• R/O
  • SSH

Commit

Tags
No Tags

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

Commit MetaInfo

Revision1fc701cae23ea87cedfe9e1697ff025ae601168f (tree)
Time2008-12-03 01:36:29
Authoriselllo
Commiteriselllo

Log Message

I added a code which shows how to create your own personalized beamer style using some templates.
See also the contribution on

given by Eric Rasmusen.

Change Summary

Incremental Difference

diff -r 17de3a02c32b -r 1fc701cae23e latex-documents/exploratory_research.tex
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/latex-documents/exploratory_research.tex Tue Dec 02 16:36:29 2008 +0000
@@ -0,0 +1,515 @@
1+% Copyright 2007 by Till Tantau
2+%
3+% This file may be distributed and/or modified
4+%
5+% 1. under the LaTeX Project Public License and/or
6+% 2. under the GNU Public License.
7+%
8+% See the file doc/licenses/LICENSE for more details.
9+
10+
11+
12+\documentclass{beamer}
13+%\newcommand{\ol}{\overline}
14+\renewcommand{\i}{\int}
15+\newcommand{\n}{\nabla}
16+\newcommand{\x}{\vec x\; }
17+\renewcommand{\d}{\dag}
18+\newcommand{\h}{\hat}
19+\newcommand{\p}{\partial}
20+\renewcommand{\v}{\vert}
21+\renewcommand{\l}{\langle}
22+\renewcommand{\r}{\rangle}
23+\newcommand{\f}{\frac}
24+\newcommand{\s}{\sum}
25+\newcommand{\lm}[1]{\lim_{#1\to\infty}}
26+% \renewcommand{\in}{\infty}
27+\newcommand{\rro}{\right)}
28+\newcommand{\lro}{\left( }
29+\newcommand{\lsq}{\left[}
30+\newcommand{\rsq}{\right]}
31+\newcommand{\rcu}{\right\}}
32+\newcommand{\lcu}{\left\{}
33+\newcommand{\be}{\begin{equation}}
34+\newcommand{\ee}{\end{equation}}
35+\newcommand{\bi}{\begin{itemize}}
36+\newcommand{\ei}{\end{itemize}}
37+\newcommand{\ben}{\begin{enumerate}}
38+\newcommand{\een}{\end{enumerate}}
39+\newcommand{\esp}{ESPResSo}
40+
41+
42+
43+\newcommand{\jc}{{\it Journal of Colloid and Interface Science}}
44+\newcommand{\jas}{{\it Journal of Aerosol Science}}
45+\newcommand{\pra}{{\it Physical Review A}}
46+\newcommand{\prb}{{\it Physical Review B}}
47+\newcommand{\pre}{{\it Physical Review E}}
48+\newcommand{\prl}{{\it Physical Review Letters}}
49+
50+
51+%Fine preambolo
52+
53+
54+
55+\newcommand{\unit}{\hat{\bf n}}
56+% \newcommand{\pol}{\hat{\bf e}}
57+\newcommand{\rv}{{\bf r}}
58+\newcommand{\Ev}{{\bf E}}
59+\newcommand{\Bv}{{\bf B}}
60+\newcommand{\Ec}{{\cal E}}
61+\newcommand{\Rc}{{\cal R}}
62+\newcommand{\Pc}{{\cal P}}
63+\newcommand{\Pcv}{\bbox {\cal P}}
64+\newcommand{\dv}{{\bf d}}
65+\newcommand{\Dc}{{\cal D}}
66+\newcommand{\Dcv}{\bbox {\cal D}}
67+\newcommand{\Hc}{{\cal H}}
68+\newcommand{\kappav}{\bbox \kappa}
69+\newcommand{\Dkappav}{\Delta {\bbox\kappa}}
70+\newcommand{\qv}{{\bf q}}
71+\newcommand{\kv}{{\bf k}}
72+\newcommand{\eo}{\epsilon_0}
73+\newcommand{\ej}{\epsilon_j}
74+\newcommand{\beq}{\begin{equation}}
75+\newcommand{\eeq}{\end{equation}}
76+\newcommand{\bea}{\begin{eqnarray}}
77+\newcommand{\eea}{\end{eqnarray}}
78+\newcommand{\up}{\uparrow}
79+\newcommand{\down}{\downarrow}
80+\newcommand{\<}{\langle}
81+\renewcommand{\>}{\rangle}
82+\renewcommand{\(}{\left(}
83+\renewcommand{\)}{\right)}
84+\renewcommand{\[}{\left[}
85+\renewcommand{\]}{\right]}
86+\newcommand{\dagg}{d_{\rm{agg}}}
87+\newcommand{\vagg}{V_{\rm{agg}}}
