• R/O
  • SSH

Commit

Tags
No Tags

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

Commit MetaInfo

Revisionf957d0aae85b96c511b9429b51a0249b29e0667d (tree)
Time2008-08-06 05:08:59
Authoriselllo
Commiteriselllo

Log Message

I modified the code: now I simply give the number of directories as a
parameter and it goes through them and reads them as above.
But much cleaner code and easier to avoid mistakes.
I also introduced a new s.copy to properly copy an array.

Change Summary

Incremental Difference

diff -r 4b3899771ab4 -r f957d0aae85b Python-codes/r_gyr_iteration.py
--- a/Python-codes/r_gyr_iteration.py Mon Aug 04 21:35:36 2008 +0000
+++ b/Python-codes/r_gyr_iteration.py Tue Aug 05 20:08:59 2008 +0000
@@ -14,10 +14,10 @@
1414 #p.rc('text', usetex=True)
1515
1616 ini_conf=0
17-fin_conf=1500 #configurations I read initially in read_test.tcl
18-
19-
20-figure=1 #tells whether many pdf's should be produced or not.
17+fin_conf=3000 #configurations I read initially in read_test.tcl
18+
19+
20+figure=0 #tells whether many pdf's should be produced or not.
2121
2222 save_every=50 # in case figure == 1, it plots the results every save_every configurations
2323
@@ -45,9 +45,9 @@
4545 #my_config=19 #here labels the saved configurations but it is not directly the number
4646 # of the file with the saved configuration
4747
48-by=1 #I need it to select the elements from time.dat
49-
50-by_clusters=1 # this tells how often was the cluster number recorded
48+by=2 #I need it to select the elements from time.dat
49+
50+by_clusters=2 # this tells how often was the cluster number recorded
5151
5252
5353 min_cluster=5. # minimum amount of particles a cluster has to contain in order to be considered
@@ -231,14 +231,16 @@
231231
232232
233233
234+n_dir=8.
235+
236+
237+
238+dir_list=s.arange(n_dir)+1
239+
240+
241+
234242
235243 for my_config in xrange(ini_conf,fin_conf):
236- print "my_config is, ", my_config
237- #cluster_long=s.zeros(1)
238- #r_gyr_long=s.zeros(1)
239-
240-
241-
242244 r_gyr_dist=s.zeros(1) # something to start concatenating the arrays
243245 n_comp=s.zeros(1) #same for the clusters
244246
@@ -246,310 +248,75 @@
246248
247249 my_config=my_config*by
248250
249- #cluster_name="cluster_dist%05d"%my_config
250-
251- temp_clu=p.load("../1/cluster_dist%05d"%my_config)
252- temp_r_gyr=p.load("../1/R_gyr_dist%05d"%my_config)
253-
254-
255- if (count_config==0):
256-
257- temp_clus=+p.load("../1/number_cluster.dat") #I load the number of clusters at each time
258- n_clus=n_clus+temp_clus
259- print "n_clus[0] is, ", n_clus[0]
260-
261- stack_clus=temp_clus
262-
263-
264- n_dir=n_dir+1
265-
266- #n_clus=n_clus+temp_nc
267-
268- n_comp=s.concatenate([n_comp,temp_clu])
269- r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr])
270-
271- #cluster_long=s.concatenate([cluster_long,temp_clu])
272- #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr])
273- cluster_tot=s.concatenate([cluster_tot,temp_clu])
274- r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr])
275-
276-
277-
278- temp_clu=p.load("../2/cluster_dist%05d"%my_config)
279- temp_r_gyr=p.load("../2/R_gyr_dist%05d"%my_config)
280-
281- n_dir=n_dir+1
282-
283-
284- n_comp=s.concatenate([n_comp,temp_clu])
285- r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr])
286-
287-
288- #cluster_long=s.concatenate([cluster_long,temp_clu])
289- #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr])
290- cluster_tot=s.concatenate([cluster_tot,temp_clu])
291- r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr])
292-
293-
294-
295- #temp_nc=p.load("../2/number_cluster.dat") #I load the number of clusters at each time
296-
297- #n_clus=n_clus+temp_nc
298- if (count_config==0):
299- temp_clus=+p.load("../2/number_cluster.dat") #I load the number of clusters at each time
300- n_clus=n_clus+temp_clus
301- stack_clus=s.vstack((stack_clus,temp_clus))
302- print "n_clus[0] now is, ", n_clus[0]
303-
304-
305-
306- temp_clu=p.load("../3/cluster_dist%05d"%my_config)
307- temp_r_gyr=p.load("../3/R_gyr_dist%05d"%my_config)
308-
309- n_dir=n_dir+1
310-
311-
312- n_comp=s.concatenate([n_comp,temp_clu])
313- r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr])
314-
315-
316- #cluster_long=s.concatenate([cluster_long,temp_clu])
317- #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr])
318- cluster_tot=s.concatenate([cluster_tot,temp_clu])
319- r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr])
320-
321-
322- #temp_nc=p.load("../3/number_cluster.dat") #I load the number of clusters at each time
323-
324- #n_clus=n_clus+temp_nc
325-
326- if (count_config==0):
327-
328- temp_clus=+p.load("../3/number_cluster.dat") #I load the number of clusters at each time
329- n_clus=n_clus+temp_clus
330-
331- stack_clus=s.vstack((stack_clus,temp_clus))
332-
333-
334- print "n_clus[0] now is, ", n_clus[0]
335-
336-
337- temp_clu=p.load("../4/cluster_dist%05d"%my_config)
338- temp_r_gyr=p.load("../4/R_gyr_dist%05d"%my_config)
339-
340- n_dir=n_dir+1
341-
342-
343- n_comp=s.concatenate([n_comp,temp_clu])
344- r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr])
345-
346- #cluster_long=s.concatenate([cluster_long,temp_clu])
347- #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr])
348- cluster_tot=s.concatenate([cluster_tot,temp_clu])
349- r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr])
350-
351- #temp_nc=p.load("../4/number_cluster.dat") #I load the number of clusters at each time
352-
353- #n_clus=n_clus+temp_nc
354- if (count_config==0):
355-
356- temp_clus=+p.load("../4/number_cluster.dat") #I load the number of clusters at each time
357- n_clus=n_clus+temp_clus
358-
359- stack_clus=s.vstack((stack_clus,temp_clus))
360-
361-
362-
363-
364-
365- print "n_clus[0] now is, ", n_clus[0]
366-
367-
368-
369- temp_clu=p.load("../5/cluster_dist%05d"%my_config)
370- temp_r_gyr=p.load("../5/R_gyr_dist%05d"%my_config)
371-
372- n_dir=n_dir+1
373-
374-
375- n_comp=s.concatenate([n_comp,temp_clu])
376- r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr])
377-
378-
379- #cluster_long=s.concatenate([cluster_long,temp_clu])
380- #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr])
381- cluster_tot=s.concatenate([cluster_tot,temp_clu])
382- r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr])
383-
384-
385- #temp_nc=p.load("../5/number_cluster.dat") #I load the number of clusters at each time
386-
387- #n_clus=n_clus+temp_nc
388- if (count_config==0):
389-
390- temp_clus=+p.load("../5/number_cluster.dat") #I load the number of clusters at each time
391- n_clus=n_clus+temp_clus
251+
252+ for m in xrange(len(dir_list)):
253+
254+ dir_name="../%01d"%(dir_list[m])
255+
256+ print "my_config is, ", my_config
257+ #cluster_long=s.zeros(1)
258+ #r_gyr_long=s.zeros(1)
259+
260+ temp_clu_name=dir_name+"/cluster_dist%05d"%my_config
261+ temp_r_gyr_name=dir_name+"/R_gyr_dist%05d"%my_config
262+
263+
264+ #cluster_name="cluster_dist%05d"%my_config
265+
266+ temp_clu=p.load(temp_clu_name)
267+ temp_r_gyr=p.load(temp_r_gyr_name)
268+
269+
270+ if (count_config==0):
271+
272+ temp_clus_name=dir_name+"/number_cluster.dat"
273+ temp_clus=p.load(temp_clus_name)
274+
275+# temp_clus=+p.load("../1/number_cluster.dat") #I load the number of clusters at each time (but I load it only once!)
