |
receiver_ciphers &= cipher_mask; |
| 601 |
pvar->crypt_state.supported_sender_ciphers = sender_ciphers; |
| 602 |
pvar->crypt_state.supported_receiver_ciphers = receiver_ciphers; |
| 603 |
|
| 604 |
if (sender_ciphers == 0) { |
| 605 |
UTIL_get_lang_msg("MSG_UNAVAILABLE_CIPHERS_ERROR", pvar, |
| 606 |
"The server does not support any of the TTSSH encryption algorithms.\n" |
| 607 |
"A secure connection cannot be made in the TTSSH-to-server direction.\n" |
| 608 |
"The connection will be closed."); |
| 609 |
notify_fatal_error(pvar, pvar->ts->UIMsg, TRUE); |
| 610 |
return FALSE; |
| 611 |
} else if (receiver_ciphers == 0) { |
| 612 |
UTIL_get_lang_msg("MSG_UNAVAILABLE_CIPHERS_ERROR", pvar, |
| 613 |
"The server does not support any of the TTSSH encryption algorithms.\n" |
| 614 |
"A secure connection cannot be made in the TTSSH-to-server direction.\n" |
| 615 |
"The connection will be closed."); |
| 616 |
notify_fatal_error(pvar, pvar->ts->UIMsg, TRUE); |
| 617 |
return FALSE; |
| 618 |
} else { |
| 619 |
return TRUE; |
| 620 |
} |
| 621 |
} |
| 622 |
|
| 623 |
unsigned int CRYPT_get_decryption_block_size(PTInstVar pvar) |
| 624 |
{ |
| 625 |
if (SSHv1(pvar)) { |
| 626 |
return 8; |
| 627 |
} else { |
| 628 |
// �p�P�b�g���M���������������A���S���Y�����u���b�N�T�C�Y (2004.11.7 yutaka) |
| 629 |
// cf. 3DES=8, AES128=16 |
| 630 |
return (pvar->ssh2_keys[MODE_IN].enc.block_size); |
| 631 |
} |
| 632 |
} |
| 633 |
|
| 634 |
unsigned int CRYPT_get_encryption_block_size(PTInstVar pvar) |
| 635 |
{ |
| 636 |
if (SSHv1(pvar)) { |
| 637 |
return 8; |
| 638 |
} else { |
| 639 |
// �p�P�b�g���M���������������A���S���Y�����u���b�N�T�C�Y (2004.11.7 yutaka) |
| 640 |
// cf. 3DES=8, AES128=16 |
| 641 |
return (pvar->ssh2_keys[MODE_OUT].enc.block_size); |
| 642 |
} |
| 643 |
} |
| 644 |
|
| 645 |
unsigned int CRYPT_get_receiver_MAC_size(PTInstVar pvar) |
| 646 |
{ |
| 647 |
struct Mac *mac; |
| 648 |
|
| 649 |
if (SSHv1(pvar)) { |
| 650 |
return 0; |
| 651 |
|
| 652 |
} else { // for SSH2(yutaka) |
| 653 |
mac = &pvar->ssh2_keys[MODE_IN].mac; |
| 654 |
if (mac == NULL || mac->enabled == 0) |
| 655 |
return 0; |
| 656 |
|
| 657 |
return (pvar->ssh2_keys[MODE_IN].mac.mac_len); |
| 658 |
} |
| 659 |
|
| 660 |
} |
| 661 |
|
| 662 |
// HMAC������ |
| 663 |
// ���{������ SSH2 �������g�p�������B |
| 664 |
// (2004.12.17 yutaka) |
| 665 |
BOOL CRYPT_verify_receiver_MAC(PTInstVar pvar, uint32 sequence_number, |
| 666 |
char *data, int len, char *MAC) |
| 667 |
{ |
| 668 |
HMAC_CTX *c = NULL; |
| 669 |
unsigned char m[EVP_MAX_MD_SIZE]; |
| 670 |
unsigned char b[4]; |
| 671 |
struct Mac *mac; |
| 672 |
|
| 673 |
mac = &pvar->ssh2_keys[MODE_IN].mac; |
| 674 |
|
| 675 |
// HMAC�������L���������������A����OK�����������B |
| 676 |
if (mac == NULL || mac->enabled == 0) |
| 677 |
return TRUE; |
| 678 |
|
| 679 |
if (mac->key == NULL) { |
| 680 |
logprintf(LOG_LEVEL_VERBOSE, "HMAC key is NULL(seq %lu len %d)", sequence_number, len); |
| 681 |
goto error; |
| 682 |
} |
| 683 |
|
| 684 |
if ((u_int)mac->mac_len > sizeof(m)) { |
| 685 |
logprintf(LOG_LEVEL_VERBOSE, "HMAC len(%d) is larger than %d bytes(seq %lu len %d)", |
| 686 |
mac->mac_len, sizeof(m), sequence_number, len); |
| 687 |
goto error; |
| 688 |
} |
| 689 |