88+\newcommand{\nagg}{n_{\rm{agg}}}
89+\newcommand{\df}{d_{f}}
90+\newcommand{\ragg}{\rho_{\rm{agg}}}
91+\newcommand{\reff}{\rho_{\rm{eff}}}
92+\newcommand{\re}{{\rm{Re}}}
93+\newcommand{\pr}{{\rm{Pr}}}
94+\newcommand{\sh}{{\rm{Sh}}}
95+\newcommand{\Kn}{{\rm{Kn}}}
96+\newcommand{\ra}{{\rm{Ra}}}
97+\renewcommand{\sc}{{\rm{Sc}}}
98+\newcommand{\nusselt}{{\rm{Nu}}}
99+\newcommand{\magg}{m_{\rm{agg}}}
100+\newcommand{\tres}{\tau_{\rm{res}}}
101+\newcommand{\gdif}{{\gamma_{\rm{dif}}}}
102+\newcommand{\vdep}{{v_{\rm{dep}}}}
103+\newcommand{\gth}{{\gamma_{\rm{th}}}}
104+\newcommand{\vth}{{v_{\rm{th}}}}
105+% \newcommand{\tres}{{\tau_{\rm{res}}}}
106+\newcommand{\kt}{{K_{\rm{T}}}}
107+\newcommand{\kair}{{k_{\rm{air}}}}
108+\newcommand{\vdif}{{v_{\rm{dif}}}}
109+\newcommand{\kp}{{k_{\rm{p}}}}
110+\newcommand{\commentout}[1]{{}}
111+%\newcommand{\half}{\hbox}
112+% \newcommand{\half}{\hbox{$1\over2$}}
113+\newcommand{\nv}{{\vec\nabla}}
114+\renewcommand{\c}{{\cdot}}
115+\newcommand{\hv}{\harvarditem}
116+\renewcommand{\baselinestretch}{.9}
117+
118+
119+
120+
121+
122+
123+
124+\definecolor{orange}{rgb}{1,0.5,0}
125+\definecolor{darkgreen}{rgb}{0,0.5,0}
126+
127+
128+\definecolor{mymagenta}{cmyk}{0,1.,0,0.2}
129+
130+\definecolor{Brown}{cmyk}{0, 0.8, 1, 0.6}
131+\definecolor{Yellow}{rgb}{1, 1, 0}
132+\definecolor{Light}{gray}{.80}
133+\definecolor{Dark}{gray}{.20}
134+
135+
136+
137+
138+%
139+% DO NOT USE THIS FILE AS A TEMPLATE FOR YOUR OWN TALKS¡!!
140+%
141+% Use a file in the directory solutions instead.
142+% They are much better suited.
143+%
144+
145+
146+
147+
148+
149+
150+
151+% Author, Title, etc.
152+
153+\title[Modelling of diesel-engine exhaust nano-particle dynamics]
154+{%
155+ Modelling of diesel-engine exhaust nanoparticle dynamics
156+%
157+}
158+
159+\author[Isella, Drossinos]
160+{
161+ Lorenzo~Isella\inst{},
162+ Barouch Giechaskiel\inst{}
163+ and
164+ Yannis~Drossinos\inst{}
165+}
166+
167+\institute[]
168+{
169+ \inst{}%
170+ Joint Research Centre, Ispra, Italy
171+}
172+
173+\date{JRC Exploratory Research Symposium, December 2008}
174+
175+
176+%package for movies
177+
178+\usepackage{movie15}
179+
180+
181+
182+
183+% Setup TikZ
184+
185+% \usepackage{tikz}
186+% \usetikzlibrary{arrows}
187+% \tikzstyle{block}=[draw opacity=0.7,line width=1.4cm]
188+
189+
190+
191+
192+% Standard packages
193+\usepackage{times}
194+\usepackage[T1]{fontenc}
195+\usepackage[english]{babel}
196+\usepackage[latin1]{inputenc}
197+\usepackage{verbatim}
198+\usepackage{epsfig}
199+\usepackage{amsmath}
200+\usepackage{amssymb}
201+\usepackage{amsthm}
202+\newtheorem{thm}{Theorem}[section]
203+\setbeamercovered{dynamic}
204+
205+
206+
207+
208+% Setup appearance:
209+
210+
211+\usetheme{default}
212+\usefonttheme[onlylarge]{structurebold}
213+
214+
215+
216+\setbeamersize{text margin left=.5cm}
217+\setbeamersize{text margin right=.5cm}
218+%\setbeamertemplate{headline}{}%
219+\setbeamertemplate{navigation symbols}{} %gets rid of navigation symbols
220+%\setbeamertemplate{footline}[page number]{} %gets rid of bottom navigation bars
221+
222+\setbeamertemplate{itemize items}[circle]
223+\setbeamercolor{titlelike}{fg=blue}
224+\setbeamercolor{item}{fg=blue}
225+
226+\setbeamertemplate{frametitle}{