276+ n_clus=n_clus+temp_clus
277+ print "n_clus[0] is, ", n_clus[0]
278+
279+ stack_clus=temp_clus
280+
281+
282+# n_dir=n_dir+1
283+
284+ #n_clus=n_clus+temp_nc
285+
286+ n_comp=s.concatenate([n_comp,temp_clu])
287+ r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr])
392288
393289 stack_clus=s.vstack((stack_clus,temp_clus))
394290
395291
396-
397-
398- temp_clu=p.load("../6/cluster_dist%05d"%my_config)
399- temp_r_gyr=p.load("../6/R_gyr_dist%05d"%my_config)
400-
401- n_dir=n_dir+1
402-
403-
404- n_comp=s.concatenate([n_comp,temp_clu])
405- r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr])
406-
407-
408- #cluster_long=s.concatenate([cluster_long,temp_clu])
409- #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr])
410- cluster_tot=s.concatenate([cluster_tot,temp_clu])
411- r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr])
412-
413-
414-
415- #temp_nc=p.load("../6/number_cluster.dat") #I load the number of clusters at each time
416-
417- #n_clus=n_clus+temp_nc
418- if (count_config==0):
419-
420- temp_clus=+p.load("../6/number_cluster.dat") #I load the number of clusters at each time
421- n_clus=n_clus+temp_clus
422-
423- stack_clus=s.vstack((stack_clus,temp_clus))
424-
425-
426-
427-
428-
429- temp_clu=p.load("../7/cluster_dist%05d"%my_config)
430- temp_r_gyr=p.load("../7/R_gyr_dist%05d"%my_config)
431-
432- n_dir=n_dir+1
433-
434-
435- n_comp=s.concatenate([n_comp,temp_clu])
436- r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr])
437-
438-
439- #cluster_long=s.concatenate([cluster_long,temp_clu])
440- #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr])
441- cluster_tot=s.concatenate([cluster_tot,temp_clu])
442- r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr])
443-
444-
445- #temp_nc=p.load("../7/number_cluster.dat") #I load the number of clusters at each time
446-
447- #n_clus=n_clus+temp_nc
448- if (count_config==0):
449-
450- temp_clus=+p.load("../7/number_cluster.dat") #I load the number of clusters at each time
451- n_clus=n_clus+temp_clus
452-
453- stack_clus=s.vstack((stack_clus,temp_clus))
454-
455-
456-
457-
458- temp_clu=p.load("../8/cluster_dist%05d"%my_config)
459- temp_r_gyr=p.load("../8/R_gyr_dist%05d"%my_config)
460-
461- n_dir=n_dir+1
462-
463-
464- n_comp=s.concatenate([n_comp,temp_clu])
465- r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr])
466-
467-
468- #cluster_long=s.concatenate([cluster_long,temp_clu])
469- #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr])
470- cluster_tot=s.concatenate([cluster_tot,temp_clu])
471- r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr])
472-
473-
474- #temp_nc=p.load("../8/number_cluster.dat") #I load the number of clusters at each time
475-
476- #n_clus=n_clus+temp_nc
477- if (count_config==0):
478-
479- temp_clus=+p.load("../8/number_cluster.dat") #I load the number of clusters at each time
480- n_clus=n_clus+temp_clus
481-
482- stack_clus=s.vstack((stack_clus,temp_clus))
483-
484-
485-
486-
487- temp_clu=p.load("../9/cluster_dist%05d"%my_config)
488- temp_r_gyr=p.load("../9/R_gyr_dist%05d"%my_config)
489-
490-
491- n_comp=s.concatenate([n_comp,temp_clu])
492- r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr])
493-
494-
495- #cluster_long=s.concatenate([cluster_long,temp_clu])
496- #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr])
497- cluster_tot=s.concatenate([cluster_tot,temp_clu])
498- r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr])
499-
500-
501- #temp_nc=p.load("../9/number_cluster.dat") #I load the number of clusters at each time
502-
503- #n_clus=n_clus+temp_nc
504-
505- if (count_config==0):
506-
507- temp_clus=+p.load("../9/number_cluster.dat") #I load the number of clusters at each time
508- n_clus=n_clus+temp_clus
509-
510- stack_clus=s.vstack((stack_clus,temp_clus))
511-
512-
513-
514- n_dir=n_dir+1
515-
516-
517- temp_clu=p.load("../10/cluster_dist%05d"%my_config)
518- temp_r_gyr=p.load("../10/R_gyr_dist%05d"%my_config)
519-
520-
521- n_comp=s.concatenate([n_comp,temp_clu])
522- r_gyr_dist=s.concatenate([r_gyr_dist,temp_r_gyr])
523-
524- n_dir=n_dir+1
525-
526- n_dir_count=n_dir
527-
528- n_dir=0
529-
530- #cluster_long=s.concatenate([cluster_long,temp_clu])
531- #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr])
532- cluster_tot=s.concatenate([cluster_tot,temp_clu])
533- r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr])
534-
535-
536-
537- #temp_nc=p.load("../10/number_cluster.dat") #I load the number of clusters at each time
538-
539- #n_clus=n_clus+temp_nc
540-
541- if (count_config==0):
542-
543- temp_clus=+p.load("../10/number_cluster.dat") #I load the number of clusters at each time
544- n_clus=n_clus+temp_clus
545-
546- stack_clus=s.vstack((stack_clus,temp_clus))
292+ #cluster_long=s.concatenate([cluster_long,temp_clu])
293+ #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr])
294+ cluster_tot=s.concatenate([cluster_tot,temp_clu])
295+ r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr])
296+
297+
298+# #cluster_long=s.concatenate([cluster_long,temp_clu])
299+# #r_gyr_long=s.concatenate([r_gyr_long,temp_r_gyr])
300+# cluster_tot=s.concatenate([cluster_tot,temp_clu])
301+# r_gyr_tot=s.concatenate([r_gyr_tot,temp_r_gyr])
302+
303+
304+
305+# #temp_nc=p.load("../10/number_cluster.dat") #I load the number of clusters at each time
306+
307+# #n_clus=n_clus+temp_nc
308+
309+# if (count_config==0):
310+
311+# temp_clus=+p.load("../10/number_cluster.dat") #I load the number of clusters at each time
312+# n_clus=n_clus+temp_clus
313+
547314
548315
549316
550317
551318
552- n_comp_mon=n_comp
319+ n_comp_mon=s.copy(n_comp)
553320
554321 n_comp_mon=n_comp_mon[s.where(n_comp_mon>0.)] #I need this line since n_comp_mon comes from n_comp
555322 #which in turn is defined first as [0] (array with an only entry equal to zero)
@@ -906,7 +673,7 @@
906673
907674 #d=s.concatenate((a,b)).reshape(2,4).transpose()
908675 N_k_vs_k=s.zeros((len(n_comp_mon_uni),2))
909- N_k_arr=N_k_arr/(n_dir_count*1.)