|
| 690 |
c = HMAC_CTX_new(); |
| 691 |
if (c == NULL) |
| 692 |
goto error; |
| 693 |
|
| 694 |
HMAC_Init(c, mac->key, mac->key_len, mac->md); |
| 695 |
set_uint32_MSBfirst(b, sequence_number); |
| 696 |
HMAC_Update(c, b, sizeof(b)); |
| 697 |
HMAC_Update(c, data, len); |
| 698 |
HMAC_Final(c, m, NULL); |
| 699 |
// HMAC_cleanup()��OpenSSL 1.1.0�����������AHMAC_CTX_free()���W���������B |
| 700 |
|
| 701 |
if (memcmp(m, MAC, mac->mac_len)) { |
| 702 |
logprintf(LOG_LEVEL_VERBOSE, "HMAC key is not matched(seq %lu len %d)", sequence_number, len); |
| 703 |
logprintf_hexdump(LOG_LEVEL_VERBOSE, m, mac->mac_len, "m:"); |
| 704 |
logprintf_hexdump(LOG_LEVEL_VERBOSE, MAC, mac->mac_len, "MAC:"); |
| 705 |
goto error; |
| 706 |
} |
| 707 |
|
| 708 |
HMAC_CTX_free(c); |
| 709 |
|
| 710 |
return TRUE; |
| 711 |
|
| 712 |
error: |
| 713 |
if (c) |
| 714 |
HMAC_CTX_free(c); |
| 715 |
|
| 716 |
return FALSE; |
| 717 |
} |
| 718 |
|
| 719 |
unsigned int CRYPT_get_sender_MAC_size(PTInstVar pvar) |
| 720 |
{ |
| 721 |
struct Mac *mac; |
| 722 |
|
| 723 |
if (SSHv2(pvar)) { // for SSH2(yutaka) |
| 724 |
mac = &pvar->ssh2_keys[MODE_OUT].mac; |
| 725 |
if (mac == NULL || mac->enabled == 0) |
| 726 |
return 0; |
| 727 |
|
| 728 |
return (mac->mac_len); |
| 729 |
} |
| 730 |
|
| 731 |
return 0; |
| 732 |
} |
| 733 |
|
| 734 |
// for SSH2 |
| 735 |
BOOL CRYPT_build_sender_MAC(PTInstVar pvar, uint32 sequence_number, |
| 736 |
char *data, int len, char *MAC) |
| 737 |
{ |
| 738 |
HMAC_CTX *c = NULL; |
| 739 |
static u_char m[EVP_MAX_MD_SIZE]; |
| 740 |
u_char b[4]; |
| 741 |
struct Mac *mac; |
| 742 |
|
| 743 |
if (SSHv2(pvar)) { // for SSH2(yutaka) |
| 744 |
mac = &pvar->ssh2_keys[MODE_OUT].mac; |
| 745 |
if (mac == NULL || mac->enabled == 0) |
| 746 |
return FALSE; |
| 747 |
|
| 748 |
c = HMAC_CTX_new(); |
| 749 |
if (c == NULL) |
| 750 |
return FALSE; |
| 751 |
|
| 752 |
HMAC_Init(c, mac->key, mac->key_len, mac->md); |
| 753 |
set_uint32_MSBfirst(b, sequence_number); |
| 754 |
HMAC_Update(c, b, sizeof(b)); |
| 755 |
HMAC_Update(c, data, len); |
| 756 |
HMAC_Final(c, m, NULL); |
| 757 |
// HMAC_cleanup()��OpenSSL 1.1.0�����������AHMAC_CTX_free()���W���������B |
| 758 |
|
| 759 |
// 20�o�C�g�������R�s�[ |
| 760 |
memcpy(MAC, m, pvar->ssh2_keys[MODE_OUT].mac.mac_len); |
| 761 |
// memcpy(MAC, m, sizeof(m)); |
| 762 |
|
| 763 |
HMAC_CTX_free(c); |
| 764 |
|
| 765 |
return TRUE; |
| 766 |
} |
| 767 |
|
| 768 |
return TRUE; |
| 769 |
|
| 770 |
} |
| 771 |
|
| 772 |
static int choose_cipher(PTInstVar pvar, int supported) |
| 773 |
{ |
| 774 |
int i; |
| 775 |
|
| 776 |
for (i = 0; pvar->session_settings.CipherOrder[i] != 0; i++) { |
| 777 |
int cipher = pvar->session_settings.CipherOrder[i] - '0'; |
| 778 |
|
| 779 |
if (cipher == SSH_CIPHER_NONE) { |
| 780 |
break; |
| 781 |
} else if ((supported & (1 << cipher)) != 0) { |
| 782 |
return cipher; |
| 783 |
} |
| 784 |
} |
| 785 |
|
| 786 |
return SSH_CIPHER_NONE; |
| 787 |
} |
| 788 |
|
| 789 |
BOOL CRYPT_choose_ciphers(PTInstVar pvar) |
| 790 |
{ |
| 791 |
if (SSHv1(pvar)) { |
| 792 |
pvar->crypt_state.sender_cipher = choose_cipher(pvar, |
| 793 |
pvar->crypt_state. |
| 794 |
supported_sender_ciphers); |
| 795 |
pvar->crypt_state.receiver_cipher = |
| 796 |