227+\vspace{0.7cm}
228+\begin{centering}
229+{\Large \textbf{\textmd{\insertframetitle}}}
230+\par
231+\end{centering}
232+}
233+
234+
235+
236+% The main document
237+
238+\begin{document}
239+
240+
241+
242+
243+
244+\usebackgroundtemplate{\includegraphics[width=\paperwidth]{back.pdf}}
245+
246+
247+\begin{frame}
248+ \titlepage
249+\end{frame}
250+
251+% \begin{frame}{Outline}
252+% \tableofcontents
253+% \end{frame}
254+
255+
256+\section{Introduction}
257+
258+\subsection{Problem Formulation}
259+%\vspace*{0.3cm}
260+\begin{frame}[c]{Motivation and Goals}
261+\vspace*{-0.2cm}
262+ \begin{itemize}
263+\item \textcolor{red}{Diesel-generated nanoparticles} raise concerns
264+ about their effects on human health and
265+ environment.
266+\item \textcolor{red}{Legislation} regulating diesel-vehicle particulate \textcolor{red}{mass}
267+ emissions (EURO1,2,3,4,\emph{etc}\dots), but particle number
268+ distributions may be a better metric (especially for health effects).
269+\item Evaluate \textcolor{red}{effect of sampling and experimental conditions}
270+ on measured particle number distributions emitted from light/heavy duty vehicles $\Rightarrow$ \textcolor{red}{PMP}.
271+\item Exploratory research as an experimental and theoretical study of the
272+ \textcolor{red}{dynamics of non-volatile (\textcolor{red}{PMP}) particles emitted from diesel
273+ light-duty vehicles} (emphasis on nanoparticle agglomeration).
274+ \item Experiments performed at the \textcolor{red}{Vehicle Emission LAboratories}
275+ (VELA) at Ispra.
276+% \item Investigation of diesel-nanoparticle aggregate structure, collisions and
277+% mobility via \textcolor{red}{Langevin} simulations.
278+% \item Aerosol processes: \textcolor{red}{convection, agglomeration, thermophoretic and
279+% diffusional transport}
280+% \item Emitted agglomerates are \textcolor{red}{fractal} objects. How
281+% to estimate their fractal dimension from limited experimental information?
282+
283+
284+
285+ \end{itemize}
286+\end{frame}
287+
288+\section{Overview of the Experiments}
289+
290+\subsection{Exhaust-Particle Measurements}
291+%\vspace*{0.3cm}
292+\begin{frame}[t]{Experimental setup}
293+\vspace*{-.6cm}
294+\begin{center}
295+\includegraphics[width=8cm, height=6cm]{figure1.pdf}
296+\end{center}
297+\vspace*{-0.2cm}
298+\begin{itemize}
299+\item Temperature and particle-size distribution measurements along
300+ \textcolor{red}{whole} experimental manifold (\textcolor{red}{not}
301+ only at legislated position).
302+\end{itemize}
303+\end{frame}
304+
305+
306+\subsection{Number Distributions}
307+%\vspace*{0.3cm}
308+\begin{frame}[t]{Inlet and outlet experimental
309+ number distributions: \\ { EURO 3 vehicle, 120km/h} }
310+\vspace*{-0.5cm}
311+\begin{center}
312+\rotatebox{90}{\includegraphics[width=5cm, height=8cm]{figure2_b.pdf}}
313+\end{center}
314+\vspace*{-0.6cm}
315+\begin{itemize}
316+% \item The experimental number distributions can be excellently
317+% approximated with analytical lognormal distributions.
318+ \item \textcolor{red}{Lognormal} distribution
319+%\vspace*{-0.3cm}
320+ \beq \nonumber
321+ \begin{split}
322+ dN^{\textrm{fit}} & {} =
323+ \f{N_{\infty}} {\sqrt{2\pi}\log\sigma}\exp\lsq-\f{(\log d_{\rm agg}-\log\mu)^2}{2\log^2\sigma}\rsq d\log d_{\rm agg} \\