676+ N_k_arr=N_k_arr/(n_dir*1.)
910677 #print "n_dir is, ", n_dir
911678 N_k_vs_k[:,0]=N_k_arr
912679 N_k_vs_k[:,1]=n_comp_mon_uni*1. #n_comp_mon_uni is the k array
@@ -1066,15 +833,15 @@
1066833
1067834 #print "now n_dir is, ", n_dir
1068835
1069-n_clus=n_clus/(n_dir_count)
1070-
1071-n_clus_small=n_clus_small/(n_dir_count)
1072-n_clus_large=n_clus_large/(n_dir_count)
1073-n_clus_test=n_clus_test/(n_dir_count)
836+n_clus=n_clus/(n_dir)
837+
838+n_clus_small=n_clus_small/(n_dir)
839+n_clus_large=n_clus_large/(n_dir)
840+n_clus_test=n_clus_test/(n_dir)
1074841
1075842 mean_clus_separation=(n_clus/box_vol)**(-1./3)
1076843
1077-print "n_dir_count is, ", n_dir_count
844+print "n_dir is, ", n_dir
1078845
1079846 #print "the total volume is, ", k_aver*n_clus
1080847
@@ -1250,42 +1017,42 @@
12501017
12511018
12521019
1253-fig = p.figure()
1254-axes = fig.gca()
1255-
1256-
1257-axes.errorbar(time,my_fractal_dim,yerr=delta_df )
1258-p.ylim(1.4,3.)
1259-p.xlabel('Time')
1260-p.ylabel('Fractal dimension')
1261-#p.legend(('from power-law fitting','from linear fitting on log-log'))
1262-#p.title('Evolution Fractal Dimension from R_g')
1263-#p.grid(True)
1264- #cluster_name="number_cluster_vs_time2%05d"%my_config
1265-#cluster_name="std_err_D_f.pdf"
1266-p.savefig("time_evolution_D_f_with_error_bars.pdf")
1020+# fig = p.figure()
1021+# axes = fig.gca()
1022+
1023+
1024+# axes.errorbar(time,my_fractal_dim,yerr=delta_df )
1025+# p.ylim(1.4,3.)
1026+# p.xlabel('Time')
1027+# p.ylabel('Fractal dimension')
1028+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
1029+# #p.title('Evolution Fractal Dimension from R_g')
1030+# #p.grid(True)
1031+# #cluster_name="number_cluster_vs_time2%05d"%my_config
1032+# #cluster_name="std_err_D_f.pdf"
1033+# p.savefig("time_evolution_D_f_with_error_bars.pdf")
12671034
1268-p.clf()
1269-
1270-
1271-
1272-
1273-fig = p.figure()
1274-axes = fig.gca()
1275-
1276-
1277-axes.errorbar(time,my_fractal_dim,yerr=delta_df )
1278-p.ylim(1.4,3.)
1279-p.xlabel('Time')
1280-p.ylabel('Fractal dimension')
1281-#p.legend(('from power-law fitting','from linear fitting on log-log'))
1282-#p.title('Evolution Fractal Dimension from R_g')
1283-#p.grid(True)
1284- #cluster_name="number_cluster_vs_time2%05d"%my_config
1285-#cluster_name="std_err_D_f.pdf"
1286-p.savefig("time_evolution_D_f_with_error_bars_large_cluster.pdf")
1035+# p.clf()
1036+
1037+
1038+
1039+
1040+# fig = p.figure()
1041+# axes = fig.gca()
1042+
1043+
1044+# axes.errorbar(time,my_fractal_dim,yerr=delta_df )
1045+# p.ylim(1.4,3.)
1046+# p.xlabel('Time')
1047+# p.ylabel('Fractal dimension')
1048+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
1049+# #p.title('Evolution Fractal Dimension from R_g')
1050+# #p.grid(True)
1051+# #cluster_name="number_cluster_vs_time2%05d"%my_config
1052+# #cluster_name="std_err_D_f.pdf"
1053+# p.savefig("time_evolution_D_f_with_error_bars_large_cluster.pdf")
12871054
1288-p.clf()
1055+# p.clf()
12891056
12901057
12911058
@@ -1306,6 +1073,12 @@
13061073
13071074 my_tau_coll=1./(n_clus_test/box_vol*mean_velocity*s.pi*R_gyr_mean**2.)
13081075
1076+print "R_gyr_mean is, ", R_gyr_mean
1077+
1078+print "mean_velocity is, ", mean_velocity
1079+
1080+print "n_clus_test is, ", n_clus_test
1081+
13091082 p.save("collision_time.dat", my_tau_coll)
13101083
13111084
@@ -1313,140 +1086,140 @@
13131086
13141087
13151088
1316-fig = p.figure()
1317-axes = fig.gca()
1318-
1319-#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1320-axes.plot(time,my_tau_coll, "bo",label="collision_time")
1321-# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1322-# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1323-# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1324-# label=r"Fit of $N_\infty $",linewidth=2.)