choose_cipher(pvar, pvar->crypt_state.supported_receiver_ciphers); |
| 797 |
|
| 798 |
} else { // SSH2(yutaka) |
| 799 |
if (pvar->ciphers[MODE_OUT] == NULL) { |
| 800 |
pvar->crypt_state.sender_cipher = SSH_CIPHER_NONE; |
| 801 |
} |
| 802 |
else { |
| 803 |
pvar->crypt_state.sender_cipher = get_cipher_id(pvar->ciphers[MODE_OUT]); |
| 804 |
} |
| 805 |
if (pvar->ciphers[MODE_IN] == NULL) { |
| 806 |
pvar->crypt_state.receiver_cipher = SSH_CIPHER_NONE; |
| 807 |
} |
| 808 |
else { |
| 809 |
pvar->crypt_state.receiver_cipher = get_cipher_id(pvar->ciphers[MODE_IN]); |
| 810 |
} |
| 811 |
} |
| 812 |
|
| 813 |
if (pvar->crypt_state.sender_cipher == SSH_CIPHER_NONE |
| 814 |
|| pvar->crypt_state.receiver_cipher == SSH_CIPHER_NONE) { |
| 815 |
UTIL_get_lang_msg("MSG_CIPHER_NONE_ERROR", pvar, |
| 816 |
"All the encryption algorithms that this program and the server both understand have been disabled.\n" |
| 817 |
"To communicate with this server, you will have to enable some more ciphers\n" |
| 818 |
"in the TTSSH Setup dialog box when you run Tera Term again.\n" |
| 819 |
"This connection will now close."); |
| 820 |
notify_fatal_error(pvar, pvar->ts->UIMsg, TRUE); |
| 821 |
return FALSE; |
| 822 |
} else { |
| 823 |
return TRUE; |
| 824 |
} |
| 825 |
} |
| 826 |
|
| 827 |
unsigned int CRYPT_get_encrypted_session_key_len(PTInstVar pvar) |
| 828 |
{ |
| 829 |
int server_key_bits; |
| 830 |
int host_key_bits; |
| 831 |
int server_key_bytes; |
| 832 |
int host_key_bytes; |
| 833 |
BIGNUM *n; |
| 834 |
|
| 835 |
// OpenSSL 1.1.0����RSA�\�����������o�[�������A�N�Z�X�������������A |
| 836 |
// RSA_get0_key���������������K�v�������B |
| 837 |
RSA_get0_key(pvar->crypt_state.server_key.RSA_key, &n, NULL, NULL); |
| 838 |
server_key_bits = BN_num_bits(n); |
| 839 |
|
| 840 |
RSA_get0_key(pvar->crypt_state.host_key.RSA_key, &n, NULL, NULL); |
| 841 |
host_key_bits = BN_num_bits(n); |
| 842 |
|
| 843 |
server_key_bytes = (server_key_bits + 7) / 8; |
| 844 |
host_key_bytes = (host_key_bits + 7) / 8; |
| 845 |
|
| 846 |
if (server_key_bits < host_key_bits) { |
| 847 |
return host_key_bytes; |
| 848 |
} else { |
| 849 |
return server_key_bytes; |
| 850 |
} |
| 851 |
} |
| 852 |
|
| 853 |
int CRYPT_choose_session_key(PTInstVar pvar, |
| 854 |
unsigned char *encrypted_key_buf) |
| 855 |
{ |
| 856 |
int server_key_bits; |
| 857 |
int host_key_bits; |
| 858 |
int server_key_bytes; |
| 859 |
int host_key_bytes; |
| 860 |
int encrypted_key_bytes; |
| 861 |
int bit_delta; |
| 862 |
BIGNUM *server_n, *host_n; |
| 863 |
|
| 864 |
// OpenSSL 1.1.0����RSA�\�����������o�[�������A�N�Z�X�������������A |
| 865 |
// RSA_get0_key���������������K�v�������B |
| 866 |
RSA_get0_key(pvar->crypt_state.server_key.RSA_key, &server_n, NULL, NULL); |
| 867 |
server_key_bits = BN_num_bits(server_n); |
| 868 |
|
| 869 |
RSA_get0_key(pvar->crypt_state.host_key.RSA_key, &host_n, NULL, NULL); |
| 870 |
host_key_bits = BN_num_bits(host_n); |
| 871 |
|
| 872 |
server_key_bytes = (server_key_bits + 7) / 8; |
| 873 |
host_key_bytes = (host_key_bits + 7) / 8; |
| 874 |
|
| 875 |
if (server_key_bits < host_key_bits) { |
| 876 |
encrypted_key_bytes = host_key_bytes; |
| 877 |
bit_delta = host_key_bits - server_key_bits; |
| 878 |
} else { |
| 879 |
