Browse Subversion Repository
Contents of /trunk/ttssh2/ttxssh/ed25519_ge25519.c
Parent Directory
| Revision Log
Revision 5545 -
( show annotations)
( download)
( as text)
Mon Mar 17 16:06:58 2014 UTC
(9 years, 11 months ago)
by yutakapon
File MIME type: text/x-csrc
File size: 11351 byte(s)
チケット #33263
Curve25519楕円曲線DH(Diffe Hellman)アルゴリズムを使った鍵交換をサポートした。
svn+ssh://svn.sourceforge.jp/svnroot/ttssh2/branches/ssh_ed25519
ブランチからマージ。
現時点でサポートしている機能は下記の通り。
・Key Generatorで ED25519 鍵の作成
・Key Generatorで RSA/DSA/ECDSA 秘密鍵ファイルに bcrypt KDF を選択可能。
・ED25519 による公開鍵認証ログイン
・RSA(bcrypt KDF) による公開鍵認証ログイン
・DSA(bcrypt KDF) による公開鍵認証ログイン
・ECDSA(bcrypt KDF) による公開鍵認証ログイン
・Host Keyに ssh-ed25519 のサポート
| 1 |
/* $OpenBSD: ge25519.c,v 1.3 2013/12/09 11:03:45 markus Exp $ */ |
| 2 |
|
| 3 |
/* |
| 4 |
* Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange, |
| 5 |
* Peter Schwabe, Bo-Yin Yang. |
| 6 |
* Copied from supercop-20130419/crypto_sign/ed25519/ref/ge25519.c |
| 7 |
*/ |
| 8 |
|
| 9 |
//#include "includes.h" |
| 10 |
|
| 11 |
#include "ed25519_fe25519.h" |
| 12 |
#include "ed25519_sc25519.h" |
| 13 |
#include "ed25519_ge25519.h" |
| 14 |
|
| 15 |
/* |
| 16 |
* Arithmetic on the twisted Edwards curve -x^2 + y^2 = 1 + dx^2y^2 |
| 17 |
* with d = -(121665/121666) = 37095705934669439343138083508754565189542113879843219016388785533085940283555 |
| 18 |
* Base point: (15112221349535400772501151409588531511454012693041857206046113283949847762202,46316835694926478169428394003475163141307993866256225615783033603165251855960); |
| 19 |
*/ |
| 20 |
|
| 21 |
/* d */ |
| 22 |
static const fe25519 ge25519_ecd = {{0xA3, 0x78, 0x59, 0x13, 0xCA, 0x4D, 0xEB, 0x75, 0xAB, 0xD8, 0x41, 0x41, 0x4D, 0x0A, 0x70, 0x00, |
| 23 |
0x98, 0xE8, 0x79, 0x77, 0x79, 0x40, 0xC7, 0x8C, 0x73, 0xFE, 0x6F, 0x2B, 0xEE, 0x6C, 0x03, 0x52}}; |
| 24 |
/* 2*d */ |
| 25 |
static const fe25519 ge25519_ec2d = {{0x59, 0xF1, 0xB2, 0x26, 0x94, 0x9B, 0xD6, 0xEB, 0x56, 0xB1, 0x83, 0x82, 0x9A, 0x14, 0xE0, 0x00, |
| 26 |
0x30, 0xD1, 0xF3, 0xEE, 0xF2, 0x80, 0x8E, 0x19, 0xE7, 0xFC, 0xDF, 0x56, 0xDC, 0xD9, 0x06, 0x24}}; |
| 27 |
/* sqrt(-1) */ |
| 28 |
static const fe25519 ge25519_sqrtm1 = {{0xB0, 0xA0, 0x0E, 0x4A, 0x27, 0x1B, 0xEE, 0xC4, 0x78, 0xE4, 0x2F, 0xAD, 0x06, 0x18, 0x43, 0x2F, |
| 29 |
0xA7, 0xD7, 0xFB, 0x3D, 0x99, 0x00, 0x4D, 0x2B, 0x0B, 0xDF, 0xC1, 0x4F, 0x80, 0x24, 0x83, 0x2B}}; |
| 30 |
|
| 31 |
#define ge25519_p3 ge25519 |
| 32 |
|
| 33 |
typedef struct |
| 34 |
{ |
| 35 |
fe25519 x; |
| 36 |
fe25519 z; |
| 37 |
fe25519 y; |
| 38 |
fe25519 t; |
| 39 |
} ge25519_p1p1; |
| 40 |
|
| 41 |
typedef struct |
| 42 |
{ |
| 43 |
fe25519 x; |
| 44 |
fe25519 y; |
| 45 |
fe25519 z; |
| 46 |
} ge25519_p2; |
| 47 |
|
| 48 |
typedef struct |
| 49 |
{ |
| 50 |
fe25519 x; |
| 51 |
fe25519 y; |
| 52 |