1325-p.xlabel('Time')
1326-p.ylabel('collision time')
1327-p.title("Evolution collision tim")
1328-p.grid(True)
1329-cluster_name="collision_time.pdf"
1330-axes.legend()
1331-p.savefig(cluster_name)
1332-
1333-p.clf()
1334-
1335-
1336-
1337-
1338-fig = p.figure()
1339-axes = fig.gca()
1340-
1341-#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1342-axes.loglog(time,my_tau_coll, "bo",label="collision_time")
1343-# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1344-# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1345-# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1346-# label=r"Fit of $N_\infty $",linewidth=2.)
1347-p.xlabel('Time')
1348-p.ylabel('collision time')
1349-p.title("Evolution collision tim")
1350-p.grid(True)
1351-cluster_name="collision_time_log_log.pdf"
1352-axes.legend()
1353-p.savefig(cluster_name)
1089+# fig = p.figure()
1090+# axes = fig.gca()
1091+
1092+# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1093+# axes.plot(time,my_tau_coll, "bo",label="collision_time")
1094+# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1095+# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1096+# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1097+# # label=r"Fit of $N_\infty $",linewidth=2.)
1098+# p.xlabel('Time')
1099+# p.ylabel('collision time')
1100+# p.title("Evolution collision tim")
1101+# p.grid(True)
1102+# cluster_name="collision_time.pdf"
1103+# axes.legend()
1104+# p.savefig(cluster_name)
13541105
1355-p.clf()
1356-
1357-
1358-
1359-
1360-
1361-
1362-
1363-
1364-
1365-
1366-fig = p.figure()
1367-axes = fig.gca()
1368-
1369-#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1370-axes.plot(time,mean_free_path, "bo",label="Mean-free path")
1371-# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1372-# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1373-# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1374-# label=r"Fit of $N_\infty $",linewidth=2.)
1375-p.xlabel('Time')
1376-p.ylabel('Particle mean free path')
1377-p.title("Evolution Mean-free path")
1378-p.grid(True)
1379-cluster_name="mean_free_path.pdf"
1380-axes.legend()
1381-p.savefig(cluster_name)
1106+# p.clf()
1107+
1108+
1109+
1110+
1111+# fig = p.figure()
1112+# axes = fig.gca()
1113+
1114+# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1115+# axes.loglog(time,my_tau_coll, "bo",label="collision_time")
1116+# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1117+# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1118+# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1119+# # label=r"Fit of $N_\infty $",linewidth=2.)
1120+# p.xlabel('Time')
1121+# p.ylabel('collision time')
1122+# p.title("Evolution collision tim")
1123+# p.grid(True)
1124+# cluster_name="collision_time_log_log.pdf"
1125+# axes.legend()
1126+# p.savefig(cluster_name)
13821127
1383-p.clf()
1384-
1385-
1386-
1387-
1388-
1389-fig = p.figure()
1390-axes = fig.gca()
1391-
1392-#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1393-axes.loglog(time,mean_free_path, "bo",label="Mean-free path")
1394-# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1395-# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1396-# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1397-# label=r"Fit of $N_\infty $",linewidth=2.)
1398-p.xlabel('Time')
1399-p.ylabel('Particle mean free path')
1400-p.title("Evolution Mean-free path")
1401-p.grid(True)
1402-cluster_name="mean_free_path_loglog.pdf"
1403-axes.legend()
1404-p.savefig(cluster_name)
1128+# p.clf()
1129+
1130+
1131+
1132+
1133+
1134+
1135+
1136+
1137+
1138+
1139+# fig = p.figure()
1140+# axes = fig.gca()
1141+
1142+# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1143+# axes.plot(time,mean_free_path, "bo",label="Mean-free path")
1144+# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1145+# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1146+# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1147+# # label=r"Fit of $N_\infty $",linewidth=2.)
1148+# p.xlabel('Time')
1149+# p.ylabel('Particle mean free path')
1150+# p.title("Evolution Mean-free path")
1151+# p.grid(True)
1152+# cluster_name="mean_free_path.pdf"
1153+# axes.legend()
1154+# p.savefig(cluster_name)
14051155
1406-p.clf()
1407-
1408-
1409-
1410-
1411-
1412-fig = p.figure()
1413-axes = fig.gca()
1414-
1415-#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1416-axes.plot(time,R_gyr_mean, "bo",label="Mean radius of gyration")
1417-# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1418-# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1419-# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1420-# label=r"Fit of $N_\infty $",linewidth=2.)
1421-p.xlabel('Time')
1422-p.ylabel('Mean radius of gyration')
1423-p.title("Evolution Mean Radius of gyration")
1424-p.grid(True)
1425-cluster_name="mean_radius_gyration.pdf"
1426-axes.legend()
1427-p.savefig(cluster_name)
1156+# p.clf()
1157+
1158+
1159+
1160+
1161+
1162+# fig = p.figure()
1163+# axes = fig.gca()
1164+
1165+# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1166+# axes.loglog(time,mean_free_path, "bo",label="Mean-free path")
1167+# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1168+# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1169+# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1170+# # label=r"Fit of $N_\infty $",linewidth=2.)
1171+# p.xlabel('Time')
1172+# p.ylabel('Particle mean free path')
1173+# p.title("Evolution Mean-free path")
1174+# p.grid(True)
1175+# cluster_name="mean_free_path_loglog.pdf"
1176+# axes.legend()
1177+# p.savefig(cluster_name)
14281178
1429-p.clf()
1430-
1431-
1432-fig = p.figure()
1433-axes = fig.gca()
1434-
1435-#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1436-axes.loglog(time,R_gyr_mean, "bo",label="Mean radius of gyration")
1437-# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1438-# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1439-# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1440-# label=r"Fit of $N_\infty $",linewidth=2.)
1441-p.xlabel('Time')
1442-p.ylabel('Mean radius of gyration')
1443-p.title("Evolution Mean Radius of gyration")
1444-p.grid(True)
1445-cluster_name="mean_radius_gyration_loglog.pdf"
1446-axes.legend()
1447-p.savefig(cluster_name)
1179+# p.clf()
1180+
1181+
1182+
1183+
1184+
1185+# fig = p.figure()
1186+# axes = fig.gca()
1187+
1188+# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1189+# axes.plot(time,R_gyr_mean, "bo",label="Mean radius of gyration")
1190+# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1191+# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1192+# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1193+# # label=r"Fit of $N_\infty $",linewidth=2.)
1194+# p.xlabel('Time')
1195+# p.ylabel('Mean radius of gyration')
1196+# p.title("Evolution Mean Radius of gyration")
1197+# p.grid(True)
1198+# cluster_name="mean_radius_gyration.pdf"
1199+# axes.legend()
1200+# p.savefig(cluster_name)
14481201
1449-p.clf()
1202+# p.clf()
1203+
1204+
1205+# fig = p.figure()
1206+# axes = fig.gca()
1207+
1208+# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1209+# axes.loglog(time,R_gyr_mean, "bo",label="Mean radius of gyration")
1210+# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1211+# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1212+# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1213+# # label=r"Fit of $N_\infty $",linewidth=2.)