encrypted_key_bytes = server_key_bytes; |
| 880 |
bit_delta = server_key_bits - host_key_bits; |
| 881 |
} |
| 882 |
|
| 883 |
if (bit_delta < 128 || server_key_bits < 512 || host_key_bits < 512) { |
| 884 |
UTIL_get_lang_msg("MSG_RSAKEY_TOOWEAK_ERROR", pvar, |
| 885 |
"Server RSA keys are too weak. A secure connection cannot be established."); |
| 886 |
notify_fatal_error(pvar, pvar->ts->UIMsg, TRUE); |
| 887 |
return 0; |
| 888 |
} else { |
| 889 |
/* following Goldberg's code, I'm using MD5(servkey->n || hostkey->n || cookie) |
| 890 |
for the session ID, rather than the one specified in the RFC */ |
| 891 |
int session_buf_len = server_key_bytes + host_key_bytes + 8; |
| 892 |
char *session_buf = (char *) malloc(session_buf_len); |
| 893 |
char session_id[16]; |
| 894 |
int i; |
| 895 |
|
| 896 |
BN_bn2bin(host_n, session_buf); |
| 897 |
BN_bn2bin(server_n, |
| 898 |
session_buf + host_key_bytes); |
| 899 |
memcpy(session_buf + server_key_bytes + host_key_bytes, |
| 900 |
pvar->crypt_state.server_cookie, 8); |
| 901 |
MD5(session_buf, session_buf_len, session_id); |
| 902 |
|
| 903 |
free(session_buf); |
| 904 |
|
| 905 |
RAND_bytes(pvar->crypt_state.sender_cipher_key, |
| 906 |
SSH_SESSION_KEY_LENGTH); |
| 907 |
memcpy(pvar->crypt_state.receiver_cipher_key, |
| 908 |
pvar->crypt_state.sender_cipher_key, |
| 909 |
SSH_SESSION_KEY_LENGTH); |
| 910 |
|
| 911 |
memcpy(encrypted_key_buf + encrypted_key_bytes - |
| 912 |
SSH_SESSION_KEY_LENGTH, pvar->crypt_state.sender_cipher_key, |
| 913 |
SSH_SESSION_KEY_LENGTH); |
| 914 |
for (i = 0; i < sizeof(session_id); i++) { |
| 915 |
encrypted_key_buf[encrypted_key_bytes - |
| 916 |
SSH_SESSION_KEY_LENGTH + i] |
| 917 |
^= session_id[i]; |
| 918 |
} |
| 919 |
|
| 920 |
if (host_key_bits > server_key_bits) { |
| 921 |
if (RSA_public_encrypt(SSH_SESSION_KEY_LENGTH, |
| 922 |
encrypted_key_buf + |
| 923 |
encrypted_key_bytes - |
| 924 |
SSH_SESSION_KEY_LENGTH, |
| 925 |
encrypted_key_buf + |
| 926 |
encrypted_key_bytes - server_key_bytes, |
| 927 |
pvar->crypt_state.server_key.RSA_key, |
| 928 |
RSA_PKCS1_PADDING) < 0) |
| 929 |
return 0; |
| 930 |
|
| 931 |
if (RSA_public_encrypt(server_key_bytes, |
| 932 |
encrypted_key_buf + |
| 933 |
encrypted_key_bytes - server_key_bytes, |
| 934 |
encrypted_key_buf, |
| 935 |
pvar->crypt_state.host_key.RSA_key, |
| 936 |
RSA_PKCS1_PADDING) < 0) |
| 937 |
return 0; |
| 938 |
} else { |
| 939 |
if (RSA_public_encrypt(SSH_SESSION_KEY_LENGTH, |
| 940 |
encrypted_key_buf + |
| 941 |
encrypted_key_bytes - |
| 942 |
SSH_SESSION_KEY_LENGTH, |
| 943 |
encrypted_key_buf + |
| 944 |
encrypted_key_bytes - host_key_bytes, |
| 945 |
pvar->crypt_state.host_key.RSA_key, |
| 946 |
RSA_PKCS1_PADDING) < 0) |
| 947 |
return 0; |
| 948 |
|
| 949 |
if (RSA_public_encrypt(host_key_bytes, |
| 950 |
encrypted_key_buf + |
| 951 |
encrypted_key_bytes - host_key_bytes, |
| 952 |
encrypted_key_buf, |
| 953 |
pvar->crypt_state.server_key.RSA_key, |
| 954 |
RSA_PKCS1_PADDING) < 0) |
| 955 |
return 0; |
| 956 |
} |
| 957 |
} |
| 958 |
|
| 959 |
return 1; |
| 960 |
} |
| 961 |
|
| 962 |
int CRYPT_generate_RSA_challenge_response(PTInstVar pvar, |
| 963 |
unsigned char *challenge, |
| 964 |
int challenge_len, |
| 965 |
unsigned char *response) |