324+% & {} \equiv n_q (\log d_{\rm agg}) \, d \log d_{\rm agg}
325+ \end{split}
326+ \eeq
327+\vspace*{-0.2cm}
328+\item Compact way of representing the data: $N_{\infty}, \mu\;\; {\rm
329+ and}\;\; \sigma $ \textcolor{red}{unambiguously} describe the experimental data.
330+
331+
332+% \item Pressure fluctuations $\Rightarrow$ higher uncertainty on the
333+% number concentration $N_\infty$ (\textcolor{red}{not} on $\mu$ and $\sigma$) at inlet than outlet.
334+\end{itemize}
335+\end{frame}
336+
337+
338+
339+\section{Dynamics along transfer tube}
340+
341+\subsection{1D model for aerosol dynamics}
342+
343+%\vspace*{0.3cm}
344+\begin{frame}[t]{Aerosol in a Tube}
345+\vspace*{-0.5cm}
346+\begin{center}
347+\resizebox{10cm}{3cm}{\input{cylinder.pdf_t}}
348+
349+%\includegraphics[width=8cm, height=4cm]{cylinder.pdf}
350+\end{center}
351+\begin{itemize}
352+\vspace*{-0.1cm}
353+\item Four different aerosol processes:
354+ \textcolor{darkgreen}{agglomeration},
355+ \textcolor{mymagenta}{diffusion},
356+\textcolor{Brown}{thermophoresis} and \textcolor{blue}{convection}.
357+%\vspace*{-0.1cm}
358+\item 1D model neglecting turbulence-induced local particle density
359+ inhomogeneities.
360+ \item \textcolor{red}{$n_q$} (flux-averaged axial aggregate
361+ concentration of size $d_q$ [$q$-mer])
362+ along tube as function
363+ of \textcolor{red}{residence time} \textcolor{blue}{$\tau$}
364+\end{itemize}
365+\vspace*{-0.1cm}
366+ \beq\nonumber
367+ \;\;\,\f{d n_q(\textcolor{blue}{\tau})}{d\textcolor{blue}{\tau}}=-\f{2(\textcolor{mymagenta}{v_{\rm dif}}+\textcolor{Brown}{v_{\rm th}})}{
368+ R}n_q(\textcolor{blue}{\tau})+
369+\f{1}{2}\sum_{i+j=q}\textcolor{darkgreen}{\mathcal{K}_{ij}}n_i(\textcolor{blue}{\tau})n_j(\textcolor{blue}{\tau}) - n_q(\textcolor{blue}{\tau})\sum_i\textcolor{darkgreen}{\mathcal{K}_{iq}}n_i(\textcolor{blue}{\tau}).
370+ \eeq
371+
372+% \item $n_q$ the mean (flux-averaged) axial aggregate concentration of size $d_q$
373+
374+
375+
376+\end{frame}
377+
378+%\vspace*{0.3cm}
379+\begin{frame}[t]{Time-Scales and Approximations}
380+%\vspace*{-0.45cm}
381+ \begin{itemize}
382+ \item Time-scales for each process: $\tau_{\rm agg}\simeq 2$s,
383+ $\tau_{\rm dif}\simeq 10^{3}$s, $\tau_{\rm th}\simeq 30s$ and
384+ $\tau_{\rm conv}\simeq 2$s.
385+ \end{itemize}
386+\vspace*{-0.5cm}
387+\begin{center}
388+\includegraphics[width=8cm, height=5.5cm]{figure7_b.pdf}
389+\end{center}
390+\vspace*{-0.5cm}
391+\begin{itemize}
392+\item Effect of the transfer tube length on number concentration:
393+ important for experiment \textcolor{red}{reproducibility}.
394+\item Different $\tau_{\rm agg}$ for a \textcolor{red}{light-duty} Euro4-5 diesel engine.
395+\end{itemize}
396+
397+
398+\end{frame}
399+
400+
401+\section{Simulation of soot aggregate formation}
402+\subsection{Model for Monomer Dynamics}
403+%\vspace*{0.3cm}
404+\begin{frame}[t]{Langevin Equation for Mesoscopic Systems}
405+\vspace*{-0.5cm}
406+\begin{center}
407+\resizebox{7cm}{4.5cm}{\input{brownian.pdf_t}}
408+
409+%\includegraphics[width=8cm, height=4cm]{cylinder.pdf}
410+\end{center}
411+%\vspace*{-0.15cm}
412+\begin{itemize}
413+\item \textcolor{red}{3D} system of interacting monomers, each