1214+# p.xlabel('Time')
1215+# p.ylabel('Mean radius of gyration')
1216+# p.title("Evolution Mean Radius of gyration")
1217+# p.grid(True)
1218+# cluster_name="mean_radius_gyration_loglog.pdf"
1219+# axes.legend()
1220+# p.savefig(cluster_name)
1221+
1222+# p.clf()
14501223
14511224
14521225 #Now a fit of the behaviour of the mean radius of gyration vs time
@@ -1464,26 +1237,26 @@
14641237
14651238 p.save("mean_radius_gyration.dat",R_gyr_mean)
14661239
1467-fig = p.figure()
1468-axes = fig.gca()
1469-
1470-#axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1471-axes.loglog(time,R_gyr_mean, "bo",label="Mean radius of gyration")
1472-axes.loglog(time[choice_time_R],10.**(R_gyr_mean_fit), "r", linewidth=2.,label="Mean radius of gyration (fit)")
1473-
1474-# axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1475-# axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1476-# axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1477-# label=r"Fit of $N_\infty $",linewidth=2.)
1478-p.xlabel('Time')
1479-p.ylabel('Mean radius of gyration')
1480-p.title("Evolution Mean Radius of gyration")
1481-p.grid(True)
1482-cluster_name="mean_radius_gyration_loglog_fitting.pdf"
1483-axes.legend()
1484-p.savefig(cluster_name)
1240+# fig = p.figure()
1241+# axes = fig.gca()
1242+
1243+# #axes.plot(s.log10(n_comp_large),s.log10(r_gyr_ari_large), "bo")
1244+# axes.loglog(time,R_gyr_mean, "bo",label="Mean radius of gyration")
1245+# axes.loglog(time[choice_time_R],10.**(R_gyr_mean_fit), "r", linewidth=2.,label="Mean radius of gyration (fit)")
1246+
1247+# # axes.loglog(time_clu,n_clus_small, "k+",label="$N_<$")
1248+# # axes.loglog(time_clu,n_clus_large, "rx",label="$N_>$")
1249+# # axes.loglog(time_clu[choice_time_clu],(10.**my_conc),"k",\
1250+# # label=r"Fit of $N_\infty $",linewidth=2.)
1251+# p.xlabel('Time')
1252+# p.ylabel('Mean radius of gyration')
1253+# p.title("Evolution Mean Radius of gyration")
1254+# p.grid(True)
1255+# cluster_name="mean_radius_gyration_loglog_fitting.pdf"
1256+# axes.legend()
1257+# p.savefig(cluster_name)
14851258
1486-p.clf()
1259+# p.clf()
14871260
14881261
14891262
@@ -1796,25 +1569,25 @@
17961569
17971570
17981571
1799-fig = p.figure()
1800-axes = fig.gca()
1801-
1802-axes.plot(time,prefactor_R,"k^",time,prefactor_small_R,"ro"\
1803- ,time,prefactor_large_R,"bx")
1804-p.xlabel('Dimensionless Time',fontsize=20)
1805-labels = p.getp(p.gca(), 'xticklabels')
1806-p.setp(labels, color='k', fontsize=15)
1807-p.ylabel('Fractal Dimension',fontsize=20)
1808-labels2 = p.getp(p.gca(), 'yticklabels')
1809-p.setp(labels2, color='k', fontsize=15)
1810-p.legend(('overall prefactor','prefactor small clusters', 'prefactor large clusters'))
1811-#p.title('Evolution Fractal Dimension')
1812-p.grid(False)
1813- #cluster_name="number_cluster_vs_time2%05d"%my_config
1814-cluster_name="Evolution_prefactors.pdf"
1815-p.savefig(cluster_name)
1572+# fig = p.figure()
1573+# axes = fig.gca()
1574+
1575+# axes.plot(time,prefactor_R,"k^",time,prefactor_small_R,"ro"\
1576+# ,time,prefactor_large_R,"bx")
1577+# p.xlabel('Dimensionless Time',fontsize=20)
1578+# labels = p.getp(p.gca(), 'xticklabels')
1579+# p.setp(labels, color='k', fontsize=15)
1580+# p.ylabel('Fractal Dimension',fontsize=20)
1581+# labels2 = p.getp(p.gca(), 'yticklabels')
1582+# p.setp(labels2, color='k', fontsize=15)
1583+# p.legend(('overall prefactor','prefactor small clusters', 'prefactor large clusters'))
1584+# #p.title('Evolution Fractal Dimension')
1585+# p.grid(False)
1586+# #cluster_name="number_cluster_vs_time2%05d"%my_config
1587+# cluster_name="Evolution_prefactors.pdf"
1588+# p.savefig(cluster_name)
18161589
1817-p.clf()
1590+# p.clf()
18181591
18191592
18201593
@@ -1833,203 +1606,203 @@
18331606 #print "time[ini_conf:fin_conf], ", time[ini_conf:fin_conf]
18341607
18351608
1836-fig = p.figure()
1837-axes = fig.gca()
1838-
1839-
1840-axes.plot(time,my_fractal_dim,"k^")
1841-p.xlabel('Dimensionless Time',fontsize=20)
1842-labels = p.getp(p.gca(), 'xticklabels')
1843-p.setp(labels, color='k', fontsize=15)
1844-p.ylabel('Fractal Dimension',fontsize=20)
1845-labels2 = p.getp(p.gca(), 'yticklabels')
1846-p.setp(labels2, color='k', fontsize=15)
1847-#p.legend(('from power-law fitting','from linear fitting on log-log'))
1848-#p.title('Evolution Fractal Dimension')
1849-p.grid(False)
1850- #cluster_name="number_cluster_vs_time2%05d"%my_config
1851-cluster_name="Evolution_fractal_dimension-no-mean.pdf"
1852-p.savefig(cluster_name)
1853-
1854-p.clf()
1855-
1856-
1857-
1858-
1859-fig = p.figure()
1860-axes = fig.gca()
1861-
1862-axes.plot(time,my_fra_low,"k^")
1863-p.xlabel('Dimensionless Time',fontsize=20)
1864-labels = p.getp(p.gca(), 'xticklabels')
1865-p.setp(labels, color='k', fontsize=15)
1866-p.ylabel('Fractal Dimension',fontsize=20)
1867-labels2 = p.getp(p.gca(), 'yticklabels')
1868-p.setp(labels2, color='k', fontsize=15)
1869-#p.legend(('from power-law fitting','from linear fitting on log-log'))
1870-p.title('Evolution Fractal Dimension for small clusters')
1871-p.grid(False)
1872- #cluster_name="number_cluster_vs_time2%05d"%my_config
1873-cluster_name="Evolution_fractal_dimension-no-mean-small-clusters.pdf"
1874-p.savefig(cluster_name)
1875-
1876-p.clf()
1877-
1878-
1879-
1880-
1881-fig = p.figure()
1882-axes = fig.gca()
1883-
1884-axes.plot(time,my_fra_high,"k^")
1885-p.xlabel('Dimensionless Time',fontsize=20)
1886-labels = p.getp(p.gca(), 'xticklabels')
1887-p.setp(labels, color='k', fontsize=15)
1888-p.ylabel('Fractal Dimension',fontsize=20)
1889-labels2 = p.getp(p.gca(), 'yticklabels')
1890-p.setp(labels2, color='k', fontsize=15)
1891-#p.legend(('from power-law fitting','from linear fitting on log-log'))
1892-p.title('Evolution Fractal Dimension for large clusters')
1893-p.grid(False)
1894- #cluster_name="number_cluster_vs_time2%05d"%my_config
1895-cluster_name="Evolution_fractal_dimension-no-mean-large-clusters.pdf"
1896-p.savefig(cluster_name)
1897-
1898-p.clf()
1899-
1900-
1901-
1902-
1903-
1904-fig = p.figure()
1905-axes = fig.gca()
1906-
1907-
1908-
1909-axes.plot(time,my_fractal_dim2, "bo",\
1910- time,my_fractal_dim2,linewidth=2.)