| 966 |
{ |
| 967 |
int server_key_bits; |
| 968 |
int host_key_bits; |
| 969 |
int server_key_bytes; |
| 970 |
int host_key_bytes; |
| 971 |
int session_buf_len; |
| 972 |
char *session_buf; |
| 973 |
char decrypted_challenge[48]; |
| 974 |
int decrypted_challenge_len; |
| 975 |
BIGNUM *server_n, *host_n; |
| 976 |
|
| 977 |
// OpenSSL 1.1.0����RSA�\�����������o�[�������A�N�Z�X�������������A |
| 978 |
// RSA_get0_key���������������K�v�������B |
| 979 |
RSA_get0_key(pvar->crypt_state.server_key.RSA_key, &server_n, NULL, NULL); |
| 980 |
server_key_bits = BN_num_bits(server_n); |
| 981 |
|
| 982 |
RSA_get0_key(pvar->crypt_state.host_key.RSA_key, &host_n, NULL, NULL); |
| 983 |
host_key_bits = BN_num_bits(host_n); |
| 984 |
|
| 985 |
server_key_bytes = (server_key_bits + 7) / 8; |
| 986 |
host_key_bytes = (host_key_bits + 7) / 8; |
| 987 |
session_buf_len = server_key_bytes + host_key_bytes + 8; |
| 988 |
session_buf = (char FAR *) malloc(session_buf_len); |
| 989 |
|
| 990 |
decrypted_challenge_len = |
| 991 |
RSA_private_decrypt(challenge_len, challenge, challenge, |
| 992 |
AUTH_get_cur_cred(pvar)->key_pair->rsa, |
| 993 |
RSA_PKCS1_PADDING); |
| 994 |
if (decrypted_challenge_len < 0) { |
| 995 |
free(session_buf); |
| 996 |
return 0; |
| 997 |
} |
| 998 |
if (decrypted_challenge_len >= SSH_RSA_CHALLENGE_LENGTH) { |
| 999 |
memcpy(decrypted_challenge, |
| 1000 |
challenge + decrypted_challenge_len - |
| 1001 |
SSH_RSA_CHALLENGE_LENGTH, SSH_RSA_CHALLENGE_LENGTH); |
| 1002 |
} else { |
| 1003 |
SecureZeroMemory(decrypted_challenge, |
| 1004 |
SSH_RSA_CHALLENGE_LENGTH - decrypted_challenge_len); |
| 1005 |
memcpy(decrypted_challenge + SSH_RSA_CHALLENGE_LENGTH - |
| 1006 |
decrypted_challenge_len, challenge, |
| 1007 |
decrypted_challenge_len); |
| 1008 |
} |
| 1009 |
|
| 1010 |
BN_bn2bin(host_n, session_buf); |
| 1011 |
BN_bn2bin(server_n, |
| 1012 |
session_buf + host_key_bytes); |
| 1013 |
memcpy(session_buf + server_key_bytes + host_key_bytes, |
| 1014 |
pvar->crypt_state.server_cookie, 8); |
| 1015 |
MD5(session_buf, session_buf_len, decrypted_challenge + 32); |
| 1016 |
|
| 1017 |
free(session_buf); |
| 1018 |
|
| 1019 |
MD5(decrypted_challenge, 48, response); |
| 1020 |
|
| 1021 |
return 1; |
| 1022 |
} |
| 1023 |
|
| 1024 |
static void c3DES_init(char *session_key, Cipher3DESState *state) |
| 1025 |
{ |
| 1026 |
DES_set_key((const_DES_cblock *) session_key, &state->k1); |
| 1027 |
DES_set_key((const_DES_cblock *) (session_key + 8), &state->k2); |
| 1028 |
DES_set_key((const_DES_cblock *) (session_key + 16), &state->k3); |
| 1029 |
SecureZeroMemory(state->ivec1, 8); |
| 1030 |
SecureZeroMemory(state->ivec2, 8); |
| 1031 |
SecureZeroMemory(state->ivec3, 8); |
| 1032 |
} |
| 1033 |
|
| 1034 |
static void cDES_init(char *session_key, CipherDESState *state) |
| 1035 |
{ |
| 1036 |
DES_set_key((const_DES_cblock *) session_key, &state->k); |
| 1037 |
SecureZeroMemory(state->ivec, 8); |
| 1038 |
} |
| 1039 |
|
| 1040 |
static void cBlowfish_init(char *session_key, |
| 1041 |
CipherBlowfishState *state) |
| 1042 |
{ |
| 1043 |
BF_set_key(&state->k, 32, session_key); |
| 1044 |
SecureZeroMemory(state->ivec, 8); |
| 1045 |
} |
| 1046 |
|
| 1047 |