} ge25519_aff; |
| 53 |
|
| 54 |
|
| 55 |
/* Packed coordinates of the base point */ |
| 56 |
const ge25519 ge25519_base = {{{0x1A, 0xD5, 0x25, 0x8F, 0x60, 0x2D, 0x56, 0xC9, 0xB2, 0xA7, 0x25, 0x95, 0x60, 0xC7, 0x2C, 0x69, |
| 57 |
0x5C, 0xDC, 0xD6, 0xFD, 0x31, 0xE2, 0xA4, 0xC0, 0xFE, 0x53, 0x6E, 0xCD, 0xD3, 0x36, 0x69, 0x21}}, |
| 58 |
{{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, |
| 59 |
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}}, |
| 60 |
{{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 61 |
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, |
| 62 |
{{0xA3, 0xDD, 0xB7, 0xA5, 0xB3, 0x8A, 0xDE, 0x6D, 0xF5, 0x52, 0x51, 0x77, 0x80, 0x9F, 0xF0, 0x20, |
| 63 |
0x7D, 0xE3, 0xAB, 0x64, 0x8E, 0x4E, 0xEA, 0x66, 0x65, 0x76, 0x8B, 0xD7, 0x0F, 0x5F, 0x87, 0x67}}}; |
| 64 |
|
| 65 |
/* Multiples of the base point in affine representation */ |
| 66 |
static const ge25519_aff ge25519_base_multiples_affine[425] = { |
| 67 |
#include "ge25519_base.data" |
| 68 |
}; |
| 69 |
|
| 70 |
static void p1p1_to_p2(ge25519_p2 *r, const ge25519_p1p1 *p) |
| 71 |
{ |
| 72 |
fe25519_mul(&r->x, &p->x, &p->t); |
| 73 |
fe25519_mul(&r->y, &p->y, &p->z); |
| 74 |
fe25519_mul(&r->z, &p->z, &p->t); |
| 75 |
} |
| 76 |
|
| 77 |
static void p1p1_to_p3(ge25519_p3 *r, const ge25519_p1p1 *p) |
| 78 |
{ |
| 79 |
p1p1_to_p2((ge25519_p2 *)r, p); |
| 80 |
fe25519_mul(&r->t, &p->x, &p->y); |
| 81 |
} |
| 82 |
|
| 83 |
static void ge25519_mixadd2(ge25519_p3 *r, const ge25519_aff *q) |
| 84 |
{ |
| 85 |
fe25519 a,b,t1,t2,c,d,e,f,g,h,qt; |
| 86 |
fe25519_mul(&qt, &q->x, &q->y); |
| 87 |
fe25519_sub(&a, &r->y, &r->x); /* A = (Y1-X1)*(Y2-X2) */ |
| 88 |
fe25519_add(&b, &r->y, &r->x); /* B = (Y1+X1)*(Y2+X2) */ |
| 89 |
fe25519_sub(&t1, &q->y, &q->x); |
| 90 |
fe25519_add(&t2, &q->y, &q->x); |
| 91 |
fe25519_mul(&a, &a, &t1); |
| 92 |
fe25519_mul(&b, &b, &t2); |
| 93 |
fe25519_sub(&e, &b, &a); /* E = B-A */ |
| 94 |
fe25519_add(&h, &b, &a); /* H = B+A */ |
| 95 |
fe25519_mul(&c, &r->t, &qt); /* C = T1*k*T2 */ |
| 96 |
fe25519_mul(&c, &c, &ge25519_ec2d); |
| 97 |
fe25519_add(&d, &r->z, &r->z); /* D = Z1*2 */ |
| 98 |
fe25519_sub(&f, &d, &c); /* F = D-C */ |
| 99 |
fe25519_add(&g, &d, &c); /* G = D+C */ |
| 100 |
fe25519_mul(&r->x, &e, &f); |
| 101 |
fe25519_mul(&r->y, &h, &g); |
| 102 |
fe25519_mul(&r->z, &g, &f); |
| 103 |
fe25519_mul(&r->t, &e, &h); |
| 104 |
} |
| 105 |
|
| 106 |
static void add_p1p1(ge25519_p1p1 *r, const ge25519_p3 *p, const ge25519_p3 *q) |
| 107 |
{ |
| 108 |
fe25519 a, b, c, d, t; |
| 109 |
|
| 110 |
fe25519_sub(&a, &p->y, &p->x); /* A = (Y1-X1)*(Y2-X2) */ |
| 111 |
fe25519_sub(&t, &q->y, &q->x); |
| 112 |
fe25519_mul(&a, &a, &t); |
| 113 |
fe25519_add(&b, &p->x, &p->y); /* B = (Y1+X1)*(Y2+X2) */ |
| 114 |
fe25519_add(&t, &q->x, &q->y); |