1911-p.xlabel('Time')
1912-p.ylabel('Fitted D_f')
1913-#p.legend(('from power-law fitting','from linear fitting on log-log'))
1914-p.title('Evolution Fractal Dimension from R_g')
1915-p.grid(True)
1916- #cluster_name="number_cluster_vs_time2%05d"%my_config
1917-cluster_name="Evolution_fractal_dimension_from_mean.pdf"
1918-p.savefig(cluster_name)
1609+# fig = p.figure()
1610+# axes = fig.gca()
1611+
1612+
1613+# axes.plot(time,my_fractal_dim,"k^")
1614+# p.xlabel('Dimensionless Time',fontsize=20)
1615+# labels = p.getp(p.gca(), 'xticklabels')
1616+# p.setp(labels, color='k', fontsize=15)
1617+# p.ylabel('Fractal Dimension',fontsize=20)
1618+# labels2 = p.getp(p.gca(), 'yticklabels')
1619+# p.setp(labels2, color='k', fontsize=15)
1620+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
1621+# #p.title('Evolution Fractal Dimension')
1622+# p.grid(False)
1623+# #cluster_name="number_cluster_vs_time2%05d"%my_config
1624+# cluster_name="Evolution_fractal_dimension-no-mean.pdf"
1625+# p.savefig(cluster_name)
19191626
1920-p.clf()
1921-
1922-
1923-fig = p.figure()
1924-axes = fig.gca()
1925-
1926-
1927-axes.plot(time,my_fractal_dim3, "bo",\
1928- time,my_fractal_dim3,linewidth=2.)
1929-p.xlabel('Time')
1930-p.ylabel('Fitted D_f')
1931-#p.legend(('from power-law fitting','from linear fitting on log-log'))
1932-p.title('Evolution Fractal Dimension from R_g')
1933-p.grid(True)
1934- #cluster_name="number_cluster_vs_time2%05d"%my_config
1935-cluster_name="Evolution_fractal_dimension_from_mean_log.pdf"
1936-p.savefig(cluster_name)
1937-
1938-p.clf()
1939-
1940-
1941-fig = p.figure()
1942-axes = fig.gca()
1943-
1944-
1945-
1946-
1947-axes.plot(time,r_stat, "bo")
1948-p.xlabel('Time')
1949-p.ylabel('R of the fitted fractal dimension')
1950-#p.legend(('from power-law fitting','from linear fitting on log-log'))
1951-p.title('R calculation')
1952-p.grid(True)
1953- #cluster_name="number_cluster_vs_time2%05d"%my_config
1954-cluster_name="r_statistics.pdf"
1955-p.savefig(cluster_name)
1956-
1957-p.clf()
1958-
1959-
1960-
1961-fig = p.figure()
1962-axes = fig.gca()
1963-
1964-
1965-
1966-axes.plot(time,r_stat_low, "bo")
1967-p.xlabel('Time')
1968-p.ylabel('R of the fitted fractal dimension')
1969-#p.legend(('from power-law fitting','from linear fitting on log-log'))
1970-p.title('R calculation for small clusters')
1971-p.grid(True)
1972- #cluster_name="number_cluster_vs_time2%05d"%my_config
1973-cluster_name="r_statistics_small_clusters.pdf"
1974-p.savefig(cluster_name)
1627+# p.clf()
1628+
1629+
1630+
1631+
1632+# fig = p.figure()
1633+# axes = fig.gca()
1634+
1635+# axes.plot(time,my_fra_low,"k^")
1636+# p.xlabel('Dimensionless Time',fontsize=20)
1637+# labels = p.getp(p.gca(), 'xticklabels')
1638+# p.setp(labels, color='k', fontsize=15)
1639+# p.ylabel('Fractal Dimension',fontsize=20)
1640+# labels2 = p.getp(p.gca(), 'yticklabels')
1641+# p.setp(labels2, color='k', fontsize=15)
1642+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
1643+# p.title('Evolution Fractal Dimension for small clusters')
1644+# p.grid(False)
1645+# #cluster_name="number_cluster_vs_time2%05d"%my_config
1646+# cluster_name="Evolution_fractal_dimension-no-mean-small-clusters.pdf"
1647+# p.savefig(cluster_name)
19751648
1976-p.clf()
1977-
1978-
1979-
1980-fig = p.figure()
1981-axes = fig.gca()
1982-
1983-
1984-axes.plot(time,r_stat_high, "bo")
1985-p.xlabel('Time')
1986-p.ylabel('R of the fitted fractal dimension')
1987-#p.legend(('from power-law fitting','from linear fitting on log-log'))
1988-p.title('R calculation for large clusters')
1989-p.grid(True)
1990- #cluster_name="number_cluster_vs_time2%05d"%my_config
1991-cluster_name="r_statistics_large_clusters.pdf"
1992-p.savefig(cluster_name)
1649+# p.clf()
1650+
1651+
1652+
1653+
1654+# fig = p.figure()
1655+# axes = fig.gca()
1656+
1657+# axes.plot(time,my_fra_high,"k^")
1658+# p.xlabel('Dimensionless Time',fontsize=20)
1659+# labels = p.getp(p.gca(), 'xticklabels')
1660+# p.setp(labels, color='k', fontsize=15)
1661+# p.ylabel('Fractal Dimension',fontsize=20)
1662+# labels2 = p.getp(p.gca(), 'yticklabels')
1663+# p.setp(labels2, color='k', fontsize=15)
1664+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
1665+# p.title('Evolution Fractal Dimension for large clusters')
1666+# p.grid(False)
1667+# #cluster_name="number_cluster_vs_time2%05d"%my_config
1668+# cluster_name="Evolution_fractal_dimension-no-mean-large-clusters.pdf"
1669+# p.savefig(cluster_name)
19931670
1994-p.clf()
1995-
1996-
1997-
1998-
1999-fig = p.figure()
2000-axes = fig.gca()
2001-
2002-
2003-axes.plot(time,delta_df, "bo")
2004-p.xlabel('Time')
2005-p.ylabel('Uncertainty on the fractal dimension')
2006-#p.legend(('from power-law fitting','from linear fitting on log-log'))
2007-p.title('Evolution Fractal Dimension from R_g')
2008-p.grid(True)
2009- #cluster_name="number_cluster_vs_time2%05d"%my_config
2010-cluster_name="delta_df.pdf"
2011-p.savefig(cluster_name)
1671+# p.clf()
1672+
1673+
1674+
1675+
1676+
1677+# fig = p.figure()
1678+# axes = fig.gca()
1679+
1680+
1681+
1682+# axes.plot(time,my_fractal_dim2, "bo",\
1683+# time,my_fractal_dim2,linewidth=2.)