BOOL CRYPT_start_encryption(PTInstVar pvar, int sender_flag, int receiver_flag) |
| 1048 |
{ |
| 1049 |
struct Enc *enc; |
| 1050 |
char *encryption_key = pvar->crypt_state.sender_cipher_key; |
| 1051 |
char *decryption_key = pvar->crypt_state.receiver_cipher_key; |
| 1052 |
const struct ssh2cipher *cipher; |
| 1053 |
BOOL isOK = TRUE; |
| 1054 |
|
| 1055 |
if (sender_flag) { |
| 1056 |
if (SSHv1(pvar)) { |
| 1057 |
switch (pvar->crypt_state.sender_cipher) { |
| 1058 |
case SSH_CIPHER_3DES: |
| 1059 |
c3DES_init(encryption_key, &pvar->crypt_state.enc.c3DES); |
| 1060 |
pvar->crypt_state.encrypt = c3DES_encrypt; |
| 1061 |
break; |
| 1062 |
|
| 1063 |
case SSH_CIPHER_DES: |
| 1064 |
cDES_init(encryption_key, &pvar->crypt_state.enc.cDES); |
| 1065 |
pvar->crypt_state.encrypt = cDES_encrypt; |
| 1066 |
break; |
| 1067 |
|
| 1068 |
case SSH_CIPHER_BLOWFISH: |
| 1069 |
cBlowfish_init(encryption_key, &pvar->crypt_state.enc.cBlowfish); |
| 1070 |
pvar->crypt_state.encrypt = cBlowfish_encrypt; |
| 1071 |
break; |
| 1072 |
|
| 1073 |
case SSH_CIPHER_NONE: |
| 1074 |
case SSH_CIPHER_IDEA: |
| 1075 |
case SSH_CIPHER_TSS: |
| 1076 |
case SSH_CIPHER_RC4: |
| 1077 |
isOK = FALSE; |
| 1078 |
break; |
| 1079 |
} |
| 1080 |
} |
| 1081 |
else { |
| 1082 |
// SSH2 |
| 1083 |
cipher = pvar->ciphers[MODE_OUT]; |
| 1084 |
if (cipher) { |
| 1085 |
enc = &pvar->ssh2_keys[MODE_OUT].enc; |
| 1086 |
cipher_init_SSH2(pvar->evpcip[MODE_OUT], |
| 1087 |
enc->key, get_cipher_key_len(cipher), |
| 1088 |
enc->iv, get_cipher_iv_len(cipher), |
| 1089 |
CIPHER_ENCRYPT, |
| 1090 |
get_cipher_EVP_CIPHER(cipher), |
| 1091 |
get_cipher_discard_len(cipher), |
| 1092 |
get_cipher_auth_len(cipher), |
| 1093 |
pvar); |
| 1094 |
|
| 1095 |
pvar->crypt_state.encrypt = crypt_SSH2_encrypt; |
| 1096 |
} |
| 1097 |
else { |
| 1098 |
isOK = FALSE; |
| 1099 |
} |
| 1100 |
} |
| 1101 |
} |
| 1102 |
|
| 1103 |
if (receiver_flag) { |
| 1104 |
if (SSHv1(pvar)) { |
| 1105 |
switch (pvar->crypt_state.receiver_cipher) { |
| 1106 |
case SSH_CIPHER_3DES: |
| 1107 |
c3DES_init(decryption_key, &pvar->crypt_state.dec.c3DES); |
| 1108 |
pvar->crypt_state.decrypt = c3DES_decrypt; |
| 1109 |
break; |
| 1110 |
|
| 1111 |
case SSH_CIPHER_DES: |
| 1112 |
cDES_init(decryption_key, &pvar->crypt_state.dec.cDES); |
| 1113 |
pvar->crypt_state.decrypt = cDES_decrypt; |
| 1114 |
break; |
| 1115 |
|
| 1116 |
case SSH_CIPHER_BLOWFISH: |
| 1117 |
cBlowfish_init(decryption_key, &pvar->crypt_state.dec.cBlowfish); |
| 1118 |
pvar->crypt_state.decrypt = cBlowfish_decrypt; |
| 1119 |
break; |
| 1120 |
|
| 1121 |
case SSH_CIPHER_NONE: |
| 1122 |
case SSH_CIPHER_IDEA: |
| 1123 |
case SSH_CIPHER_TSS: |
| 1124 |
case SSH_CIPHER_RC4: |
| 1125 |
isOK = FALSE; |
| 1126 |
break; |
| 1127 |
} |
| 1128 |
} |
| 1129 |
else { |
| 1130 |
// SSH2 |
| 1131 |
cipher = pvar->ciphers[MODE_IN]; |
| 1132 |
if (cipher) { |
| 1133 |
enc = &pvar->ssh2_keys[MODE_IN].enc; |
| 1134 |
cipher_init_SSH2(pvar->evpcip[MODE_IN], |
| 1135 |
enc->key, get_cipher_key_len(cipher), |
| 1136 |
enc->iv, get_cipher_iv_len(cipher), |
| 1137 |
CIPHER_DECRYPT, |
| 1138 |
get_cipher_EVP_CIPHER(cipher), |
| 1139 |
get_cipher_discard_len(cipher), |
| 1140 |
get_cipher_auth_len(cipher), |
| 1141 |
pvar); |
| 1142 |
|
| 1143 |
pvar->crypt_state.decrypt = crypt_SSH2_decrypt; |