| 115 |
fe25519_mul(&b, &b, &t); |
| 116 |
fe25519_mul(&c, &p->t, &q->t); /* C = T1*k*T2 */ |
| 117 |
fe25519_mul(&c, &c, &ge25519_ec2d); |
| 118 |
fe25519_mul(&d, &p->z, &q->z); /* D = Z1*2*Z2 */ |
| 119 |
fe25519_add(&d, &d, &d); |
| 120 |
fe25519_sub(&r->x, &b, &a); /* E = B-A */ |
| 121 |
fe25519_sub(&r->t, &d, &c); /* F = D-C */ |
| 122 |
fe25519_add(&r->z, &d, &c); /* G = D+C */ |
| 123 |
fe25519_add(&r->y, &b, &a); /* H = B+A */ |
| 124 |
} |
| 125 |
|
| 126 |
/* See http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#doubling-dbl-2008-hwcd */ |
| 127 |
static void dbl_p1p1(ge25519_p1p1 *r, const ge25519_p2 *p) |
| 128 |
{ |
| 129 |
fe25519 a,b,c,d; |
| 130 |
fe25519_square(&a, &p->x); |
| 131 |
fe25519_square(&b, &p->y); |
| 132 |
fe25519_square(&c, &p->z); |
| 133 |
fe25519_add(&c, &c, &c); |
| 134 |
fe25519_neg(&d, &a); |
| 135 |
|
| 136 |
fe25519_add(&r->x, &p->x, &p->y); |
| 137 |
fe25519_square(&r->x, &r->x); |
| 138 |
fe25519_sub(&r->x, &r->x, &a); |
| 139 |
fe25519_sub(&r->x, &r->x, &b); |
| 140 |
fe25519_add(&r->z, &d, &b); |
| 141 |
fe25519_sub(&r->t, &r->z, &c); |
| 142 |
fe25519_sub(&r->y, &d, &b); |
| 143 |
} |
| 144 |
|
| 145 |
/* Constant-time version of: if(b) r = p */ |
| 146 |
static void cmov_aff(ge25519_aff *r, const ge25519_aff *p, unsigned char b) |
| 147 |
{ |
| 148 |
fe25519_cmov(&r->x, &p->x, b); |
| 149 |
fe25519_cmov(&r->y, &p->y, b); |
| 150 |
} |
| 151 |
|
| 152 |
static unsigned char equal(signed char b,signed char c) |
| 153 |
{ |
| 154 |
unsigned char ub = b; |
| 155 |
unsigned char uc = c; |
| 156 |
unsigned char x = ub ^ uc; /* 0: yes; 1..255: no */ |
| 157 |
crypto_uint32 y = x; /* 0: yes; 1..255: no */ |
| 158 |
y -= 1; /* 4294967295: yes; 0..254: no */ |
| 159 |
y >>= 31; /* 1: yes; 0: no */ |
| 160 |
return y; |
| 161 |
} |
| 162 |
|
| 163 |
static unsigned char negative(signed char b) |
| 164 |
{ |
| 165 |
unsigned long long x = b; /* 18446744073709551361..18446744073709551615: yes; 0..255: no */ |
| 166 |
x >>= 63; /* 1: yes; 0: no */ |
| 167 |
return (unsigned char)x; |
| 168 |
} |
| 169 |
|
| 170 |
static void choose_t(ge25519_aff *t, unsigned long long pos, signed char b) |
| 171 |
{ |
| 172 |
/* constant time */ |
| 173 |
fe25519 v; |
| 174 |
*t = ge25519_base_multiples_affine[5*pos+0]; |
| 175 |
cmov_aff(t, &ge25519_base_multiples_affine[5*pos+1],equal(b,1) | equal(b,-1)); |
| 176 |
cmov_aff(t, &ge25519_base_multiples_affine[5*pos+2],equal(b,2) | equal(b,-2)); |
| 177 |
cmov_aff(t, &ge25519_base_multiples_affine[5*pos+3],equal(b,3) | equal(b,-3)); |
| 178 |
cmov_aff(t, &ge25519_base_multiples_affine[5*pos+4],equal(b,-4)); |
| 179 |
fe25519_neg(&v, &t->x); |
| 180 |
fe25519_cmov(&t->x, &v, negative(b)); |
| 181 |
} |
| 182 |
|
| 183 |
static void setneutral(ge25519 *r) |