414+ obeying
415+%\vspace*{-0.2cm}
416+\begin{equation}
417+ \label{eq:Langevin} \nonumber
418+ m_1\ddot{\bf r}_i=\textcolor{red}{{\bf F}_i}-\beta_1 m_1\dot{\bf r}_i+
419+ {\bf W}_i(t).
420+\end{equation}
421+\vspace*{-0.55cm}
422+\item Force acting on i-th monomer from \textcolor{red}{pairwise} monomer-monomer interaction potential
423+\vspace*{-0.25cm}
424+\begin{equation} \nonumber
425+ \label{eq:potential_pairwise}
426+ {\bf F}_i=-\nabla_{{\bf r}_i} U_i=-\f{\nabla_{{\bf r}_i}}{2}\lro\s_{j\neq i}u(r_{ij})\rro.
427+\end{equation}
428+\end{itemize}
429+\end{frame}
430+
431+
432+
433+\subsection{Interaction Potential}
434+%\vspace*{0.3cm}
435+\begin{frame}[t]{Monomer-Monomer Interaction Potential}
436+%\vspace*{-0.5cm}
437+% \begin{block}{General Features}
438+%\vspace*{-0.4cm}
439+ \begin{itemize}
440+ \item \textcolor{red}{Repulsion} at short separations $r\le\sigma$
441+ (hard-core repulsion) and \textcolor{red}{attraction} for separations above
442+ $\sigma$
443+ (sticking upon collision).
444+\item Simulations performed with two \textcolor{red}{radial} interaction potentials: integrated Lennard-Jones
445+ potential (model for the attractive part of \textcolor{red}{Van der Waals}
446+ interaction between two spheres, $\sim r^{-6}$ for $r\gg\sigma$) and with a short-ranged
447+ \textcolor{red}{model potential}.
448+%\begin{itemize}
449+%\item Potential used in the simulations:
450+\end{itemize}
451+\vspace*{-.5cm}
452+\begin{figure}
453+\includegraphics[height=5cm, width=9cm]{presentation_potential.pdf}
454+%\caption{show an example picture}
455+\end{figure}
456+
457+
458+
459+\end{frame}
460+
461+
462+
463+
464+
465+%\vspace*{0.3cm}
466+\begin{frame}[t]{Distribution of Aggregate Morphologies}
467+\vspace*{-0.5cm}
468+\begin{figure}
469+\includegraphics[height=3.5cm, width=0.43\columnwidth]{final2.png}
470+\vspace*{0.1cm}
471+\includegraphics[height=3.5cm, width=0.43\columnwidth]{50_monomers_neighbor1_bis.png}
472+%\caption{show an example picture}
473+\end{figure}
474+
475+\vspace{-0.5cm}
476+
477+\begin{figure}
478+\includegraphics[height=3.5cm, width=0.43\columnwidth]{50_monomers_neighbor2_bis.png}
479+\vspace*{0.1cm}
480+\includegraphics[height=3.5cm, width=0.43\columnwidth]{50_monomers_neighbor3_bis.png}
481+%\caption{show an example picture}
482+\end{figure}
483+\end{frame}
484+
485+
486+
487+
488+\subsection{Determination of the Fractal Dimension}
489+\begin{frame}
490+\begin{figure}
491+\includegraphics[height=5cm, width=5cm]{camera.jpeg}
492+%\caption{show an example picture}
493+\end{figure}
494+\end{frame}
495+
496+
497+\section{Conclusions}
498+%\vspace*{0.3cm}
499+\begin{frame}[t]{Final Remarks}
500+ \begin{itemize}
501+ \item Simplified 1D model for soot solid nanoparticles (PMP
502+ recommendation) $\Rightarrow$ runs on any up-to-date PC within hours.
503+\item Determination of characteristic time-scales.
504+\item Different role of agglomeration for Euro4-5 vehicles.
505+\item Modelling complements the experimental information on soot
506+ aggregates $\Rightarrow$ theoretical investigation on aggregate
507+ structure, mobility and collisional properties.
508+ \end{itemize}
509+\end{frame}
510+
511+
512+
513+\end{document}
514+
515+