1684+# p.xlabel('Time')
1685+# p.ylabel('Fitted D_f')
1686+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
1687+# p.title('Evolution Fractal Dimension from R_g')
1688+# p.grid(True)
1689+# #cluster_name="number_cluster_vs_time2%05d"%my_config
1690+# cluster_name="Evolution_fractal_dimension_from_mean.pdf"
1691+# p.savefig(cluster_name)
20121692
2013-p.clf()
2014-
2015-
2016-fig = p.figure()
2017-axes = fig.gca()
2018-
2019-
2020-choice_inf=s.where(s.isinf(std_err == 0))
2021-
2022-axes.plot(time[choice_inf],std_err[choice_inf], "bo")
2023-p.xlabel('Time')
2024-p.ylabel('Std error on 1/fractal dimension')
2025-#p.legend(('from power-law fitting','from linear fitting on log-log'))
2026-p.title('Standard error on 1/fractal dimension')
2027-p.grid(True)
2028- #cluster_name="number_cluster_vs_time2%05d"%my_config
2029-cluster_name="std_err_1_over_D_f.pdf"
2030-p.savefig(cluster_name)
1693+# p.clf()
1694+
1695+
1696+# fig = p.figure()
1697+# axes = fig.gca()
1698+
1699+
1700+# axes.plot(time,my_fractal_dim3, "bo",\
1701+# time,my_fractal_dim3,linewidth=2.)
1702+# p.xlabel('Time')
1703+# p.ylabel('Fitted D_f')
1704+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
1705+# p.title('Evolution Fractal Dimension from R_g')
1706+# p.grid(True)
1707+# #cluster_name="number_cluster_vs_time2%05d"%my_config
1708+# cluster_name="Evolution_fractal_dimension_from_mean_log.pdf"
1709+# p.savefig(cluster_name)
20311710
2032-p.clf()
1711+# p.clf()
1712+
1713+
1714+# fig = p.figure()
1715+# axes = fig.gca()
1716+
1717+
1718+
1719+
1720+# axes.plot(time,r_stat, "bo")
1721+# p.xlabel('Time')
1722+# p.ylabel('R of the fitted fractal dimension')
1723+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
1724+# p.title('R calculation')
1725+# p.grid(True)
1726+# #cluster_name="number_cluster_vs_time2%05d"%my_config
1727+# cluster_name="r_statistics.pdf"
1728+# p.savefig(cluster_name)
1729+
1730+# p.clf()
1731+
1732+
1733+
1734+# fig = p.figure()
1735+# axes = fig.gca()
1736+
1737+
1738+
1739+# axes.plot(time,r_stat_low, "bo")
1740+# p.xlabel('Time')
1741+# p.ylabel('R of the fitted fractal dimension')
1742+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
1743+# p.title('R calculation for small clusters')
1744+# p.grid(True)
1745+# #cluster_name="number_cluster_vs_time2%05d"%my_config
1746+# cluster_name="r_statistics_small_clusters.pdf"
1747+# p.savefig(cluster_name)
1748+
1749+# p.clf()
1750+
1751+
1752+
1753+# fig = p.figure()
1754+# axes = fig.gca()
1755+
1756+
1757+# axes.plot(time,r_stat_high, "bo")
1758+# p.xlabel('Time')
1759+# p.ylabel('R of the fitted fractal dimension')
1760+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
1761+# p.title('R calculation for large clusters')
1762+# p.grid(True)
1763+# #cluster_name="number_cluster_vs_time2%05d"%my_config
1764+# cluster_name="r_statistics_large_clusters.pdf"
1765+# p.savefig(cluster_name)
1766+
1767+# p.clf()
1768+
1769+
1770+
1771+
1772+# fig = p.figure()
1773+# axes = fig.gca()
1774+
1775+
1776+# axes.plot(time,delta_df, "bo")
1777+# p.xlabel('Time')
1778+# p.ylabel('Uncertainty on the fractal dimension')
1779+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
1780+# p.title('Evolution Fractal Dimension from R_g')
1781+# p.grid(True)
1782+# #cluster_name="number_cluster_vs_time2%05d"%my_config
1783+# cluster_name="delta_df.pdf"
1784+# p.savefig(cluster_name)
1785+
1786+# p.clf()
1787+
1788+
1789+# fig = p.figure()
1790+# axes = fig.gca()
1791+
1792+
1793+# choice_inf=s.where(s.isinf(std_err == 0))
1794+
1795+# axes.plot(time[choice_inf],std_err[choice_inf], "bo")
1796+# p.xlabel('Time')
1797+# p.ylabel('Std error on 1/fractal dimension')
1798+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
1799+# p.title('Standard error on 1/fractal dimension')
1800+# p.grid(True)
1801+# #cluster_name="number_cluster_vs_time2%05d"%my_config
1802+# cluster_name="std_err_1_over_D_f.pdf"
1803+# p.savefig(cluster_name)
1804+
1805+# p.clf()
20331806
20341807
20351808
@@ -2611,24 +2384,24 @@
26112384 df_time_aver_vec[:]=1./lin_fit2[0]
26122385
26132386
2614-fig = p.figure()
2615-axes = fig.gca()
2616-
2617-axes.errorbar(time,my_fractal_dim,yerr=delta_df, linewidth=2. )
2618-
2619-axes.errorbar(time,my_fractal_dim_small,yerr=delta_df_small,\
2620- label="Fractal dimension for small clusters",linewidth=2.)
2621-
2622-axes.errorbar(time,my_fractal_dim_large,yerr=delta_df_large,\
2623- label="Fractal dimension for small clusters",linewidth=2.)