| 184 |
{ |
| 185 |
fe25519_setzero(&r->x); |
| 186 |
fe25519_setone(&r->y); |
| 187 |
fe25519_setone(&r->z); |
| 188 |
fe25519_setzero(&r->t); |
| 189 |
} |
| 190 |
|
| 191 |
/* ******************************************************************** |
| 192 |
* EXPORTED FUNCTIONS |
| 193 |
******************************************************************** */ |
| 194 |
|
| 195 |
/* return 0 on success, -1 otherwise */ |
| 196 |
int ge25519_unpackneg_vartime(ge25519_p3 *r, const unsigned char p[32]) |
| 197 |
{ |
| 198 |
unsigned char par; |
| 199 |
fe25519 t, chk, num, den, den2, den4, den6; |
| 200 |
fe25519_setone(&r->z); |
| 201 |
par = p[31] >> 7; |
| 202 |
fe25519_unpack(&r->y, p); |
| 203 |
fe25519_square(&num, &r->y); /* x = y^2 */ |
| 204 |
fe25519_mul(&den, &num, &ge25519_ecd); /* den = dy^2 */ |
| 205 |
fe25519_sub(&num, &num, &r->z); /* x = y^2-1 */ |
| 206 |
fe25519_add(&den, &r->z, &den); /* den = dy^2+1 */ |
| 207 |
|
| 208 |
/* Computation of sqrt(num/den) */ |
| 209 |
/* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */ |
| 210 |
fe25519_square(&den2, &den); |
| 211 |
fe25519_square(&den4, &den2); |
| 212 |
fe25519_mul(&den6, &den4, &den2); |
| 213 |
fe25519_mul(&t, &den6, &num); |
| 214 |
fe25519_mul(&t, &t, &den); |
| 215 |
|
| 216 |
fe25519_pow2523(&t, &t); |
| 217 |
/* 2. computation of r->x = t * num * den^3 */ |
| 218 |
fe25519_mul(&t, &t, &num); |
| 219 |
fe25519_mul(&t, &t, &den); |
| 220 |
fe25519_mul(&t, &t, &den); |
| 221 |
fe25519_mul(&r->x, &t, &den); |
| 222 |
|
| 223 |
/* 3. Check whether sqrt computation gave correct result, multiply by sqrt(-1) if not: */ |
| 224 |
fe25519_square(&chk, &r->x); |
| 225 |
fe25519_mul(&chk, &chk, &den); |
| 226 |
if (!fe25519_iseq_vartime(&chk, &num)) |
| 227 |
fe25519_mul(&r->x, &r->x, &ge25519_sqrtm1); |
| 228 |
|
| 229 |
/* 4. Now we have one of the two square roots, except if input was not a square */ |
| 230 |
fe25519_square(&chk, &r->x); |
| 231 |
fe25519_mul(&chk, &chk, &den); |
| 232 |
if (!fe25519_iseq_vartime(&chk, &num)) |
| 233 |
return -1; |
| 234 |
|
| 235 |
/* 5. Choose the desired square root according to parity: */ |
| 236 |
if(fe25519_getparity(&r->x) != (1-par)) |
| 237 |
fe25519_neg(&r->x, &r->x); |
| 238 |
|
| 239 |
fe25519_mul(&r->t, &r->x, &r->y); |
| 240 |
return 0; |
| 241 |
} |
| 242 |
|
| 243 |
void ge25519_pack(unsigned char r[32], const ge25519_p3 *p) |
| 244 |
{ |
| 245 |
fe25519 tx, ty, zi; |
| 246 |
fe25519_invert(&zi, &p->z); |
| 247 |
fe25519_mul(&tx, &p->x, &zi); |
| 248 |
fe25519_mul(&ty, &p->y, &zi); |
| 249 |
fe25519_pack(r, &ty); |
| 250 |
r[31] ^= fe25519_getparity(&tx) << 7; |
| 251 |
} |
| 252 |
|
| 253 |
int ge25519_isneutral_vartime(const ge25519_p3 *p) |
| 254 |
{ |
| 255 |
int ret = 1; |
| 256 |
