• R/O
  • SSH

Commit

Tags
No Tags

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

Commit MetaInfo

Revision7086a511dbccda2d8d05ba3890f8736eb462f710 (tree)
Time2024-11-22 17:50:33
AuthorLorenzo Isella <lorenzo.isella@gmai...>
CommiterLorenzo Isella

Log Message

Further development of the script.

Change Summary

Incremental Difference

diff -r 044d38eb2180 -r 7086a511dbcc R-codes/sectorial_analysis_scoreboard.R
--- a/R-codes/sectorial_analysis_scoreboard.R Thu Nov 21 14:29:19 2024 +0100
+++ b/R-codes/sectorial_analysis_scoreboard.R Fri Nov 22 09:50:33 2024 +0100
@@ -298,6 +298,38 @@
298298 df_recent_clean_nace1_no_ukr_covid <- df_recent_clean_nace1 |>
299299 filter(covid==F, ukraine==F)
300300
301+expenditure_no_covid_no_ukr_nace <- df_recent_clean_nace1_no_ukr_covid |>
302+ group_by(expenditure_year) |>
303+ summarise(total_nace=sum(aid_element_eur, na.rm=T) , .groups= "drop")
304+
305+
306+expenditure_no_covid_no_ukr <- df_recent |>
307+ filter(covid==F, ukraine==F) |>
308+ group_by(expenditure_year) |>
309+ summarise(total=sum(aid_element_eur, na.rm=T) , .groups="drop") |>
310+ left_join(y=expenditure_no_covid_no_ukr_nace, by=c("expenditure_year")) |>
311+ mutate(ratio=total_nace/total)
312+
313+
314+expenditure_covid_ukr_nace <- df_recent_clean_nace1 |>
315+ filter(ukraine==T | covid==T) |>
316+ group_by(expenditure_year) |>
317+ summarise(total_nace=sum(aid_element_eur, na.rm=T) , .groups= "drop")
318+
319+
320+expenditure_covid_ukr <- df_recent |>
321+ filter(covid==T | ukraine==T) |>
322+ group_by(expenditure_year) |>
323+ summarise(total=sum(aid_element_eur, na.rm=T) , .groups="drop") |>
324+ left_join(y=expenditure_covid_ukr_nace, by=c("expenditure_year")) |>
325+ mutate(ratio=total_nace/total)
326+
327+
328+tt<- df_recent |>
329+ filter(covid==T | ukraine==T) |>
330+ mutate(extra=covid+ukraine)
331+
332+
301333 list_sector_names <- df_recent_clean_nace1 |>
302334 select(all_sector_names) |>
303335 distinct() |>