| 1144 |
} |
| 1145 |
else { |
| 1146 |
isOK = FALSE; |
| 1147 |
} |
| 1148 |
} |
| 1149 |
} |
| 1150 |
|
| 1151 |
if (!isOK) { |
| 1152 |
UTIL_get_lang_msg("MSG_CIPHER_NOTSELECTED_ERROR", pvar, |
| 1153 |
"No cipher selected!"); |
| 1154 |
notify_fatal_error(pvar, pvar->ts->UIMsg, TRUE); |
| 1155 |
return FALSE; |
| 1156 |
} else { |
| 1157 |
SecureZeroMemory(encryption_key, CRYPT_KEY_LENGTH); |
| 1158 |
SecureZeroMemory(decryption_key, CRYPT_KEY_LENGTH); |
| 1159 |
return TRUE; |
| 1160 |
} |
| 1161 |
} |
| 1162 |
|
| 1163 |
void CRYPT_init(PTInstVar pvar) |
| 1164 |
{ |
| 1165 |
pvar->crypt_state.encrypt = no_encrypt; |
| 1166 |
pvar->crypt_state.decrypt = no_encrypt; |
| 1167 |
pvar->crypt_state.sender_cipher = SSH_CIPHER_NONE; |
| 1168 |
pvar->crypt_state.receiver_cipher = SSH_CIPHER_NONE; |
| 1169 |
pvar->crypt_state.server_key.RSA_key = NULL; |
| 1170 |
pvar->crypt_state.host_key.RSA_key = NULL; |
| 1171 |
|
| 1172 |
pvar->crypt_state.detect_attack_statics.h = NULL; |
| 1173 |
pvar->crypt_state.detect_attack_statics.n = |
| 1174 |
HASH_MINSIZE / HASH_ENTRYSIZE; |
| 1175 |
} |
| 1176 |
|
| 1177 |
void CRYPT_get_cipher_info(PTInstVar pvar, char *dest, int len) |
| 1178 |
{ |
| 1179 |
UTIL_get_lang_msg("DLG_ABOUT_CIPHER_INFO", pvar, |
| 1180 |
"%s to server, %s from server"); |
| 1181 |
_snprintf_s(dest, len, _TRUNCATE, pvar->ts->UIMsg, |
| 1182 |
get_cipher_name(pvar->crypt_state.sender_cipher), |
| 1183 |
get_cipher_name(pvar->crypt_state.receiver_cipher)); |
| 1184 |
} |
| 1185 |
|
| 1186 |
void CRYPT_get_server_key_info(PTInstVar pvar, char *dest, int len) |
| 1187 |
{ |
| 1188 |
BIGNUM *server_n, *host_n; |
| 1189 |
|
| 1190 |
// OpenSSL 1.1.0����RSA�\�����������o�[�������A�N�Z�X�������������A |
| 1191 |
// RSA_get0_key���������������K�v�������B |
| 1192 |
|
| 1193 |
if (SSHv1(pvar)) { |
| 1194 |
if (pvar->crypt_state.server_key.RSA_key == NULL |
| 1195 |
|| pvar->crypt_state.host_key.RSA_key == NULL) { |
| 1196 |
UTIL_get_lang_msg("DLG_ABOUT_KEY_NONE", pvar, "None"); |
| 1197 |
strncpy_s(dest, len, pvar->ts->UIMsg, _TRUNCATE); |
| 1198 |
} else { |
| 1199 |
RSA_get0_key(pvar->crypt_state.server_key.RSA_key, &server_n, NULL, NULL); |
| 1200 |
RSA_get0_key(pvar->crypt_state.host_key.RSA_key, &host_n, NULL, NULL); |
| 1201 |
|
| 1202 |
UTIL_get_lang_msg("DLG_ABOUT_KEY_INFO", pvar, |
| 1203 |
"%d-bit server key, %d-bit host key"); |
| 1204 |
_snprintf_s(dest, len, _TRUNCATE, pvar->ts->UIMsg, |
| 1205 |
BN_num_bits(server_n), |
| 1206 |
BN_num_bits(host_n)); |
| 1207 |
} |
| 1208 |
} else { // SSH2 |
| 1209 |
UTIL_get_lang_msg("DLG_ABOUT_KEY_INFO2", pvar, |
| 1210 |
"%d-bit client key, %d-bit server key"); |
| 1211 |
_snprintf_s(dest, len, _TRUNCATE, pvar->ts->UIMsg, |
| 1212 |
pvar->client_key_bits, |
| 1213 |
pvar->server_key_bits); |
| 1214 |
} |
| 1215 |
} |
| 1216 |
|
| 1217 |
static void destroy_public_key(CRYPTPublicKey * key) |
| 1218 |
{ |
| 1219 |
if (key->RSA_key != NULL) { |
| 1220 |
RSA_free(key->RSA_key); |
| 1221 |
key->RSA_key = NULL; |
| 1222 |
} |
| 1223 |
} |
| 1224 |
|
| 1225 |
void CRYPT_free_public_key(CRYPTPublicKey * key) |
| 1226 |
{ |
| 1227 |
destroy_public_key(key); |
| 1228 |
free(key); |
| 1229 |
} |
| 1230 |
|
| 1231 |