if(!fe25519_iszero(&p->x)) ret = 0; |
| 257 |
if(!fe25519_iseq_vartime(&p->y, &p->z)) ret = 0; |
| 258 |
return ret; |
| 259 |
} |
| 260 |
|
| 261 |
/* computes [s1]p1 + [s2]p2 */ |
| 262 |
void ge25519_double_scalarmult_vartime(ge25519_p3 *r, const ge25519_p3 *p1, const sc25519 *s1, const ge25519_p3 *p2, const sc25519 *s2) |
| 263 |
{ |
| 264 |
ge25519_p1p1 tp1p1; |
| 265 |
ge25519_p3 pre[16]; |
| 266 |
unsigned char b[127]; |
| 267 |
int i; |
| 268 |
|
| 269 |
/* precomputation s2 s1 */ |
| 270 |
setneutral(pre); /* 00 00 */ |
| 271 |
pre[1] = *p1; /* 00 01 */ |
| 272 |
dbl_p1p1(&tp1p1,(ge25519_p2 *)p1); p1p1_to_p3( &pre[2], &tp1p1); /* 00 10 */ |
| 273 |
add_p1p1(&tp1p1,&pre[1], &pre[2]); p1p1_to_p3( &pre[3], &tp1p1); /* 00 11 */ |
| 274 |
pre[4] = *p2; /* 01 00 */ |
| 275 |
add_p1p1(&tp1p1,&pre[1], &pre[4]); p1p1_to_p3( &pre[5], &tp1p1); /* 01 01 */ |
| 276 |
add_p1p1(&tp1p1,&pre[2], &pre[4]); p1p1_to_p3( &pre[6], &tp1p1); /* 01 10 */ |
| 277 |
add_p1p1(&tp1p1,&pre[3], &pre[4]); p1p1_to_p3( &pre[7], &tp1p1); /* 01 11 */ |
| 278 |
dbl_p1p1(&tp1p1,(ge25519_p2 *)p2); p1p1_to_p3( &pre[8], &tp1p1); /* 10 00 */ |
| 279 |
add_p1p1(&tp1p1,&pre[1], &pre[8]); p1p1_to_p3( &pre[9], &tp1p1); /* 10 01 */ |
| 280 |
dbl_p1p1(&tp1p1,(ge25519_p2 *)&pre[5]); p1p1_to_p3(&pre[10], &tp1p1); /* 10 10 */ |
| 281 |
add_p1p1(&tp1p1,&pre[3], &pre[8]); p1p1_to_p3(&pre[11], &tp1p1); /* 10 11 */ |
| 282 |
add_p1p1(&tp1p1,&pre[4], &pre[8]); p1p1_to_p3(&pre[12], &tp1p1); /* 11 00 */ |
| 283 |
add_p1p1(&tp1p1,&pre[1],&pre[12]); p1p1_to_p3(&pre[13], &tp1p1); /* 11 01 */ |
| 284 |
add_p1p1(&tp1p1,&pre[2],&pre[12]); p1p1_to_p3(&pre[14], &tp1p1); /* 11 10 */ |
| 285 |
add_p1p1(&tp1p1,&pre[3],&pre[12]); p1p1_to_p3(&pre[15], &tp1p1); /* 11 11 */ |
| 286 |
|
| 287 |
sc25519_2interleave2(b,s1,s2); |
| 288 |
|
| 289 |
/* scalar multiplication */ |
| 290 |
*r = pre[b[126]]; |
| 291 |
for(i=125;i>=0;i--) |
| 292 |
{ |
| 293 |
dbl_p1p1(&tp1p1, (ge25519_p2 *)r); |
| 294 |
p1p1_to_p2((ge25519_p2 *) r, &tp1p1); |
| 295 |
dbl_p1p1(&tp1p1, (ge25519_p2 *)r); |
| 296 |
if(b[i]!=0) |
| 297 |
{ |
| 298 |
p1p1_to_p3(r, &tp1p1); |
| 299 |
add_p1p1(&tp1p1, r, &pre[b[i]]); |
| 300 |
} |
| 301 |
if(i != 0) p1p1_to_p2((ge25519_p2 *)r, &tp1p1); |
| 302 |
else p1p1_to_p3(r, &tp1p1); |
| 303 |
} |
| 304 |
} |
| 305 |
|
| 306 |
void ge25519_scalarmult_base(ge25519_p3 *r, const sc25519 *s) |
| 307 |
{ |
| 308 |
signed char b[85]; |
| 309 |
int i; |
| 310 |
ge25519_aff t; |
| 311 |
sc25519_window3(b,s); |
| 312 |
|
| 313 |
choose_t((ge25519_aff *)r, 0, b[0]); |
| 314 |
fe25519_setone(&r->z); |
| 315 |
fe25519_mul(&r->t, &r->x, &r->y); |
| 316 |
for(i=1;i<85;i++) |
| 317 |
{ |
| 318 |
choose_t(&t, (unsigned long long) i, b[i]); |
| 319 |
ge25519_mixadd2(r, &t); |
| 320 |
} |
| 321 |
} |
| |