2624-
2625-#p.ylim(1.4,2.6)
2626-#axes.legend()
2627-p.xlabel('Time')
2628-p.ylabel('Fractal dimension')
2629-p.savefig("time_evolution_D_f_with_error_bars_all.pdf")
2387+# fig = p.figure()
2388+# axes = fig.gca()
2389+
2390+# axes.errorbar(time,my_fractal_dim,yerr=delta_df, linewidth=2. )
2391+
2392+# axes.errorbar(time,my_fractal_dim_small,yerr=delta_df_small,\
2393+# label="Fractal dimension for small clusters",linewidth=2.)
2394+
2395+# axes.errorbar(time,my_fractal_dim_large,yerr=delta_df_large,\
2396+# label="Fractal dimension for small clusters",linewidth=2.)
2397+
2398+# #p.ylim(1.4,2.6)
2399+# #axes.legend()
2400+# p.xlabel('Time')
2401+# p.ylabel('Fractal dimension')
2402+# p.savefig("time_evolution_D_f_with_error_bars_all.pdf")
26302403
2631-p.clf()
2404+# p.clf()
26322405
26332406
26342407
@@ -3187,57 +2960,57 @@
31872960
31882961
31892962
3190-fig = p.figure()
3191-axes = fig.gca()
3192-
3193-
3194-axes.errorbar(time,prefactor_small_R_raw,yerr=delta_prefactor_small_R_raw)
3195-axes.errorbar(time,prefactor_large_R_raw,yerr=delta_prefactor_large_R_raw)
3196-axes.errorbar(time,prefactor_R_raw,yerr=delta_prefactor_R_raw)
3197-
3198-# axes.errorbar(time[ini_conf:fin_conf],prefactor_small_R_raw,yerr=delta_prefactor_small_R_raw,"ko",\
3199-# time[ini_conf:fin_conf],prefactor_large_R_raw,yerr=delta_prefactor_large_R_raw, "r+",\
3200-# time[ini_conf:fin_conf],prefactor_R_raw,yerr=delta_prefactor_R_raw, "bx")
3201-
3202-
3203-#p.ylim(1.4,3.)
3204-p.xlabel('Time')
3205-p.ylabel('Raw prefactor and error bars')
3206-#p.legend(('from power-law fitting','from linear fitting on log-log'))
3207-#p.title('Evolution Fractal Dimension from R_g')
3208-#p.grid(True)
3209- #cluster_name="number_cluster_vs_time2%05d"%my_config
3210-#cluster_name="std_err_D_f.pdf"
3211-p.savefig("time_evolution_raw_prefactor_with_error_bars.pdf")
2963+# fig = p.figure()
2964+# axes = fig.gca()
2965+
2966+
2967+# axes.errorbar(time,prefactor_small_R_raw,yerr=delta_prefactor_small_R_raw)
2968+# axes.errorbar(time,prefactor_large_R_raw,yerr=delta_prefactor_large_R_raw)
2969+# axes.errorbar(time,prefactor_R_raw,yerr=delta_prefactor_R_raw)
2970+
2971+# # axes.errorbar(time[ini_conf:fin_conf],prefactor_small_R_raw,yerr=delta_prefactor_small_R_raw,"ko",\
2972+# # time[ini_conf:fin_conf],prefactor_large_R_raw,yerr=delta_prefactor_large_R_raw, "r+",\
2973+# # time[ini_conf:fin_conf],prefactor_R_raw,yerr=delta_prefactor_R_raw, "bx")
2974+
2975+
2976+# #p.ylim(1.4,3.)
2977+# p.xlabel('Time')
2978+# p.ylabel('Raw prefactor and error bars')
2979+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
2980+# #p.title('Evolution Fractal Dimension from R_g')
2981+# #p.grid(True)
2982+# #cluster_name="number_cluster_vs_time2%05d"%my_config
2983+# #cluster_name="std_err_D_f.pdf"
2984+# p.savefig("time_evolution_raw_prefactor_with_error_bars.pdf")
32122985
3213-p.clf()
3214-
3215-
3216-
3217-fig = p.figure()
3218-axes = fig.gca()
3219-
3220-
3221-axes.errorbar(time,prefactor_small_R,yerr=delta_prefactor_small_R)
3222-axes.errorbar(time,prefactor_large_R,yerr=delta_prefactor_large_R)
3223-axes.errorbar(time,prefactor_R,yerr=delta_prefactor_R)
3224-
3225-# axes.errorbar(time[ini_conf:fin_conf],prefactor_small_R_raw,yerr=delta_prefactor_small_R_raw,"ko",\
3226-# time[ini_conf:fin_conf],prefactor_large_R_raw,yerr=delta_prefactor_large_R_raw, "r+",\
3227-# time[ini_conf:fin_conf],prefactor_R_raw,yerr=delta_prefactor_R_raw, "bx")
3228-
3229-
3230-#p.ylim(1.4,3.)
3231-p.xlabel('Time')
3232-p.ylabel('Prefactor and error bars')
3233-#p.legend(('from power-law fitting','from linear fitting on log-log'))
3234-#p.title('Evolution Fractal Dimension from R_g')
3235-#p.grid(True)
3236- #cluster_name="number_cluster_vs_time2%05d"%my_config
3237-#cluster_name="std_err_D_f.pdf"
3238-p.savefig("time_evolution_prefactor_with_error_bars.pdf")
2986+# p.clf()
2987+
2988+
2989+
2990+# fig = p.figure()
2991+# axes = fig.gca()
2992+
2993+
2994+# axes.errorbar(time,prefactor_small_R,yerr=delta_prefactor_small_R)
2995+# axes.errorbar(time,prefactor_large_R,yerr=delta_prefactor_large_R)
2996+# axes.errorbar(time,prefactor_R,yerr=delta_prefactor_R)
2997+
2998+# # axes.errorbar(time[ini_conf:fin_conf],prefactor_small_R_raw,yerr=delta_prefactor_small_R_raw,"ko",\
2999+# # time[ini_conf:fin_conf],prefactor_large_R_raw,yerr=delta_prefactor_large_R_raw, "r+",\
3000+# # time[ini_conf:fin_conf],prefactor_R_raw,yerr=delta_prefactor_R_raw, "bx")
3001+
3002+
3003+# #p.ylim(1.4,3.)
3004+# p.xlabel('Time')
3005+# p.ylabel('Prefactor and error bars')
3006+# #p.legend(('from power-law fitting','from linear fitting on log-log'))
3007+# #p.title('Evolution Fractal Dimension from R_g')
3008+# #p.grid(True)
3009+# #cluster_name="number_cluster_vs_time2%05d"%my_config
3010+# #cluster_name="std_err_D_f.pdf"
3011+# p.savefig("time_evolution_prefactor_with_error_bars.pdf")
32393012
3240-p.clf()
3013+# p.clf()
32413014
32423015
32433016