• R/O
  • SSH

Commit

Tags
No Tags

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

Commit MetaInfo

Revisiona0ba34107497f072988cf7a7c9cf7cd73550b97d (tree)
Time2008-01-30 07:46:00
Authoriselllo
Commiteriselllo

Log Message

I added r_g_time_aver.py which calculates the scaling law for N vs R_g
taking also a time average and selecting only the clusters which appear
at least a certain (to be specified by the user) number of times.

Change Summary

Incremental Difference

diff -r 662186348ea3 -r a0ba34107497 Python-codes/r_g_time_aver.py
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Python-codes/r_g_time_aver.py Tue Jan 29 22:46:00 2008 +0000
@@ -0,0 +1,182 @@
1+#! /usr/bin/env python
2+
3+import scipy as s
4+from scipy import stats #I need this module for the linear fit
5+import numpy as n
6+import pylab as p
7+#import rpy as r
8+
9+
10+ini_conf=50
11+fin_conf=1000 #configurations I read initially in read_test.tcl
12+
13+
14+
15+
16+
17+
18+
19+
20+#my_config=19 #here labels the saved configurations but it is not directly the number
21+# of the file with the saved configuration
22+
23+by=50 #I need it to select the elements from time.dat
24+
25+ini_conf=ini_conf/by
26+fin_conf=fin_conf/by
27+
28+# time=p.load("time.dat")
29+# #print "time (initially read) is, ", time
30+# print "by is, ", by
31+# print "len(time) is, ", len(time)
32+# pick_time=s.arange(0,len(time),by)
33+# print "pick_time is, ", pick_time
34+# time=time[pick_time]
35+
36+
37+
38+cluster_long=s.zeros(1)
39+r_gyr_long=s.zeros(1)
40+
41+for my_config in xrange(ini_conf,fin_conf):
42+
43+
44+ my_config=my_config*by
45+
46+ cluster_name="cluster_dist%05d"%my_config
47+
48+ n_comp=p.load(cluster_name)
49+
50+ #print "n_comp is,", n_comp
51+
52+ my_choice=s.where(n_comp>6.) #I do not calculate the radius of gyration of monomers!
53+ n_comp=n_comp[my_choice] # select from dimer on
54+
55+ #print 'my_choice is, ', my_choice
56+
57+ cluster_name="R_gyr_dist%05d"%my_config
58+
59+ cluster_long=s.concatenate((cluster_long,n_comp))
60+ r_gyr_dist=p.load(cluster_name)
61+
62+ r_gyr_dist=r_gyr_dist[my_choice]
63+ r_gyr_long=s.concatenate((r_gyr_long,r_gyr_dist))
64+
65+
66+cluster_long=cluster_long[1:]
67+r_gyr_long=r_gyr_long[1:]
68+
69+lin_fit=stats.linregress(s.log10(cluster_long),s.log10(r_gyr_long))
70+
71+print "the fractal dimension is, ", 1/lin_fit[0]
72+
73+
74+p.loglog(cluster_long,r_gyr_long, "ro")
75+p.grid(True)
76+p.savefig("all_together.pdf")
77+p.clf()
78+
79+
80+
81+cluster_ord=s.sort(cluster_long)
82+r_gyr_ord=r_gyr_long[s.argsort(cluster_long)]
83+
84+cluster_uni=n.unique1d(cluster_ord)
85+r_bound=cluster_ord.searchsorted(cluster_uni,side='right')
86+l_bound=cluster_ord.searchsorted(cluster_uni,side='left')
87+
88+print "the length of r_bound is, ", len(r_bound)
89+
90+r_gyr_ari_mean=s.zeros(len(cluster_uni))
91+r_gyr_ari_mean_log=s.zeros(len(cluster_uni))
92+
93+for i in xrange(0,len(cluster_uni)):
94+ r_gyr_ari_mean[i]=r_gyr_ord[l_bound[i]:r_bound[i]].mean()
95+ r_gyr_ari_mean_log[i]=s.exp(s.sum(s.log(r_gyr_ord[l_bound[i]:r_bound[i]]))\
96+ /len(r_gyr_ord[l_bound[i]:r_bound[i]]))
97+
98+
99+lin_fit2=stats.linregress(s.log10(cluster_uni),s.log10(r_gyr_ari_mean))
100+
101+my_fit2=lin_fit2[1]+lin_fit2[0]*s.log10(cluster_uni)
102+
103+print "the fractal dimension [arithmetic mean] is, ", 1/lin_fit2[0]
104+
105+
106+lin_fit3=stats.linregress(s.log10(cluster_uni),s.log10(r_gyr_ari_mean_log))
107+
108+my_fit3=lin_fit3[1]+lin_fit3[0]*s.log10(cluster_uni)
109+
110+print "the fractal dimension [log mean] is, ", 1/lin_fit3[0]
111+
112+
113+
114+p.plot(s.log10(cluster_uni),s.log10(r_gyr_ari_mean), "bo",\
115+ s.log10(cluster_uni), my_fit2,linewidth=2.)
116+p.xlabel('N')
117+p.ylabel('R(N)')
118+#p.legend(('from power-law fitting','from linear fitting on log-log'))
119+p.title('Evolution Fractal Dimension from R_g')
120+p.grid(True)
121+ #cluster_name="number_cluster_vs_time2%05d"%my_config
122+cluster_name="Fractal_dimension_from_mean_and_time.pdf"
123+p.savefig(cluster_name)
124+p.hold(False)
125+p.clf()
126+
127+
128+
129+
130+
131+
132+p.plot(s.log10(cluster_uni),s.log10(r_gyr_ari_mean_log), "bo",\
133+ s.log10(cluster_uni), my_fit3,linewidth=2.)
134+p.xlabel('N')
135+p.ylabel('R(N)')
136+#p.legend(('from power-law fitting','from linear fitting on log-log'))
137+p.title('Evolution Fractal Dimension from R_g')
138+p.grid(True)
139+ #cluster_name="number_cluster_vs_time2%05d"%my_config
140+cluster_name="Fractal_dimension_from_mean_log_and_time.pdf"
141+p.savefig(cluster_name)
142+p.hold(False)
143+p.clf()
144+
145+
146+
147+
148+count_number=s.zeros(len(r_bound))
149+
150+for i in xrange(0,len(r_bound)):
151+ count_number[i]=r_bound[i]-l_bound[i] #Now I counted how many clusters I have
152+ #for each existing size
153+survival=s.where(count_number>10.)
154+
155+cluster_surv=cluster_uni[survival]
156+r_log_surv=r_gyr_ari_mean_log[survival]
157+
158+
159+
160+lin_fit4=stats.linregress(s.log10(cluster_surv),s.log10(r_log_surv))
161+
162+my_fit4=lin_fit4[1]+lin_fit4[0]*s.log10(cluster_surv)
163+
164+print "the fractal dimension [selective log mean] is, ", 1./lin_fit4[0]
165+
166+
167+p.plot(s.log10(cluster_surv),s.log10(r_log_surv), "bo",\
168+ s.log10(cluster_surv), my_fit4,linewidth=2.)
169+p.xlabel('N')
170+p.ylabel('R(N)')
171+#p.legend(('from power-law fitting','from linear fitting on log-log'))
172+p.title('Evolution Fractal Dimension from R_g')
173+p.grid(True)
174+ #cluster_name="number_cluster_vs_time2%05d"%my_config
175+cluster_name="Fractal_dimension_from_mean_log_and_time_selection.pdf"
176+p.savefig(cluster_name)
177+p.hold(False)
178+p.clf()
179+
180+
181+
182+print "So far so good"