void CRYPT_end(PTInstVar pvar) |
| 1232 |
{ |
| 1233 |
free(encbuff); |
| 1234 |
encbuff = NULL; |
| 1235 |
encbufflen = 0; |
| 1236 |
|
| 1237 |
destroy_public_key(&pvar->crypt_state.host_key); |
| 1238 |
destroy_public_key(&pvar->crypt_state.server_key); |
| 1239 |
|
| 1240 |
if (pvar->crypt_state.detect_attack_statics.h != NULL) { |
| 1241 |
SecureZeroMemory(pvar->crypt_state.detect_attack_statics.h, |
| 1242 |
pvar->crypt_state.detect_attack_statics.n * HASH_ENTRYSIZE); |
| 1243 |
free(pvar->crypt_state.detect_attack_statics.h); |
| 1244 |
} |
| 1245 |
|
| 1246 |
SecureZeroMemory(pvar->crypt_state.sender_cipher_key, |
| 1247 |
sizeof(pvar->crypt_state.sender_cipher_key)); |
| 1248 |
SecureZeroMemory(pvar->crypt_state.receiver_cipher_key, |
| 1249 |
sizeof(pvar->crypt_state.receiver_cipher_key)); |
| 1250 |
SecureZeroMemory(pvar->crypt_state.server_cookie, |
| 1251 |
sizeof(pvar->crypt_state.server_cookie)); |
| 1252 |
SecureZeroMemory(pvar->crypt_state.client_cookie, |
| 1253 |
sizeof(pvar->crypt_state.client_cookie)); |
| 1254 |
SecureZeroMemory(&pvar->crypt_state.enc, sizeof(pvar->crypt_state.enc)); |
| 1255 |
SecureZeroMemory(&pvar->crypt_state.dec, sizeof(pvar->crypt_state.dec)); |
| 1256 |
} |
| 1257 |
|
| 1258 |
int CRYPT_passphrase_decrypt(int cipher, char *passphrase, |
| 1259 |
char *buf, int bytes) |
| 1260 |
{ |
| 1261 |
unsigned char passphrase_key[16]; |
| 1262 |
|
| 1263 |
MD5(passphrase, strlen(passphrase), passphrase_key); |
| 1264 |
|
| 1265 |
switch (cipher) { |
| 1266 |
case SSH_CIPHER_3DES:{ |
| 1267 |
Cipher3DESState state; |
| 1268 |
|
| 1269 |
DES_set_key((const_DES_cblock *) passphrase_key, |
| 1270 |
&state.k1); |
| 1271 |
DES_set_key((const_DES_cblock *) (passphrase_key + 8), |
| 1272 |
&state.k2); |
| 1273 |
DES_set_key((const_DES_cblock *) passphrase_key, |
| 1274 |
&state.k3); |
| 1275 |
SecureZeroMemory(state.ivec1, 8); |
| 1276 |
SecureZeroMemory(state.ivec2, 8); |
| 1277 |
SecureZeroMemory(state.ivec3, 8); |
| 1278 |
DES_ncbc_encrypt(buf, buf, bytes, |
| 1279 |
&state.k3, &state.ivec3, DES_DECRYPT); |
| 1280 |
DES_ncbc_encrypt(buf, buf, bytes, |
| 1281 |
&state.k2, &state.ivec2, DES_ENCRYPT); |
| 1282 |
DES_ncbc_encrypt(buf, buf, bytes, |
| 1283 |
&state.k1, &state.ivec1, DES_DECRYPT); |
| 1284 |
break; |
| 1285 |
} |
| 1286 |
|
| 1287 |
case SSH_CIPHER_DES:{ |
| 1288 |
CipherDESState state; |
| 1289 |
|
| 1290 |
cDES_init(passphrase_key, &state); |
| 1291 |
DES_ncbc_encrypt(buf, buf, bytes, |
| 1292 |
&state.k, &state.ivec, DES_DECRYPT); |
| 1293 |
break; |
| 1294 |
} |
| 1295 |
|
| 1296 |
case SSH_CIPHER_BLOWFISH:{ |
| 1297 |
CipherBlowfishState state; |
| 1298 |
|
| 1299 |
BF_set_key(&state.k, 16, passphrase_key); |
| 1300 |
SecureZeroMemory(state.ivec, 8); |
| 1301 |
flip_endianness(buf, bytes); |
| 1302 |
BF_cbc_encrypt(buf, buf, bytes, &state.k, state.ivec, |
| 1303 |
BF_DECRYPT); |
| 1304 |
flip_endianness(buf, bytes); |
| 1305 |
break; |
| 1306 |
} |
| 1307 |
|
| 1308 |
case SSH_CIPHER_NONE: |
| 1309 |
break; |
| 1310 |
|
| 1311 |
default: |
| 1312 |
SecureZeroMemory(passphrase_key, sizeof(passphrase_key)); |
| 1313 |
return 0; |
| 1314 |
} |
| 1315 |
|
| 1316 |
SecureZeroMemory(passphrase_key, sizeof(passphrase_key)); |
| 1317 |
return 1; |
| 1318 |
} |